
Poznan University of Technology

T H E S I S
to obtain the degree of

Doctor of Philosophy
at the Council of the Faculty of Computing

by

Jarosław Ksawery BĄK

Rule-based query answering method
for a knowledge base
of economic crimes

Supervisor:
prof. dr hab. inż. Czesław JĘDRZEJEK

A dissertation prepared at
Institute of Control and Information Engineering,

Poznan University of Technology

Poznan, 2013

Dedicated to
my parents, Urszula and Krzysztof,
my best friend and brother Sławek,

my beloved wife Ula,
and my sister Kasia who will be always in our minds...

Abstract

Nowadays, the most of data processed in modern applications come from
relational databases. Data stored in such sources are described only by their
schema (a structure of data). Without strictly defined semantics there is often
a mismatch problem with table and column names in databases. Moreover, it
is rather difficult to query data at a more abstract level than only in a language
of database relations and attributes. A lack of conceptual knowledge can be
overcome by introducing ontologies. For the evaluation purposes, an ontology can
be transformed into a set of rules. The additional rule-based knowledge allows
reasoning and query answering at an appropriate abstract layer.

The main objective of this thesis is to propose a rule-based query answering
method for relational data with formally defined semantics, expressed with
additional knowledge represented as a set of Horn clauses. The set describes the
source data at conceptual (ontological) level which consists of terms allowing to
pose a query using the defined semantics. Reasoning is employed to obtain an
answer for the query. Moreover, the rule-based query answering (RQA) method
will be used with a knowledge base of economic crimes to support prosecutors
and investigators in their work. An integration of relational data, an ontology and
rules allowing RQA, make the problem challenging. In addition, the formulation
of a knowledge base of economic crimes requires thorough analysis of real crime
cases.

We focus on developing methods which provide a simplified and more con-
venient way to create queries than using structural constructions from SQL.
Applying an ontology and rules to relational data requires increasing the perfor-
mance of a reasoning employed in a query answering. Therefore, we investigate
optimization techniques in a query evaluation performed in Datalog and rule-based
systems. Moreover, we identify a proper formalism which combines description
logics with rules without the loss of decidability. In addition, we analyse economic
crimes, namely fraudulent disbursement and money laundering to construct a
knowledge base expressed in a description logic with rules.

This thesis makes the following contributions. We propose two methods of
a rule-based query answering applicable to relational databases with formally
defined semantics. The first method uses hybrid reasoning implemented in the
Jess engine and combines forward and backward chaining in a query answering.

iv

In the second approach we devise novel modifications of a magic transformation
introducing the extended, goal- and dependency-directed rules. This approach
employs only the forward chaining. In both methods the Rete reasoning algorithm
is applied. In addition, we propose a straightforward mapping method between
ontology predicates and relational data. Moreover, we formulate a knowledge base
of economic crimes, namely fraudulent disbursement and money laundering, as an
ontology defined in the Horn-SHIQ description logic with Horn clauses. At the
end, our research work has been implemented in the Semantic Data Library tool,
allowing us to validate our RQA methods.

We present experiments with the implemented methods and the knowledge
base of economic crimes. As a result, we confirm that our methods increase the
performance and scalability of the Rete-based Jess reasoning engine. Moreover,
the extended rules method is more general than the hybrid one and can be applied
in any Rete-based reasoning engine. We conclude indicating directions for future
research.

v

Acknowledgements
I would like to express my gratitude to prof. Czesław Jędrzejek, my supervisor.
His support, advice and encouragement throughout the years helped me in many
aspects of my work and my life. He always allows me to express my ideas,
providing relevant feedback while asking open questions and showing important
research directions.

I would like to thank dr Grażyna Brzykcy, for teaching me skills to express
and to formalize scientific ideas, and for her interest in my work. I am grateful
to dr Jolanta Cybulka, for her help and support in “semantics” research applied
in this thesis. I would like to thank dr Adam Meissner, dr Jacek Martinek and
dr Krzysztof Zwierzyński, for many fruitful discussions which improved my work.

I would like to acknowledge the support from Jacek Więckowski, the prose-
cutor who provided fruitful discussions and crime analysis while preparing the
domain ontology.

I would like to thank all my colleagues, for exchanging ideas, for daily con-
versations on various important topics and for their technical and scientific
support. Among them, I would like to thank dr Paweł Misiorek, dr Andrzej
Szwabe, Michał Blinkiewicz and Przemek Walkowiak with who I share the room.

Apologies for not listing everyone by name. I appreciate helpful exchange
of ideas, valuable feedback and invaluable advice. It is a pleasure to work with
you every day.

I gratefully acknowledge the help and support of my friends which gave me
the motivation in preparing this thesis.

Most importantly of all, I would like to thank my family for love, support
and patience. I would like to thank my parents, for their faith in me and devotion
of time. Special thanks to my wife for her understanding, love and continuous
support every day. I would like to thank my brother, for exchanging ideas, for
keeping me motivated and for his support in difficult times.

Acknowledgement. While working on the PhD I was supported by the
following grants: Polish Plaform for Homeland Security, A tool supporting
investigative procedures using automatic inference number 0014/R/2/T00/06/02
and Rule-based query answering method for a relational database with the use of
an ontology-based knowledge number UMO-2011/03/N/ST6/01602.

Contents

1 Introduction 1
1.1 Motivation and Problem Statement 2
1.2 Research Challenges . 4
1.3 Main Contributions . 5
1.4 Structure of this Thesis . 6

2 Preliminaries 9
2.1 Theoretical Background . 9

2.1.1 First-order Logic . 9
2.1.1.1 Syntax . 9
2.1.1.2 Semantics . 11

2.1.2 Datalog as a First-order Rule Language 13
2.1.2.1 Syntax . 14
2.1.2.2 Semantics . 16
2.1.2.3 Reasoning . 18

2.1.3 Rule-based Systems . 22
2.1.3.1 Rules and Facts 23
2.1.3.2 The Rete Algorithm 24
2.1.3.3 Forward and Backward Chaining in the Jess En-

gine . 24
2.1.4 Rule-based Query Answering 25

2.1.4.1 Sideways Information Passing and Adorned Rules 26
2.1.4.2 Magic Transformation and Other Rule-rewriting

Techniques . 27
2.1.4.3 Other Optimizations 29

2.1.5 Description Logics . 29
2.1.5.1 Syntax . 30
2.1.5.2 Semantics . 32
2.1.5.3 Reasoning . 34

2.1.6 Combining Description Logics with Datalog 35
2.1.6.1 Semantic Web Rule Language 36
2.1.6.2 Description Logic Programs 36
2.1.6.3 DL-safe Rules 37
2.1.6.4 Description Logic Rules 37
2.1.6.5 Horn-SHIQ 37
2.1.6.6 Other approaches 39

2.2 Description of Economic Crimes 41

viii Contents

2.2.1 Fraudulent Disbursement 42
2.2.2 Money Laundering . 43

3 Knowledge base of economic crimes 47
3.1 The Hydra Case . 48
3.2 Ontology Design Method . 50

3.2.1 Ontology Overview . 51
3.2.2 Adopted Method . 52
3.2.3 Applied Rules . 55

3.3 Minimal Ontology Model . 56
3.3.1 Domain-based Part of the Ontology 57
3.3.2 Task-based Part of the Ontology 61

3.4 Discussion of the Related Work 74
3.5 Conclusion . 77

4 Methods for a rule-based query answering 81
4.1 Hybrid Reasoning Method . 83

4.1.1 Generation of Rules for Backward Chaining 84
4.1.2 Query Algorithm for Hybrid Reasoning 85

4.2 Extended Rules Method . 87
4.2.1 Generation of the Extended Rules 89
4.2.2 Query Algorithm for Extended Rules Reasoning 92

4.3 Complexity of Query Answering 94
4.4 Mapping Between Ontology Terms and Relational Data 95
4.5 Discussion of the Related Work 98
4.6 Conclusion . 100

5 Implementation of SDL 103
5.1 SDL Overview . 103
5.2 SDL Architecture and Integration Process 104
5.3 OWL to Jess Transformation Methods 107
5.4 Mapping Rules . 108
5.5 SDL Features . 110
5.6 Conclusion . 112

6 Experimental Evaluation 113
6.1 Generation of the Hydra-case-like simulated input data 114
6.2 Example Queries . 117
6.3 Performance Evaluation . 118
6.4 Conclusion . 123

Contents ix

7 Conclusions and perspectives 125
7.1 Main Results . 126
7.2 Future Work . 127

Appendix A Example Use of the Extended Rules Method 131

Bibliography 135

List of Figures

3.1 The Hydra case . 48
3.2 Taxonomy of concepts concerning documents. 59
3.3 Taxonomy of concepts concerning social persons. 60

4.1 The hybrid reasoning and query algorithm. 86
4.2 An example of a query involving three ontology predicates. 87
4.3 The gsip strategy for the generation of extended rules. 90
4.4 The reasoning and query algorithm performed with extended rules. 93
4.5 The grouping algorithm. 97

5.1 The architecture of the Semantic Data Library. 104
5.2 The integration scheme executed in the SDL library with the hybrid

reasoning approach. 106
5.3 The integration scheme executed in the SDL library with the ex-

tended rules approach. 107
5.4 The SDL tool with minimal ontology model and database connection.111

6.1 Database schema for the Hydra case. 115
6.2 The test queries. 119

List of Tables

2.1 Truth values for formulae. 12
2.2 An example extensional database - edb(FR). 19
2.3 Bottom-up evaluation of the Datalog program FR. 20
2.4 Top-down evaluation of the Datalog query 22
2.5 The syntax of description logics. 31
2.6 The example use of expressions in description logics. 32
2.7 The semantics of description logics. 33

3.1 Layers of concepts for analysis of economic crimes. 56
3.2 Fraud attribute representation. 58
3.3 Options in the fraudulent disbursement case of Hydra 66
3.4 Logical characterization of activities of key persons of a company 73

6.1 Numbers of generated tuples in relational databases. 120
6.2 Results of queries execution in our RQA methods. 121
6.3 Results of queries execution and comparison to the pure forward

and backward Jess engines. 122
6.4 Results of queries execution with Horn-SHIQ transformation and

extended rules compared to the simple transformation. 123

A.1 An example extensional database. 131
A.2 Example evaluation of query hasCousin(p14, ?x) with extended

rules RQA method Step 2. 133

Nomenclature

a, b, c constants, individuals

?x, ?y, ?z variables

X̄ set of variables and/or constants

→ implication

, conjunction in rules

⊤ universal concept

⊥ bottom concept

⊓ intersection (in DL syntax)

⊔ union (in DL syntax)

⊑ subsumption of concepts (in DL syntax)

|= logically entails

̸|= does not logically entail

◦ composition

∃ Existential quantifier (in OWL represented as “someValuesFrom”)

∀ Universal quantifier (in OWL represented as “allValuesFrom”)

CHAPTER 1

Introduction

Many methods have been developed for over twenty years to manage large amounts
of data in relational databases. Currently, these approaches are very efficient and
scalable. However, the relational data model is not able to capture complex re-
lationships between objects such as relation composition (e.g., “being someone’s
uncle means being a brother of his/her parent”), cardinality restrictions (e.g., “each
person has exactly two arms”), logical negation (e.g., “every person not being a
man must be a woman”) [Kremen 2012]. For complex systems we need to man-
age not only data, but also knowledge, as well as processing gathered data with
richer means than offered by RDBMS (Relational Database Management System)
and SQL (Structured Query Language). Knowledge management techniques re-
quire data semantics to be explicitly given. The resources to express it in relational
databases are limited to a database schema (syntactic structure of data), which is
not sufficient in the knowledge management. There is also a mismatching problem
with table and column names in a database without strictly defined semantics.

In the last decade, the use of ontologies in information systems has become
more and more popular in various fields, such as web technologies, database
integration, multi agent systems, natural language processing, etc. Ontology-
based information system design enters enterprise systems. Applications based
on SNOMED CT1 maintained by the International Health Terminology Standards
Development Organisation are becoming small industry. Ontology-based systems
enter enterprise systems, mostly for Business Process Management, Software Con-
figuration Management and Software Evolution Management. Also so called Big
Data has important semantic dimension. “The Big Data market is projected to
reach $18.1 billion in 2013, an annual growth of 61%. This puts it on pace to ex-
ceed $47 billion by 2017” [Kelly 2013]. Yet, new technologies are a supplement
to RDBMS. It seems, that a promising approach would be integrating them with
RDBMS enabling queries with strictly defined semantics.

It is difficult to pose a query, which is the most common form of data retrieval,
at a higher level of abstraction than in a language of database relations and at-
tributes. The convenient way to express the domain semantics is to use ontologies
which describe data at the conceptual, and formally defined, level, thus a lack of
a conceptual knowledge in databases can be overcome by introducing ontologies.

1http://www.ihtsdo.org/

2 Chapter 1. Introduction

For evaluation purposes an ontology can be transformed into a set of rules. This
kind of additional rule-based knowledge allows reasoning and query answering at
an appropriate abstract level and relieves a user of using structural constructions
from SQL. This kind of a query evaluation is called a rule-based query answering
method, which has been investigated in this thesis. There is, however, another ap-
proach, more desirable in commercial applications – to transform ontology directly
into SQL [Poggi 2008].

Our research concerns also the problem of applying the rule-based query an-
swering to a knowledge base of economic crimes in order to discover crime activi-
ties and to suggest legal sanctions for crime perpetrators.

The most of the research work in the legal area relies on using ontologies in the
field of information management and exchange [Biasiotti 2008, Casellas 2008] not
reasoning [Breuker 2009]. Other solutions, developed for instance in FF Poirot
project [Kerremans 2005, Zhao 2005] concern descriptions of financial frauds,
mainly the Nigerian letter fraud and fraudulent Internet investment pages. The
ontologies developed in this project are not publicly available.

This chapter introduces the problem of rule-based query answering and its ap-
plication to a knowledge base of economic crimes. Section 1.1 gives a formal
definition of the problem and presents the motivation of the thesis. We discuss the
involved challenges in section 1.2, illustrating the main difficulties. We conclude
with a list of major contributions in section 1.3. The structure of the dissertation is
presented in section 1.4.

1.1 Motivation and Problem Statement
The problem of a rule-based query answering is an ongoing subject of research.
The problem is strictly connected with reasoning. We now define the problem of
the rule-based query answering.

Definition 1.1 (Rule-based query answering). Let Q be a query, R a set of rules,
and let A be a reasoning algorithm. An evaluation of query Q which is supported
by reasoning performed w.r.t. algorithm A and set R is called the rule-based query
answering (RQA).

It is worth noticing that Definition 1.1 is general and does not establish the form
of a query, applied rules or a reasoning algorithm according to which an evaluation
is performed.

Generally speaking, there are two kinds of reasoning methods applied in the
rule-based query answering task. The first one is a backward chaining methods,
where reasoning is goal-driven. In this case our goal is the query posed to the
system. This scheme of reasoning is implemented, for instance, in Prolog engine,

1.1. Motivation and Problem Statement 3

and takes the form of the SLD resolution. In the backward reasoning technique
facts are obtained only when they are needed in derivations.

On the contrary, forward chaining approaches, which are data-driven, need rea-
soning about all facts, which are stored in the working memory. Some of the in-
ferred facts are useless and many rules are fired unnecessarily, which has a nega-
tive impact on the efficiency of the answering process. Moreover, because all facts
should exist in the working memory, the scalability of reasoning task is poor due
to the limited RAM memory. This drawback occurs also in the backward chaining.

The results of the OpenRuleBench initiative [Liang 2009a] show that efficiency
of tabling Prolog and deductive database technologies surpasses the ones obtained
from the corresponding pure rule-based forward chaining engines.

Aforementioned faults have had an important influence on our motivation. In
this thesis we are interested in methods which increase efficiency of a reasoning
applied in a rule-based query answering task. Thus, we concentrate on RQA which
eliminates mentioned drawbacks in a state-of-the-art reasoning engine combined
with a relational database (which acts as a storage location) and an ontology (which
constitutes formally defined semantics of data). Thus, the aim of the thesis can be
formulated as:

Development of a rule-based query answering method
applicable to relational databases with formally defined semantics.

We also assume that the rule-based query answering method is used with the knowl-
edge base of the selected economic crimes: fraudulent disbursement and money
laundering. We assume that our system is able to determine legal sanctions for
crime perpetrators and to discover crime activities and roles (of particular types of
owners, managers, directors and chairmen) using concepts, appropriate relations
and rules. Rules and queries are used to reflect data concerning documents and their
attributes, formal hierarchy in a company, parameters of transactions, engaged peo-
ple actions and their legal qualifications. The similar assumptions were proposed in
the work [Bezzazi 2007] which concerns cybercrimes only. The knowledge base of
economic crimes is represented as an ontology which, for the evaluation purposes,
is transformed into a set of rules.

The proposed method of RQA should apply to any domain (although it would
require appropriate ontologies for each domain). The part of the thesis’s title "for
a knowledge base of economic crimes" results from the fact that our work on a
rule-based query answering have been started in the economic crimes area.

The possible benefits, of the proposed rule-based query answering for a knowl-
edge base of economic crimes, are the following:

• Design of a new method for an integration of a rule engine, an ontology and
a relational database.

4 Chapter 1. Introduction

• Evaluation of queries posed to a relational databases in the terms of the con-
ceptual level, thus one getting an easier way to create a query than using
structural constructions from SQL. As a result, queries can be created by
non-engineers, e.g. investigators or policemen.

• Increase of the efficiency of a rule-based query answering in a state-of-the-
art reasoning engine. We decided to use the Jess engine [Hill 2003] which
implements the Rete algorithm [Forgy 1982].

• Design of a rule-based query answering method which can be applied in
other Rete-based engines, for instance, Drools 5 [Community 2012].

• Support for investigators which work to solve economic crimes and analyse
data from various documents and bank transfers. They get a way in which
legal sanctions are suggested according to analysed (concluded) data.

• Application in other domains than economic crimes, although it would re-
quire appropriate ontologies for each domain. Our methods are general and
can be used in every application, which requires additional knowledge for
query evaluation or need to offer an easier way of query creation than with
the traditional SQL.

1.2 Research Challenges
In order to complete the problem of a rule-based query answering for a knowledge
base of economic crimes we need to cope with the following challenges:

• Identification of a proper formalism that combines description logic with
rules. Usually, an arbitrary combination is undecidable which means that re-
sults of reasoning (and thus query answering) may be incorrect or the reason-
ing process may fall into an infinite loop, so an answer cannot be obtained.
The overall combination should be expressed in a set of rules. The type of
permissible rules should be investigated.

• Designation of a reasoning algorithm which should ensure the decidability
of a rule-based query answering in the selected formalism. This challenge
requires the choice of a rule-based engine which performs reasoning with
respect to an inference algorithm.

• Development of an RQA method which outperforms the current state-of-the-
art methods for query evaluation in a rule-based system. In this challenge we
need to cope with decidability, complexity and efficiency issues in the chosen
inference algorithm.

1.3. Main Contributions 5

• Integration of ontology predicates and a relational data in the form of a map-
ping between these two elements. The mapping results in the combination
of a rule-based system with a relational database.

• Construction of a knowledge base of economic crimes which can be applied
in a real world crime case. It means that it should reflect the mechanisms of
a crime scheme and should be able to suggest legal sanctions. We need to
determine crime activities and roles of particular types of perpetrators.

1.3 Main Contributions

This thesis studies the problem of evaluating queries in a rule-based system where
data is stored in a relational database and queries can be posed at a conceptual
(ontological) level. The thesis makes the following contributions:

• We formulate a knowledge base of economic crimes: fraudulent disburse-
ment and money laundering as a minimal ontology model. The ontology
describes a real crime case using Horn-SHIQ language and is implemented
in the OWL Web Ontology Language supported by rules written in the Se-
mantic Web Rule Language. Description of the minimal ontology model
was published in [Bak 2010b, Bak 2010c, Jedrzejek 2011b, Bak 2013] and
is described in Chapter 3.

• We propose a novel approach to query a relational database at a conceptual
level using a hybrid approach. The approach combines forward and back-
ward chaining performed by the Jess engine in a rule-based query answer-
ing task. This is the Jess-dependent method. This work was published in
[Bak 2009] and is detailed in Chapter 4, Section 4.1.

• We design a new modification of a magic transformation [Beeri 1987] which
introduces extended rules. The approach exploits forward chaining that is
based on the Rete algorithm [Forgy 1982] and combines the Jess engine,
a relational database and a Horn-SHIQ [Hustadt 2005] ontology. This
is the Rete-dependent method. Extended rules method was published in
[Bak 2011a] and presented in Chapter 4, Section 4.2.

• We propose a straightforward mapping method between a knowledge base
and a relational database. The method is based on so-called essential pred-
icates and SELECT-PROJECT-JOIN SQL queries. Our technique was pub-
lished in [Bak 2008], extended in [Bak 2009] and described in Chapter 4,
Section 4.4.

6 Chapter 1. Introduction

• We develop a new SDL (Semantic Data Library) framework, offering the im-
plementation of both our methods of a rule-based query answering: hybrid
and extended rules reasoning. The framework was presented at two RuleML
Challenge competitions in 2010 [Bak 2010a] and in 2011 [Bak 2011b]. De-
tailed description of the SDL’s implementation is presented in Chapter 5.

• We evaluate our two approaches of a rule-based query answering for a
knowledge base of economic crimes. Performed experiments demonstrate
that optimizations of a rule-based query answering are possible in the
state-of-the-art Jess reasoning engine which is an implementation of the
Rete algorithm. The evaluation of both our methods were published in
[Bak 2010a, Bak 2011b] and are discussed in Chapter 6.

1.4 Structure of this Thesis
Chapter 1 introduces the problem of a rule-based query answering for a knowledge
base of economic crimes. The goals accompanied by the research challenges and
our main contributions are described. The remaining chapters are organised as
follows:

• Chapter 2 introduces necessary terminology, presents the theoretical back-
ground and provides an overview of selected economic crimes: fraudulent
disbursement and money laundering. We present the first-order logic-based
formalisms of knowledge representation that are relevant to the thesis: a
family of description logics, Datalog- and rule-based systems. We describe
methods that combine description logics with datalog-like rules. Moreover,
we provide a brief overview of a rule-based query answering and its opti-
mization methods. At the end of the chapter we familiarize a reader with two
economic crimes: fraudulent disbursement and money laundering.

• Chapter 3 describes our knowledge base of economic crimes: fraudulent dis-
bursement and money laundering. We present the example real world crime
case - the Hydra case in which both crimes occurred. We present the main
parts of the created minimal ontology model with rules: determining legal
sanctions for crime perpetrators, discovering crime activities and roles of
perpetrators. We summarize discussing the related work.

• Chapter 4 presents our contributions in rule-based query answering. We de-
scribe two ways of applying reasoning process in the rule-based query an-
swering task. In the first one, the hybrid reasoning (forward and backward
chaining) is used and in the second one only forward chaining and extended
rules are executed. The RQA method uses the reasoning process to obtain an

1.4. Structure of this Thesis 7

answer for a given query. During this process facts from database are gath-
ered and used to derive new facts according to a given set of rules. Next, the
answer is constructed and presented. In both our methods the Horn clauses
are used as the form of permissible rules. Our work is based on the Rete
reasoning algorithm which is, for instance, implemented in the Jess engine.
Moreover, the problem of the combination between ontology predicates and
a relational database is also provided in this chapter. We summarize with pos-
sible applications of the developed methods and a discussion of the related
work.

• Chapter 5 provides the description of our Semantic Data Library (SDL)
which is an implementation of all our RQA methods. SDL supports both
hybrid and extended rule reasoning as well as the mapping method between
ontology predicates and a relational data. We present the transformation of
an ontology into a set of Horn clauses which is also supported by SDL.

• Chapter 6 contains the experimental evaluation of our methods. We compare
our RQA algorithms with methods available in the Rete-based engine. Once
again, Jess is used as an example reasoning engine. The results justify that
our approaches beat pure query answering in the Jess engine.

• Chapter 7 summaries our approaches and our main results, including a dis-
cussion of work’s limitations. The future prospects of the research are also
presented.

CHAPTER 2

Preliminaries

In this chapter we introduce necessary terminology, basic definitions and results
that are required in later parts of this work. The syntax and semantics of the first-
order logic is explained in Section 2.1.1. Section 2.1.2 describes a rule language
known as Datalog with its syntax and semantics. In Section 2.1.3 the fundamen-
tals of rule-based systems are presented with an example implementation. Section
2.1.4 describes how the rule-based query answering task can be solved. Section
2.1.5 shows Description Logics syntax and semantics. Currently existed methods
for combining Datalog-like rules and Description Logics are provided in Section
2.1.6. The description of economic crimes: fraudulent disbursement and money
laundering is shown in Section 2.2.

2.1 Theoretical Background
In the following sections we provide basic definitions of logic-based formalisms
that are relevant to this thesis. These formalisms are: Datalog (rules) and Descrip-
tion Logics (ontologies). Both of them are families of knowledge representation
formalisms based on first-order logic (FOL).

2.1.1 First-order Logic
In this section we present the basic description of the syntax and semantics of
the first-order logic. More detailed introduction can be found in [Ligeza 2006],
[Lloyd 1984] and [Polleres 2011].

2.1.1.1 Syntax

Each formal language consists of a set of symbols that are legal in this language.
The set of allowed symbols is defined as an alphabet.

Definition 2.1 (Alphabet). An alphabet of the first-order logic consists of the fol-
lowing symbols:

• A set of constants: a, b, c, ...

• A set of variables: ?x, ?y, ?z, ...

10 Chapter 2. Preliminaries

• A set of function symbols: f, g, ..., where each function symbol has assigned
arity (a natural number).

• A set of predicate symbols: p, q, ..., where each predicate symbol has as-
signed arity (a natural number).

• A set of logical connectives: ¬ (negation), ∧ (conjunction), ∨ (disjunction),
→ (implication) and ↔ (material equivalence).

• Two quantifiers: ∃ (existential) and ∀ (universal).

• A set of punctuation symbols: ‘(’, ‘)’ and ‘,’.

In definition 2.1 each function and predicate symbol has an arity assigned to it.
The arity represents the number of arguments that the function/predicate has. For
instance, the mathematical function f(x, y, z) = x + 2y + 3z has three arguments,
and is therefore of arity 3. A symbol of arity 1 is called a unary symbol; a symbol
of arity 2 is called a binary symbol; a symbol of arity n is called n-ary symbol. The
arity of a symbol may be 0. Such symbols are constants. According to definition
2.1 we can build terms and formulae.

Definition 2.2 (Term). A term is defined as follows:

1. A variable is a term.

2. A constant is a term.

3. If f is an n-ary function symbol with arity n and t1, t2, ..., tn are terms, then
f(t1, t2, ..., tn) is a term.

Definition 2.3 (Ground term). A term which does not contain any variables is
called a ground term.

Definition 2.4 (Atom). Let p be a predicate symbol with arity n. Let t1, t2, ..., tn
be terms, then p(t1, t2, ..., tn) is an atom (or atomic formula). An atom which does
not contain any variables is called a ground atom.

More complex formulae can be built with the use of logical connectives (¬,∧,∨
etc.).

Definition 2.5 (Well-formed Formula). A well formed formula (or just formula) is
defined as follows:

1. An atom is a formula.

2. If B and H are formulae then:

2.1. Theoretical Background 11

• ¬B is a formula

• B ∧H is a formula

• B ∨H is a formula

• B → H is a formula

• B ≡ H is a formula

3. If B is a formula and x is a variable, then (∃xH) and (∀xH) are formulae.

Definition 2.6 (Scope of Variables). If x is a variable and H is a formula then the
scope of x in ∃xH and of ∀x in ∀xH is H . Combinations of ∃x and ∀x bind every
occurrence of x in their scope. An occurrence of a variable which is not bound is
called free.

Definition 2.7 (Open and Closed Formula). A formula is open if it has free vari-
ables. If a formula has no free variables then it is closed.

Definition 2.8 (Literal). Let H be an atom. Then ¬H and H are called literals,
whereas H is called positive literal, while ¬H is called negative literal.

Definition 2.9 (First-order Language). A First-order language is defined over an
alphabet and consists of the set of all well-formed formulae that can be constructed
from the symbols of the alphabet. A FOL language is called function-free if it does
not contain any function symbol (a set of functions symbols is an empty set).

2.1.1.2 Semantics

Informally, the semantics of the first-order logic language is defined by attributing
meaning (or truth values) to well-formed formulae (sentences). The sentences are
mapped to some statements about a given domain through a process known as
interpretation. If an interpretation gives the true value to a sentence then it is said
to satisfy the sentence. Such an interpretation is called a model for the sentence. If
an interpretation does not satisfy a sentence then it is called a counter-model.

Definition 2.10 (Interpretation). An interpretation I consists of the following:

1. A non-empty set △I called the universe of I or the domain of the interpreta-
tion. The members of △I are called individuals of I.

2. An interpretation function ·I , which assigns elements of the alphabet to △I

satisfying the following conditions:

• Each constant c is mapped to an element cI ∈△I

12 Chapter 2. Preliminaries

• Each function symbol f of arity n is mapped to a function:

fI : (△I)n →△I

• Each predicate symbol p of arity n is mapped to a function:

pI : (△I)n → {true, false}

Definition 2.11 (Assignment).

1. Variable Assignment. A variable assignment is a mapping function σ, which
assigns an element c ∈△I to every variable x from a set of variables X̄:

σ : X̄ →△I

2. Term Assignment. The term assignment w.r.t. σ of the term t ∈△I is defined
as:

– Each variable assignment is given according to σ,

– Each constant assignment is given according to I,

– If t′1, t
′
2, ..., t

′
n are term assignments of t1, t2, ..., tn and f ′ is the as-

signment of the function symbol f with arity n according to I, then
f ′(t′1, t

′
2, ..., t

′
n) ∈△I is the term assignment of f(t1, t2, ..., tn).

Definition 2.12 (Truth Values). The valuation of formula F is defined as follows:

• If the formula is an atom p(t1, t2, ..., tn) with arity n then the value is obtained
by calculating the value of p′(t′1, t

′
2, ..., t

′
n) where p′ is the mapping assigned

to p by I and t′1, t
′
2, ..., t

′
n are the term assignments of t1, t2, ..., tn w.r.t. to σ

and I.

• The truth values of formulae B and H are given in Table 2.1

Table 2.1: Truth values for formulae.
B H ¬B B ∧H B ∨H B → H B = H

true true false true true true true

true false false false true false false

false true true false true true false

false false true false false true true

• The truth value of the formula ∃xF is true if and only if there exists c ∈△
such that the formula F has truth value "true" w.r.t. I and σ(x/c); otherwise
it has value "false".

2.1. Theoretical Background 13

• The truth value of the formula ∀xF is true if and only if for all c ∈△I F is
"true" w.r.t. I and σ(x/c); otherwise it has value "false".

Definition 2.13 (Satisfiability). A formula F is satisfiable if and only if there exists
an interpretation I and variable assignment over some domain △I which makes
the formula true.

Definition 2.14 (Unsatisfiability). A formula F is unsatisfiable if and only if there
does not exist any interpretation I, variable assignment and domain △I satisfying
the formula.

Definition 2.15 (Model). If an interpretation I satisfies the formula F and each
variable assignment then it is said that I is a model of F , denoted I |= F .

Definition 2.16 (Tautology). A formula F is a tautology if every interpretation I
is a model of F . This can be denoted as |= F .

Definition 2.17 (Logical consequence, Logical Implication, Entailment). A for-
mula F is a logical consequence of a set of formulae Σ (denoted as Σ |= F) if and
only if every model of Σ is also a model of F . In this case we say that Σ entails F
or F is logically implied by Σ. Σ ̸|= F means that F is not a logical consequence
of Σ.

Definition 2.18 (Logical equivalence). Two formulae F and H are said to be log-
ically equivalent (denoted by F ≡ H) if both F |= H and H |= F (so F and H

have exactly the same models).

2.1.2 Datalog as a First-order Rule Language

Datalog [Gallaire 1978] is a rule language which represents a fragment of the first-
order logic and basic logic programming dialect. A natural way of understanding
the notion of a "rule" in classical logic is to consider implication. It means that the
rule is a formula which has an implication operator (→ or ⇒) as a most important
connective. Variables in a rule are universally quantified. The implication is appli-
cable to all individuals that satisfy the premise. It is worth noticing that Datalog has
originally been developed for querying databases because rules and queries have
much in common. As a result, new kind of database systems has emerged called
deductive database systems where query language and (usually) storage structure
are designed around a logical model of data [Ramakrishnan 1993].

In this section we introduce Datalog as a particularly restricted rule language.
In this section we present its syntax and semantics, and we provide description of
reasoning techniques that are commonly used with Datalog programs.

14 Chapter 2. Preliminaries

We start with an example which gives the intuition of rules and Datalog. The
following rule describes a Woman which is also a Mother:

Woman(?x) ∧ hasChild(?x, ?y) → Mother(?x)

The rule can be interpreted as:

• a way of querying a given database for all mothers. Information about
Woman and hasChild are stored in the database while Mother is derived from
these data as a query result

• a "view" on data which hides the complexity of the data that can also be
aggregated

• a way to add new set of data to a database when premises are satisfied.

Characteristic of Datalog as a rule language is a feature called recursion which
allows the result of a rule can to be used as one of the rule’s premises. Datalog uses
the closed world semantics which also occurs in relational databases. It means that
facts that cannot be proven are considered false. More information about Datalog
syntax and its semantics can be found in [Abiteboul 1995] and [Hitzler 2009b].

2.1.2.1 Syntax

Datalog is a subset of logic programming and its syntax is similar to the family of
languages in this field. In this section we provide a definition of Datalog syntax
and we introduce some fundamental differences between Datalog and logic pro-
gramming in the context of their syntaxes.

Definition 2.19 (Datalog rule). A Datalog rule is an expression of the following
form:

p1(X̄1), p2(X̄2), ..., pn(X̄n) → h(X̄h) (2.1)

where n ≥ 1, p1, ..., pn, h are predicates (relation names) of appropriate arities
and X̄1, ..., X̄n, X̄h are sets of terms.

Definition 2.20 (Datalog safety). Each variable occurring in X̄h must occur at
least in one of X̄1, ..., X̄n.

Definition 2.21 (Datalog program, the body and the head). A finite set of Datalog
rules is called a Datalog program. The premise of a Datalog rule is called the body
(denoted as B) while the conclusion is called the head of a rule (denoted as H).

2.1. Theoretical Background 15

The (2.1) form of a rule is logically equivalent to a disjunction of literals where
at most one is positive. Such (2.2) formulae are called Horn clauses. From that
reason a Datalog program can be viewed as a set of Horn clauses.

¬p1(X̄1) ∨ ¬p2(X̄2) ∨ ... ∨ ¬pn(X̄n) ∨ h(X̄h) (2.2)

It is worth noticing that, according to the given nomenclature, the body of the
rule can be called as: premises, antecedents, conditions or if-part of the rule. The
head of the rule can be called as: conclusion, consequent or then-part of the rule.

It is common to omit the universal quantifier (∀) since all variables in Datalog
are universally quantified. Rules with an empty body are called facts while rules
with an empty head are called constraints and are used to express the fact that
interpretations satisfying the conditions in the body of the rule are not admitted.
Since Datalog has originally been developed for querying databases, a Datalog
program P has direct connection with a database. An extensional relation is an n-
ary predicate which is used to represent facts stored in a database according to the
extensional (database) schema, denoted edb(P). Any other predicate is called an
intensional relation which is defined by a rule (by appearing in the head of a rule).
Set of all intensional relations forms the intensional (database) schema, denoted
idb(P). The schema of P, denoted sch(P), is the union of edb(P) and idb(P).

The distinction between extensional and intensional relations is a pragmatic
one. It is useful for processing Datalog programs written for querying: rules whose
heads contain only intensional predicates can be rewritten or compiled without
a knowledge of a database instance to be queried. It is easy to fuse extensional
relations in intensional ones by writing extensional predicates from the database
instance as intensional predicates. Conversely, in any such created Datalog pro-
gram an intensional relation can be redeclared as a (new) extensional predicate
[Bry 2007].

Definition 2.22 (Datalog conjunctive query). A Datalog conjunctive query is a
Datalog rule of the following form:

p1(X̄1) ∧ ... ∧ pn(X̄n) → answer(X̄a)

where n ≥ 0, the pi are extensional predicates, answer is an intensional predi-
cate, X̄a, X̄1, ..., X̄n are lists of terms of appropriate arities and the rule is range
restricted, i.e., each variable in X̄a also occurs in at least one of X̄1, ..., X̄n (Data-
log safety).

Recursion is a programming technique involving the use of an item (predicate,
function, procedure, algorithm etc.) which calls itself in each step of a computation.
The termination condition is needed to stop a process of repeating items and to
provide the result of the computation. In recursive Datalog (which is an extension

16 Chapter 2. Preliminaries

of a nonrecursive Datalog [Abiteboul 1995]) the recursion allows that a result of a
rule can also be used as one of the rule’s premises. An example of a rule which
exploits recursion is the following:

ancestorOf(?x, ?y) ∧ ancestorOf(?y, ?z) → ancestorOf(?x, ?z) (2.3)

The predicate ancestorOf is used both in the head and the body of the rule. It
means that the result of the rule can also be used in the next application (firing) of
the rule.

The major difference between Datalog and logic programming is that logic
programming permits function symbols whereas Datalog does not. It means that
a logic program can construct and manipulate complex data structures encoded
by terms involving function symbols which is not possible in a Datalog program.
Another important issue concerns the typical use of Datalog and logic program-
ming. Is is assumed that a database is relatively large while a set of rules (Datalog
program) is relatively small. In logic programming it is assumed that data are in-
corporated directly into the program. It means that every change of data modifies
the logic program.

2.1.2.2 Semantics

In this section we present the Datalog semantics and we point out the main differ-
ences between Datalog and logic programming.

The formal semantics of Datalog is determined by the fact that it is a sub-
language of first-order logic. As usual for first-order logic, the semantics of Dat-
alog is model-theoretic. There also exist equivalent approaches to define Datalog
semantics: proof-theoretic approach and fixpoint approach. We describe model-
theoretic approach in details while two other approaches are presented informally.
More detailed information can be found in [Abiteboul 1995] and [Hitzler 2009b].

In model-theoretic approach a model in Datalog is a special kind of interpreta-
tion that makes a given Datalog program true. The key idea of this approach is to
view the program as a set of first-order sentences.

Definition 2.23 (Datalog interpretation). A Datalog interpretation I consists of the
following:

1. A non-empty interpretation domain △I which is a set of individuals.

2. An interpretation function ·I , which establishes the mapping from symbols
into △I:

• If c ∈△ is an individual name, then cI ∈△I , so c is interpreted as an
element of the domain,

2.1. Theoretical Background 17

• If p ∈ P is a predicate symbol of arity n, and P is a set of permissible
predicates, then p is interpreted as an n-ary relation over the domain.

Definition 2.24 (Variable Assignment). A variable assignment σ for I is a mapping
function σI : X̄ →△I , where X̄ is a set of variables. For a term t ∈△ ∪X̄ we write
tI,X̄ to mean tI if t ∈△, and tX̄ if t ∈ X̄ . For an interpretation I and a variable
assignment σ for I, the truth value of a Datalog formula is defined in the following
way:

– ⊤I,X̄ = true and ⊥I,X̄ = false.

– For a Datalog atom p(t1, t2, ..., tn) we set p(t1, t2, ..., tn)I,X̄ = true if we
find that < tI,X̄1 , tI,X̄2 , ..., tI,X̄n > ∈ P I , and p(t1, t2, ..., tn)

I,X̄ = false

otherwise.

– For a conjunction p1 ∧ p2 ∧ ... ∧ pn of Datalog atoms p1, p2, ..., pn we set
(p1 ∧ p2 ∧ ... ∧ pn)

I,X̄ = true if each pI,X̄i = true for i = 1, ..., n. We set
(p1 ∧ p2 ∧ ... ∧ pn)

I,X̄ = false otherwise.

– For a Datalog rule B → H , where B represents an arbitrary conjunction
of Datalog predicates, we set (B → H)I = true if we find that either
BI,X̄ = false or HI,X̄ = true. We set (B → H)I = false otherwise.
[Krötzsch 2010]

Definition 2.25 (Datalog satisfiability). A Datalog rule B → H is satisfied by
an interpretation I if (B → H)I = true. I satisfies a Datalog program if it
satisfies all rules of the program. The program (rule) which is satisfied by some
interpretation is called satisfiable or consistent.

Definition 2.26 (Datalog model). If an interpretation I satisfies a Datalog program
(rule) then I is called a model for the program (rule).

The semantics of Datalog relies on the closed world assumption (CWA) which
allows to treat facts as if they record complete information about the world their
describe. Facts that are not stored in a database are considered false. Since there
can be many (potentially infinite) facts in a database, we need to define which of
them are needed to satisfy a Datalog program. It can be achieved by the use of the
minimal model.

Definition 2.27 (Datalog minimal model). A Datalog model is called minimal if it
consists of the smallest set of facts that makes a Datalog program (rule) true.

The proof-theoretic approach is based on obtaining proofs of facts. A fact is in
the result of a Datalog program (rule) if there exists a proof for it using the rules

18 Chapter 2. Preliminaries

and the database facts. Facts can be derived in two ways: bottom-up and top-down.
In the bottom-up method we start from the known facts and derive all possible
facts. In the top-down method we start from the fact to be proven and we try to
derive lemmas that are needed for the proof. The method provides the intuition
of a technique called resolution which comes from the logic programming area
[Lloyd 1984].

The fixpoint approach assumes that we can define the semantics of the program
(rule) as a particular solution of a fixpoint equation. The solution is based on an
operator called immediate consequence operator which produces new facts starting
from known facts. The immediate consequence operator of a Datalog program P,
denoted TP , is the mapping from instance K over sch(P) to K. It means that for
each K, TP (K) consists of all facts that are immediate consequences for K and P.
K is a fixpoint of TP if TP (K) = K [van Emden 1976, Abiteboul 1995].

More detailed information about the proof-theoretic and fixpoint approaches
are presented in [Abiteboul 1995].

Heaving established the semantics and syntax of Datalog we now provide the
important differences between Datalog semantics and logic programming seman-
tics. Since function symbols are not allowed in Datalog (in contrast to logic pro-
gramming), each Datalog program has always a finite model whereas model in
logic programming may be infinite [Abiteboul 1995].

According to the lack of function symbols, the complexity of reasoning in Dat-
alog is PTIME (polynomial-time) while in logic programming the complexity is
usually higher and even undecidable [Dantsin 2001].

Extending Datalog with a negation or/and disjunction (disjunctive Datalog)
implies that query answering and reasoning go beyond the polynomial-time
[Patel-Schneider 2007].

Since work presented in this dissertation is based on extension and modification
of query evaluation in Datalog-like rules we omit logic programming issues. Curi-
ous reader can find detailed information about logic programming in [Lloyd 1984].

2.1.2.3 Reasoning

Datalog was proposed as a way of querying relational databases with conjunctive
queries and recursion. The evaluation of query may be done with bottom-up or
top-down techniques. Both techniques are described and presented using an exam-
ple which considers family relationships (FR). Let us consider a Datalog schema
sch(FR) which consists of: an edb predicate hasChild used to express a relation be-
tween a parent and a child; and two idb predicates: hasSiblings, hasCousin which
represent siblings relationship and cousin relationship, respectively. The edb(FR)
is presented in Table 2.2 whereas idb(FR) contains rules (2.4) and (2.5). In both
techniques we will evaluate query (2.6), looking for all cousins of a person p14. We

2.1. Theoretical Background 19

point out that the same variable (e.g. ?x) may occur in different rules (queries) and
have different meaning. For instance, ?x in rule (2.4) is not to be confused with
?x in query 2.6, or in rule (2.5). It means that the set of rules and a query have no
variables in common (it can always be ensured by renaming the variables of the
rule/query).

hasChild(?x, ?y), hasChild(?x, ?z) → hasSiblings(?y, ?z) (2.4)

hasChild(?x, ?z), hasSiblings(?x, ?y), hasChild(?y, ?w)

→ hasCousin(?z, ?w)
(2.5)

Table 2.2: An example extensional database - edb(FR).
hasChild Parent Child

p11 p12
p11 p13
p12 p14
p13 p15
p21 p22
p21 p23
p22 p24
p23 p25

hasCousin(p14, ?x) → (2.6)

A bottom-up evaluation starts with a set of facts and uses rules to infer new
facts until no new facts can be inferred (until the fixpoint is reached). At the end of
evaluation an answer is obtained (the answer may be available during the reasoning
process, but in general it cannot be obtained until the fixpoint is reached). Table 2.3
illustrates steps of bottom-up evaluation of the Datalog program FR with schema
sch(FR) = edb(FR) ∪ idb(FR). It is easy to notice that for each tuple from Table 2.2
the appropriate fact is created with a predicate hasChild, e.g. hasChild(p11, p12)

as a first tuple. In step 1 facts are added; next the reasoning algorithm uses known
facts to produce new facts using rules: (2.4) in step 2, and (2.5) in step 3. When the
fixpoint is reached we obtain an answer for query (2.6): a person p15 is a cousin of a
person p14. In the bottom-up approach the rules are treated as "factories" producing
new facts from already proven ones. As a result, we obtain some other results, e.g.
hasCousin(p24, p25), that are not relevant to our query.

A top-down evaluation is a more complicated approach. A major class of al-
gorithms of this technique is represented by the SLD resolution which has been
taken from the logic programming area [Kowalski 1974], excluding function sym-
bols. The SLD resolution is focused on proving goals. A goal is considered

20 Chapter 2. Preliminaries

Table 2.3: Bottom-up evaluation of the Datalog program FR.
Step Added/Inferred Facts Used rule

0 ∅ -

1

hasChild(p11, p12), hasChild(p11, p13),

-
hasChild(p12, p14), hasChild(p13, p15),
hasChild(p21, p22), hasChild(p21, p23),
hasChild(p22, p24), hasChild(p23, p25)

2 hasSiblings(p12, p13), hasSiblings(p22, p23) (2.4)
3 hasCousin(p14, p15), hasCousin(p24, p25) (2.5)

as a query or as a fact that should be proved (obtained as a new goal from a
previous goal in the reasoning process). Generally speaking, the SLD resolu-
tion tries to find a substitution θ that maps facts (terms) to variables such that
query Q logically follows from a Datalog program P. For instance, in our ex-
ample we need to find the substitution θ such that θ(hasCousin(p14, ?x)) =

θ(hasCousin(?z, ?w)). Such a substitution is called a unifier. The substitution
θ(?z) = p14, θ(?w) = p15 and θ(?x) = p15 is a unifier for hasCousin(p14, ?x), be-
cause θ(hasCousin(p14, ?x)) = θ(hasCousin(?z, ?w)) = hasCousin(p14, p15).

In a top-down evaluation the initial goal (query) is transformed, obtaining new
goals from a previous ones, until the empty goal is reached. As a result, facts that
are irrelevant to a given query are not taken into account. The acronym SLD stands
for Selection rule-driven Linear resolution for Definite clauses. Definite clauses are
clauses (rules) with a single predicate in the head of the rule whereas rule-driven
refers to the rule used for selecting the atom which is evaluated as a first (in Prolog
it is always the leftmost atom). The success or failure of SLD resolution does not
depend on the rule for selecting atoms [Abiteboul 1995]. Let us introduce some
important definitions which are relevant to the SLD resolution.

Definition 2.28 (Most general unifier). Let A, B be two atoms. A unifier for A and
B is a substitution θ such that θA = θB. A substitution θ is more general than
substitution ν, denoted θ ↪→ ν, if for some substitution ν ′, ν = θ ◦ ν ′. A most
general unifier (mgu) for A and B is a unifier θ for A, B such that, for each unifier
ν of A, B, we have θ ↪→ ν. [Abiteboul 1995]

“Clearly, the relation ↪→ between unifiers is reflexive and transitive but not
antisymmetric. Let ≈ be the equivalence relation on substitutions defined by θ ≈ ν

iff θ ↪→ ν and ν ↪→ θ. If θ ≈ ν, then for each atom A, θ(A) and ν(A) are the same
modulo renaming of variables. ” [Abiteboul 1995]

Definition 2.29 (SLD resolvent). Let G be a goal of the form A1, ..., Am, ..., An →,
R a rule B1, ..., Bk → B and let θ be the mgu of Am and B. Assuming that G and

2.1. Theoretical Background 21

R have no variables in common then G’ is an SLD resolvent of G and R using θ if
G’ is the goal θ(A1, ..., Am−1, B1, ..., Bk, Am+1, ..., An) →.

Definition 2.30 (SLD derivation). An SLD derivation from a goal G = G0, G1, ...
with a program PI (integrating the facts) consists of a sequence G0, G1, ... of goals
and a sequence θ0, θ1, ... of mgu’s such that for each i, Gi is a resolvent from Gi−1

with some rule in PI using θi. An SLD refutation is a finite SLD derivation which
has the empty goal as its last goal.

Definition 2.31 (SLD tree). An SLD tree T w.r.t. a program P and a goal G is a
labelled tree where every node of T is a goal and the root of T is G and if G is a
node in T then G has a child G′ connected to G by an edge labelled (R, θ) iff G′ is
an SLD resolvent of G and R using θ. [Bry 2007]

As we can see from the aforementioned definitions the computation of mgu’s
provides an answer for a query where each SLD resolvent is implied by some G

and some R. An SLD derivation ends with the empty goal because in the SLD
resolution we try to prove that the negation of a goal is false [Gallier 1987, Chapter
9]. If it is, then we obtain the empty goal. Otherwise, the proof of the goal cannot
be obtained. An SLD tree represents all SLD derivations with a fixed selection
rule which determines the choice of the selected atom (the leftmost atom in Pro-
log). Once, an atom has been selected, we can search for all possible unifications.
An SLD may have an infinite subtree that corresponds to an infinite sequence of
application of some rule (set of rules). In this case, the SLD resolution falls into
infinite loop. The completeness of an SLD resolution depends on the search strat-
egy which determines the order in which we visit nodes in an SLD tree (the choice
of the clause to unify with the atom). “To be complete, an SLD resolution must
visit every leaf of a finite branch of an SLD tree within a finite number of steps. A
search strategy with this property is called fair. Obviously not every search strat-
egy is fair. For example the depth first search strategy used by Prolog is not fair.
An example of a fair search strategy is breath first search.” [Bry 2007]

Let us now consider the top-down evaluation of query (2.6). Assuming that
facts from Table 2.2 are integrated with the Datalog program FR we are obtaining
an answer for query (2.6). The top-down evaluation with SLD resolution is pre-
sented in Table 2.4. For better understanding of our example we slightly modified
rules: (2.4) and (2.5) with rules (2.7) and (2.8), respectively. These rules have no
variables in common (which has been done by renaming the variables of the rules).

hasChild(?x1, ?y1), hasChild(?x1, ?z1) → hasSiblings(?y1, ?z1) (2.7)

hasChild(?x2, ?z2), hasSiblings(?x2, ?y2), hasChild(?y2, ?w2)

→ hasCousin(?z2, ?w2)
(2.8)

22 Chapter 2. Preliminaries

In step 1 the query is unified with rule (2.8). Next, a substitution ?z2/p14 is
obtained. It means that a variable ?z2 can be substituted by value p14. In step 3, the
further substitution is computed. The computation of substitutions driven by rules
is carrying on until the value of variable ?x is obtained in step 8. As a result, the
substitution obtained in step 9 is an answer for our query, which is the same as in
the bottom-up evaluation: ?x = p15.

Table 2.4: Top-down evaluation of the Datalog query hasCousin(p14, ?x).
Step Goal Used rule Used fact Substitution

0 hasCousin(p14, ?x) - - -
1 hasCousin(p14, ?x) (2.8) - ?z2/p14
2 hasChild(?x2, p14) (2.8) hasChild(p12, p14) ?x2/p12
3 hasSiblings(p12, ?y2) (2.8) - -
4 hasSiblings(p12, ?z1) (2.7) - ?y1/p12
5 hasChild(?x1, p12) (2.7) hasChild(p11, p12) ?x1/p11
6 hasChild(p11, ?z1) (2.7) hasChild(p11, p13) ?z1/p13
7 hasSiblings(p12, ?y2) (2.8) - ?y2/p13
8 hasChild(p13, ?w2) (2.8) hasChild(p13, p15) ?w2/p15
9 hasCousin(p14, ?x) (2.8) - ?x/p15

It is worth noticing that the bottom-up evaluation of a Datalog program can be
done regardless a query. It means that we start with a set of facts and use rules to
infer new facts until no new facts can be inferred (until the fixpoint is reached). The
top-down evaluation, on the contrary, requires a query from which the reasoning
process can start. In this approach we are focused on proving particular facts that
are required to obtain an answer for the query. As a result, the top-down technique
inhibits the inference of facts that are irrelevant to the query. Both evaluation tech-
niques for a Datalog program are sound and complete. More detailed information
about Datalog query evaluation can be found in [Abiteboul 1995].

2.1.3 Rule-based Systems
This section presents systems that use rules to express and manipulate knowl-
edge. Such systems are called rule-based systems or rule-based expert systems
[Nalepa 2009]. These systems found a wide range of applications in many fields in-
cluding: decision support, medicine, business, data analysis, natural language pro-
cessing and in other artificial intelligence applications. In this section we present a
brief description of rule-based systems. We present the Rete reasoning algorithm
with a state-of-the-art implementation - the Jess engine [Hill 2003].

A rule-based system is used as a way to derive new facts from the given ones
according to the defined set of rules. Such a system consists of few elements:

2.1. Theoretical Background 23

• a list of rules (rule base), which forms a kind of a knowledge base

• a working memory, which contains facts. The working memory changes
during the reasoning process

• an inference engine, which generates a new fact (or takes an action) based on
an interaction between facts and the rule base

• a user’s interface (e.g. a console).

Usually, a rule-based system processes data only in its working memory. Accord-
ing to a forward chaining mechanism (bottom-up evaluation), commonly used in
reasoning tasks, a user gets information as a set of inferred facts. In this set it is
hard to find a fact or facts which the user is interested in. Thus, the user has to
pose a query to the rule-based system to obtain the necessary facts. This is a better
way than looking through the working memory manually. The forward chaining
approach needs reasoning about all facts in the working memory. Therefore, some
of the inferred facts are useless and many rules are fired unnecessarily. It has a
negative impact on efficiency of the answering process. One way of increasing effi-
ciency and scalability of a deduction process is to use a backward chaining method
(top-down evaluation). This scheme of reasoning is implemented, for instance, in
the Prolog engine (see Section 2.1.2.3. By the backward reasoning technique facts
are obtained only when they are needed in derivations.

2.1.3.1 Rules and Facts

In rule-based systems we apply the following form of a rule:

p1(X̄1), p2(X̄2), ..., pn(X̄n), AP → h(X̄h) (2.9)

Each pi (and h) is a predicate symbol, and X̄i represents a vector of variables
and constants, which appear in the atom pi(X̄i) as arguments. AP denotes a set
of additional predicates, which are used for comparisons and tests, for example:
x < 2, y 6 x, etc. Each rule consists of the two parts: the left-hand-side, which
is called the body, and the right-hand-side, which is called the head. In general,
both parts are represented by sets of atoms interpreted conjunctively. In the body
of the rule we use premises (patterns, conditions), which have to be satisfied by
appropriate atoms (facts) to allow a rule to be fired and to produce conclusions
from the rule’s head. We assume that the body of a rule may be empty. In this case,
the rule is called a fact. Rules of the form (2.9) belong to the class of Horn clauses
[Lloyd 1984] (if there are several predicates in the head, the rule can be easily
transformed into Horn clauses with the Lloyd-Topor transformation [Lloyd 1984]).

24 Chapter 2. Preliminaries

2.1.3.2 The Rete Algorithm

The Rete algorithm, used to match atoms (facts) and rules (patterns) in the rule-
based systems, is fast and efficient. The algorithm was invented by Charles Forgy
[Forgy 1982], and the word ’Rete’, a Latin name for ’net’, explains the idea of the
algorithm. The Rete-based system builds the network of nodes, where each node
(except the root) corresponds to a pattern appearing in the left-hand-side (the body
part) of a rule. Every path from the root node to the leaf node defines all patterns
of the rule. The name of the rule is associated with each leaf node. Each node
remembers which facts match that pattern. When a fact or a combination of facts
satisfies all patterns in the rule, the leaf node is reached and the corresponding
rule is put in the agenda. Then, the conflict resolution strategy decides which rule
should be fired first. In a case where two (or more) rules contain the same pattern,
they share only one node in the Rete network. As a result the network contains
the number of nodes which corresponds to the number of different patterns in the
rules 1. Such optimization increases extremely (by several orders of magnitude) the
performance of the rule-based system in comparison to the naive approach, where
the system checks each rule according to the facts in the working memory. The
performance of the Rete algorithm is weakly dependent of the number of rules in
the system. In the Jess engine, which is a Rete-based system, “the runtime will
be proportional to something like R′F ′P ′ , where R′ is a number less than R, the
number of rules; F ′ is the number of facts that change on each iteration; and P ′ is
a number greater than one but less than the average number of patterns per rule”.
[Hill 2003] Therefore, it is better to create more rules but with smaller number of
different patterns per rule.

2.1.3.3 Forward and Backward Chaining in the Jess Engine

In this section we present a state-of-the-art implementation of the Rete algorithm
in the form of the Jess engine. In this tool the forward chaining method starts with
facts available in the working memory and checks if any rule can be fired. The
rule is fired when all its patterns are satisfied by facts from the working memory.
The head of the rule can add (modify or retract) a new fact (or facts) in the work-
ing memory. These new facts can fire other rules. The reasoning engine infers
until there are no new facts to match any of the rules, as usual in the bottom-up
evaluation.

The backward chaining method in Jess requires a special declaration for tem-
plates (similar to predicates in a FOL language). Rules to match the templates are
defined and the rule compiler rewrites such rules and adds the need- prefix to in-

1It is a general idea. There exist some additional nodes which are used by alpha and beta
networks [Forgy 1982] created by the Rete algorithm.

2.1. Theoretical Background 25

form the Jess engine when the rule has to be fired (when we need some fact). If a
rule fires and there is a way to obtain needed facts, they appear in the Jess’s working
memory. The need- facts are the so called triggers (in the Jess language terminol-
ogy). These facts correspond to the goals in the backward reasoning method. The
generation of the need- goals is inefficient in the Jess engine because the back-
ward chaining is simulated by the forward chaining. The other reason for this
inefficiency is that the Jess engine creates trigger facts (with need- prefix) during
execution of a query (our goal) and then calculates rules activations (but it does
not fire any of the rules). This procedure does not appear in the forward chaining
mode, so the reasoning process is much faster. As we can see these two methods
have important drawbacks if we want to use them in a rule-based query answering
task. The best solution would be to reason in a goal-directed fashion (like in the
backward chaining scheme) but with the efficiency of the forward chaining.

2.1.4 Rule-based Query Answering

This section describes the rule-based query answering task [Bry 2007], which is
of a special interest in the context of this thesis. It has many times been subject
to research and a variety of techniques emerged covering a range of different ap-
proaches. These techniques are separated, generally, into two classes: top-down
or bottom-up evaluation. Since these reasoning methods have been presented in
Section 2.1.2.3, we now describe a broad family of heuristic techniques which are
used as optimizations in rule-based query answering. Some of presented optimiza-
tions can be used in both top-down and bottom-up evaluation. Since our work
is focused more on forward reasoning than backward one, we put more attention
to describe optimization techniques for bottom-up evaluation of queries. Let us
present, informally, these two reasoning methods in the context of the rule-based
query answering and some efficiency issues.

The first of the aforementioned evaluation classes is a backward chaining
method (top-down evaluation), where reasoning is goal-driven. In this case the
goal is the query posed to the system. This scheme of reasoning is implemented,
for instance, in Prolog engine, and takes the form of the Selection rule-driven Lin-
ear resolution for Definite clauses (SLD resolution). In the backward reasoning
technique facts are obtained only when they are needed in derivations.

On the contrary a forward chaining approach (bottom-up evaluation), which is
data-driven, needs reasoning about all facts. In the working memory some of the
inferred facts are useless and many rules are fired unnecessarily. It has a negative
impact on the efficiency of the answering process. Moreover, as all facts should
exist in the working memory, the scalability of reasoning task is poor due to the
limited RAM memory. This drawback occurs also in the backward chaining.

26 Chapter 2. Preliminaries

The naive (without any optimization) and semi-naive (which tries to avoid re-
computing the same facts) methods that are based on deduction techniques using
forward reasoning are often inefficient. They do not use the constants occurring
in queries for restricting the search space. Such a restriction is used in backward
reasoning [Bry 1990].

Many optimizations techniques have emerged during the development of de-
ductive databases and the evaluation of recursive queries. Most of the work was
done in eighties and early nineties, when knowledge based systems were created
for the first time. Some of these optimizations are based on direct evaluation of
queries whereas others are based on rule-rewriting techniques.

The most comprehensive approaches concerning optimizations of bottom-
up query evaluation were given in [Bancilhon 1986b, Beeri 1987, Bry 1990,
Bry 2007]. Top-down optimization techniques are described in [Bancilhon 1986b,
Dietrich 1989, Abiteboul 1995].

The results of the OpenRuleBench initiative [Liang 2009a] show that efficiency
of tabling Prolog and deductive database technologies surpasses the ones obtained
from the corresponding pure rule-based forward chaining engines.

The following subsections describe optimization methods which are of a special
interest in the context of our work.

2.1.4.1 Sideways Information Passing and Adorned Rules

Sideways information passing strategy (sip strategy) is an optimization technique
which indicates how bindings in the head of a rule should be passed to the body
of that rule, and in which order body atoms should be evaluated [Sagiv 1984]. For
a set of rules P and a query Q, there usually exist many different sip strategies.
Without evaluating all of them, it is not easy do decide whether a chosen sip strat-
egy is better or worse than another one [Sippu 1990]. For instance, let us consider
rule (2.10). Several sip strategies (2.11) - (2.16) are available for rule (2.10) and
the query h(?x, ?z) (we do not consider the bindings of variables in this query).

p1(?x, ?y), p2(?y, ?w), p3(?x, ?z) → h(?x, ?z) (2.10)

p1(?x, ?y), p2(?y, ?w), p3(?x, ?z) → h(?x, ?z) (2.11)

p1(?x, ?y), p3(?x, ?z), p2(?y, ?w) → h(?x, ?z) (2.12)

p3(?x, ?z), p1(?x, ?y), p2(?y, ?w) → h(?x, ?z) (2.13)

p3(?x, ?z), p2(?y, ?w), p1(?x, ?y) → h(?x, ?z) (2.14)

p2(?y, ?w), p3(?x, ?z), p1(?x, ?y) → h(?x, ?z) (2.15)

p2(?y, ?w), p1(?x, ?y), p3(?x, ?z) → h(?x, ?z) (2.16)

2.1. Theoretical Background 27

The choice of the particular sip strategy should be driven by bindings of vari-
ables in the given query. Let us assume that variable ?x is bound in the query.
Then, assuming that the evaluation of a rule is done with a left-to-right fashion, sip
strategies (2.15) or (2.16) provide inefficient evaluation since none of the variables
?y or ?w are bound. Sip strategies use so-called adornments to express bindings of
variables.

Definition 2.32 (Adornment). An adornment of a predicate is a sequence of b’s
(bound) and f’s (free) indicating the status of the arguments of the predicate. The
adorned rule is obtained by replacing each atom in the rule by its adorned version.

For example, to indicate that in predicate p(?x, ?y) only the variable ?x is
bound, we write pbf (?x, ?y). For each adorned predicate pa and for each rule,
where p occurs in the head, we should choose the sip and use it to generate an
adorned version of the rule. Since predicates may appear with several adornments,
we may attach several distinct sips to several versions of the same rule, one to each
version. Such process of creating adorned rules starts from the given query. For
the query predicate q we replace it by the adorned version of q where adornment
is determined by bindings of variables in the query. Next, the adorned rules are
generated according to the chosen sip and adornment of q. For example, for the
following rule:

p(?x, ?y) → q(?x, ?y) and the query: q(10, ?y) →

the following adorned rule is generated:

pbf (?x, ?y) → qbf (?x, ?y) (2.17)

2.1.4.2 Magic Transformation and Other Rule-rewriting Techniques

Magic transformation (or magic sets) is an optimization technique which allows
to rewrite the rules for each query and simulates the sideways information passing
of bindings that occur in top-down evaluation but performing forward reasoning.
The general method relies on the transformation of a program P (set of rules) and
a query Q into a new program, magic(P ∪Q), as shown in [Nilsson 1995]. Magic
transformation modifies each original rule by additional predicates to ensure that
the rule will fire only when the values for these predicates are available.

In rule-based systems with facts and rules deduction processes are often per-
formed with the bottom-up scheme of evaluation. But effective query answering
process should be combined with a goal-directed fashion (like in the top-down
reasoning). A bottom-up evaluated magic program avoids a blind generation of
conclusions by inserting special conditions into each rule of the program P. The
new predicates - call_p for each original predicate p - are used in [Nilsson 1995]
to define the conditions. In magic transformation for each rule:

28 Chapter 2. Preliminaries

p1(X̄1), p2(X̄2), ..., pn(X̄n) → h(X̄h)

a set of new rules is defined in the following way:

call_h(X̄h), p1(X̄1), p2(X̄2), ..., pn(X̄n) → h(X̄h)

call_h(X̄h), p1(X̄1), p2(X̄2), ..., pi−1(X̄i−1) → call_pi(X̄i)

where i ∈ {1, n}

Definition 2.33 (Magic template). Atoms call_p are called magic templates and
can be interpreted as needed or called atoms. Magic templates (or called atoms)
are differentiated from proper ones by annotation with C symbol.

One can see the new rules as plans for the rule’s head evaluation, but plans
augmented with goal of the evaluation. Let us now consider an example of magic
transformation of rule (2.18).

p1(?x, ?y), p2(?y, ?z), p3(?z, ?w) → h(?x, ?w) (2.18)

As a result, the set of the following rules is generated:

h1(?x, ?w)
C , p1(?x, ?y), p2(?y, ?z), p3(?z, ?w) → h1(?x, ?w)

h1(?x, ?w)
C → p1(?x, ?y)

C

h1(?x, ?w)
C , p1(?x, ?y) → p2(?y, ?z)

C

h1(?x, ?w)
C , p1(?x, ?y), p2(?y, ?z) → p3(?z, ?w)

C

The magic approach has been shown to be sound and complete [Nilsson 1995].
The original magic sets optimization [Bancilhon 1986a] was extended in
[Beeri 1987] with the following techniques:

• Generalized Magic Sets (GMS).

• Generalized Supplementary Magic Sets (GSMS).

• Generalized Counting (GC).

• Generalized Supplementary Counting (GSC).

GMS optimization combines optimal sip strategy (a sip that computes a mini-
mal number of fact) with original magic transformation. As a result, values occur-
ring in a given query create a seed which provides an initial value for the magic
predicate corresponding to the query. Since magic sets and GMS suffers from the
fact that it duplicates the work it does in computing the magic sets when computing

2.1. Theoretical Background 29

the corresponding predicates (that is, when firing the modified rules) GSMS strat-
egy was proposed. “In GSMS and GSC, all results that are potentially useful later,
are stored. Thus, they trade-off additional memory (and possibly, increased lookup
times) for the time gained in avoiding some duplicate firings of rules. GC and GSC
refine the notion of a relevant fact by essentially numbering the magic sets. This
means that they avoid many unnecessary firings by starting at the query node and
working outwards. They do this at the cost of maintaining a system of indices (and
of course, are applicable only for a restricted set of data and rules).” [Beeri 1987]

Other rule-rewriting technique is called the Alexander Method [Rohmer 1986].
The method was developed independently and it is essentially the Generalized Sup-
plementary Magic Sets strategy. In other words the Alexander Method re-expresses
the GSMS technique in a different terminology.

There were also other improvements and modifications of magic approach
[Bry 2007].

2.1.4.3 Other Optimizations

In this section we provide a brief description of other optimization techniques that
are centered around a top-down evaluation. First of them is an approach known
as "Query-Subquery" (QSQ) [Vieille 1986]. In this technique an original query,
in which constants occur, is divided into a set of subqueries. The subqueries are
systematically evaluated till the answer is obtained.

Another interesting approach was presented in [Bry 1990] where the Backward
Fixpoint Procedure (BFP) aims to perform top-down reasoning by a bottom-up
meta-interpreter which operates on Datalog rules in addition to data. The BFP
provides the meta-interpretation framework which reconciles the bottom-up and
top-down methods to compute recursive queries. This work shows that rewriting-
based and resolution-based methods can be interpreted as a specialization of the
Backward Fixpoint Procedure.

According to the work presented in [Brass 2010] we also believe that the
bottom-up approach has still room for improvements in order to increase the per-
formance of the rule-based query answering task.

2.1.5 Description Logics

In this section we present the introduction to description logics (DLs) which are a
family of knowledge representation languages. We provide their syntax, semantics
and reasoning tasks.

Description logics are used to represent the terminological knowledge of an ap-
plication domain in a structured and formally defined way. The domain of interest
is described by concepts (unary predicates) and roles (binary predicates). Con-

30 Chapter 2. Preliminaries

cepts and roles are defined using the concept and role constructors provided by a
particular DL.

Historically, DLs are related to semantic networks, conceptual graphs and
frame languages [van Harmelen 2007]. Description logics with their formal, logic-
based, semantics allow for automated reasoning while their restricted syntax (for-
mulae with at most two variables) provides decidability and human-readable form
[Nalepa 2011].

Definitions presented in this section can be found in [Baader 2003] and
[van Harmelen 2007].

2.1.5.1 Syntax

In description logics two kinds of atomic symbols are allowed: atomic concepts
(denoted by A, C and D) and atomic roles (denoted by R and S). Atomic symbols
provides elementary descriptions from which we can build complex descriptions
using concept and role constructors. Description logics are distinguished by the
constructors they provide. The language AL (attributive language), introduced in
[Schmidt-Schauss 1991], is the minimal language of practical interest. The other
languages of this family are extensions of AL. Concept descriptions in AL are
formed according to the following syntax rule:

C,D → A | ⊤ | ⊥ | C ⊓D | ∃R.⊤ | ∀R.C | ¬C

The atomic negation (¬C) in AL can only be applied to atomic concepts. In the
scope of an existential quantification over a role only the top (⊤) concept is allowed
(this restriction is called a limited existential quantification). These limitations do
not exist in more expressive languages which may be obtained by adding further
constructors to AL. Some of them are presented in Table 2.1.5.1.

Extending AL by any subset of the constructors yields a particular DL AL
language which name is defined by a string composed from constructors’ sym-
bols. For example, the union of concepts is indicated by U whereas full existential
quantification by E . Since these constructors can be expressed using negation of
arbitrary concepts (C ⊔D ≡ ¬(¬C ⊓ ¬D) and ∃R.C ≡ ¬∀R.¬C) the letter C is
used instead of the letters UE . The language ALC extended with transitive roles
(denoted by R+) is named ALCR+ . In order to avoid very long names for expres-
sive DLs, the abbreviation S was introduced for ALCR+ . The language S may be
extended with inverse roles (denoted by I), functional roles (denoted by F), role
hierarchy (denoted by H), role chains (denoted by R), nominals (denoted by O),
number restrictions (denoted by N) and qualified number restrictions (denoted by
Q). More constructors can be found in [Baader 2003, Appendix 1].

Description logics may be extended with concrete domains which allow for
the use of types such as integers ("3" for example) and predicates such as integer

2.1. Theoretical Background 31

Table 2.5: The syntax of description logics.
Expression Syntax Symbol

Universal concept ⊤

ALC

Bottom concept ⊥
Atomic concept A
Atomic role R
Conjunction C ⊓D

Disjunction C ⊔D

Exists restriction ∃R.C

Value restriction ∀R.C

Negation ¬C

Role hierarchy R ⊑ S H

Role chains R1 ◦ ... ◦Rn ⊑ S R

Inverse role R− I

Transitive role R ∈ R+ S

Functional role ≤ 1R F

Nominals a1, ..., an O

Number ≥ nR N
restriction ≤ nR

Qualified number ≥ nR.C Q
restriction ≤ nR.C

comparisons [Baader 1991]. Concrete domains, known as Datatypes, are denoted
by appending (D) to the name of the logic, for example SHIQ(D).

Some of description logics, because of their practical importance, have been
chosen as ontology languages: OWL [Horrocks 2003, Consortium 2006] and OWL
2 [Motik 2008, Consortium 2012]. For example, OWL Lite provides the expres-
siveness of SHIF(D), OWL DL is based on SHOIN (D) and OWL 2 is equiva-
lent to SROIQ(D).

To give an idea of what can be expressed using constructors provided by a
particular description logic we present a set of examples in Table 2.1.5.1. Sup-
pose Person, Female and Male are atomic concepts whereas hasParent, hasFather,
hasChild, hasGrandparent and hasAncestor are atomic roles. Then Person⊓Male
represent persons that are males while Person≡Male⊔Female express that Per-
son is Male or Female. Description ∃hasParent.Male denotes, intuitively, parents
which are males (fathers). Otherwise, ∀hasParent.Person denotes that all parents
are persons. Negation ¬Male describes a concept which is not Male, for example,
Female.

32 Chapter 2. Preliminaries

Table 2.6: The example use of expressions in description logics.
Expression Syntax Example

Universal concept ⊤
Bottom concept ⊥
Atomic concept A Male

Atomic role R hasParent

Conjunction C ⊓D Person ⊓Male

Disjunction C ⊔D Person ≡ Male ⊔ Female

Exists restriction ∃R.C ∃hasParent.Male

Value restriction ∀R.C ∀hasParent.Person

Negation ¬C ¬Male

Role hierarchy R ⊑ S hasFather ⊑ hasParent

Role chains R1 ◦ ... ◦Rn ⊑ S hasParent ◦ hasGrandparent ⊑ hasAncestor

Inverse role R− hasParent ≡ hasChild−

Transitive role R ∈ R+ hasAncestor+

Functional role ≤ 1R ≤ 1hasFather

Nominals a1, ..., an blue, red, yellow

Number ≥ nR ≥ 3hasChild

restriction ≤ nR ≤ 2hasParent

Qualified number ≥ nR.C ≥ 3hasChild.Male

restriction ≤ nR.C ≤ 2hasChild.Female

A role hierarchy hasFather⊑hasParent provides information that a role hasFa-
ther is subsumed by a role hasParent. In a role chains we can express a propagation
of one property along another one. In our example, properties hasParent and has-
Grandparent propagate along property hasAncestor. A role hasChild is an inverse
role of hasParent whereas hasAncestor is a transitive role. Description ≤1 has-
Father denotes that a person can have at most one father. Number restriction ≥3
hasChild describes the concept that there should be at least three children while
≤2 hasParent denotes that each person have at most two parents. Qualified num-
ber restriction ≥3hasChild.Male expresses that there are at least 3 sons whereas
≤2hasChild.Female describes that there are at most two daughters.

2.1.5.2 Semantics

The formal semantics of description logics is defined by interpretations I which
come from the fact that DLs are a subset of the first-order logic.

Definition 2.34 (DL interpretation). An interpretation I =△I , ·I consists of a
non-empty set △I called the domain of I, and a function ·I that maps every

2.1. Theoretical Background 33

DL-concept to a subset of △I , and every role name to a subset of △I × △I .
[van Harmelen 2007]

Two concepts C,D are equivalent (C ≡ D) if CI = DI for all interpretations
I. An inclusion (subsumption) C ⊑ D is satisfied in I if CI ⊆ DI . A general
concept inclusion axiom (GCI) is an expression of the form C ⊑ D, where C and
D are arbitrary DL concepts.

The semantics of constructors available in ALC and its extensions is presented
in Table 2.1.5.2.

Table 2.7: The semantics of description logics.

Expression Syntax Semantics Sym.

Universal concept ⊤ △I

ALC

Bottom concept ⊥ ∅
Atomic concept A AI ⊆△I

Atomic role R RI ⊆△I × △I

Conjunction C ⊓D CI ∩DI

Disjunction C ⊔D CI ∪DI

Exists restriction ∃R.C a ∈△I
∣∣∃b.(a, b) ∈ RI and b ∈ CI

Value restriction ∀R.C a ∈△I
∣∣∀b.(a, b) ∈ RI implies b ∈ CI

Negation ¬C △I \CI

Role hierarchy R ⊑ S RI ⊆ SI H

Role chains R1 ◦ ... ◦Rn ⊑ S RI
1 ◦ ... ◦RI

n ⊆ SI R

Inverse role R− (a, b) | (b, a) ∈ RI I

Transitive role R ∈ R+ RI = (RI)+ S

Functional role ≤ 1R a ∈△I
∣∣ | {b | (a, b) ∈ RI} | ≤ 1 F

Nominals a1, ..., an aI1 , ..., a
I
n O

Number ≥ nR a ∈△I
∣∣ | {b | (a, b) ∈ RI} | ≥ n N

restriction ≤ nR a ∈△I
∣∣ | {b | (a, b) ∈ RI} | ≤ n

Qualified number ≥ nR.C a ∈△I
∣∣ | {b | (a, b) ∈ RI and b ∈ CI} | ≥ n Q

restriction ≤ nR.C a ∈△I
∣∣ | {b | (a, b) ∈ RI and b ∈ CI} | ≤ n

A description logic knowledge base (KB) consists of two parts: terminological
part (called the TBox) and assertional part (called the ABox). A TBox is a set of
axioms dealing with how concepts and roles are related to each other (in other
worlds, it is a finite set of both type of axioms: general concept inclusion and role
inclusion). An ABox is a set of axioms asserting that: an individual is an instance
of a given concept; and a pair of individuals is an instance of a given role. A TBox
can be perceived as a schema of a KB which expresses domain knowledge whereas

34 Chapter 2. Preliminaries

an ABox constitutes data which store information about individual objects in the
domain.

Definition 2.35 (Assertional axiom, model). An assertional axiom is of the form
a : C or (a, b) : r, where C is an DL-concept, r is a role name, and a and b
are individual names. A finite set of assertional axioms is called an ABox. An
interpretation I is a model of an assertional axiom a: C if aI ∈ CI , and I is a
model of an assertional axiom (a, b) : r if ⟨aI , bI⟩ ∈ rI; I is a model of an ABox
A if it is a model of every axiom in A. [van Harmelen 2007]

More intuitive notation of ABox axioms, which can be found in the literature
[van Harmelen 2007] is, e.g., C(a) and r(a, b). For example, if we want to express
that Chris is a father of Mike, we can make the following assertions: Child(Mike),
meaning that Mike is a child; Father(Chris), meaning that Chris is a father;
and hasFather(Mike, Chris) which express the fatherhood relationship between
these two individuals.

The use of concrete domains, as mentioned in Section 2.1.5.1, which allows to
use concrete datatypes is very important in practical applications. It provides real
numbers, integers, strings and other types of data as well as concrete predicates
defined on these sets, e.g., numerical comparisons, string comparisons or compar-
isons with constants.

Definition 2.36 (Concrete domain). A concrete domain is a pair (△D,ΦD), where
△D is an interpretation domain and ΦD is a set of concrete domain predicates
with a predefined arity n and an interpretation dD ⊆ △n

D. An admissible concrete
domain D is equipped with a decision procedure for checking satisfiability of finite
conjunctions over concrete predicates. [Motik 2004]

Description logics are based on so-called open world semantics (OWA) which
is in opposite to the closed world semantics that occur in relational databases and
logic programming [Lifschitz 1996]. It means that information in a DL knowledge
base is considered to be incomplete. Under OWA, every information has to be
explicitly defined (even the negation of some fact). The absence of information
only indicates lack of knowledge and it is considered as unknown.

2.1.5.3 Reasoning

The important feature of DL system is that it not only stores KB of a given do-
main but it offers to perform reasoning tasks for TBox and ABox. Typical rea-
soning tasks for TBox are to check the satisfiability of a given description (i.e.,
non-contradictory), and whether one description subsumes another one (whether
one is more general than the other one). Important tasks for an ABox are to deter-
mine whether it is consistent (it has a model), and whether a particular individual is

2.1. Theoretical Background 35

an instance of a given concept description. Satisfiability and consistency tasks are
performed to determine whether a knowledge base is meaningful at all. Subsump-
tion tasks are useful to construct a hierarchy of concepts (and hierarchy of roles,
if H is included). A concept description can be perceived as a query, describing a
set of objects, which one is interested in. As a result, using instance tests, one can
retrieve the set of individuals that satisfy the query.

A DL knowledge base, comprising TBox and ABox, provides semantics which
makes KB equivalent to a set of axioms in first-order logic. According to this, it
contains implicit knowledge which can be made explicit through reasoning.

Different reasoning algorithms for DL knowledge bases have been proposed.
The use of concrete algorithm depends on constructors that are used in a particular
DL [Baader 2003]. The subsumption of concepts in simple languages with little ex-
pressivity (without negation and disjunction) can usually be computed by so-called
structural subsumption algorithms. These algorithms compare the syntactic struc-
ture of (possibly normalized) concept descriptions. More expressive languages can
be handled by so-called tableau-based algorithms. The first tableau-based algo-
rithm for description logics was proposed in [Schmidt-Schauss 1991] for satisfia-
bility of ALC-concepts. Since then, many approaches has been presented for DLs
extending ALC: for languages with number restrictions [Baader 1999], transitive
roles [Horrocks 1999] and many more [Baader 2003], among them extensions to
the consistency problem for ABoxes [Haarslev 2000].

General idea of a tableau-based algorithms relies on a set of tableau expansion
rules. These rules correspond to the logical constructors of a given DL language.
A typical algorithm starts from a generated individual a and imposes the constraint
a ∈ C on it. Next, using inference mechanism, which consist of applying a set of
expansion rules, the algorithm tries to prove the satisfiability of the concept C by
constructing a model, an interpretation I in which CI is not empty. Concluding,
“a tableau is a graph which represents such a model, with nodes corresponding
to individuals (elements of △I) and edges corresponding to relationships between
individuals (elements of △I × △I)” [Baader 2003].

Other approach, not tableau-based, tries to transform a DL knowledge base to
disjunctive Datalog and performs reasoning techniques from deductive databases
[Hustadt 2004, Hustadt 2007]. Disjunctive Datalog reduction and approaches that
try to combine DLs with Datalog and logic programming are of a special interest
for the thesis and are presented in Section 2.1.6.

2.1.6 Combining Description Logics with Datalog

This section presents approaches that try to combine the family of description log-
ics with a Datalog-like rules. Such combination is interesting because of advan-
tages it can provide, e.g. instance reasoning and conjunctive query answering w.r.t.

36 Chapter 2. Preliminaries

a terminology written in some DL and with some data, integrated by a set of rules.
The integration of these two formalisms is very important for the Semantic Web,
where DLs are focused on conceptual knowledge and reasoning whereas rules are
focused on non monotonic reasoning. As a result, many practical applications re-
quire both: DLs (in the form of an ontology) and rules (usually in the form of Horn
clauses).

The integration of DLs and rules is not trivial since DLs use open world as-
sumption whereas rules exploit a closed world assumption. Moreover, they differ
in expressive power and assumptions underlying these two formalisms.

We describe several methods of this combination, among them the Horn-
SHIQ language is of a special interest in the context of this thesis. It has been
chosen as an implementation language and is presented in details. Next subsec-
tions provide a short survey of approaches that have been proposed so far.

2.1.6.1 Semantic Web Rule Language

The Semantic Web Rule Language (SWRL) is a combination of OWL and rules
which extends, syntactically, the syntax of OWL DL and OWL Lite with addi-
tional constructs providing Horn-like rule axioms. The approach was presented in
[Horrocks 2004a] (called there as OWL Rule Language) and in [Horrocks 2005]
where SWRL name appeared. According to the SWRL syntax, each rule is of the
following form: B → H (as in Section 2.1.1.1), where B and H are (possibly
empty) conjunctions of atoms. The atoms have the form of unary or binary predi-
cates (classes or properties) where variables, individuals and constants are allowed.
“Variables in SWRL are typed: those ranging over individuals are distinct from
those ranging over data-values. Variables must also be safe, in the sense that every
variable in the consequent of a rule must also appear in the antecedent. Even with
this restriction, however, the satisfiability problem for SWRL knowledge bases is
known to be undecidable.” [Krisnadhi 2011]

2.1.6.2 Description Logic Programs

Description Logic Programs (DLP) approach, proposed in [Grosof 2003], tries to
reconcile description logics and rules by restricting these formalisms to the frag-
ment that can be expressed in both of them. As a result, DLP defines a decid-
able intersection of description logic and logic programming. DLP imposes certain
constraints on SHOIQ language which provide a transformation of all axioms to
Horn clauses preserving the semantics of the chosen DL. DLP language provides a
decidable combination of rules and description logic, achieves significant gains in
reasoning complexity [Volz 2004] and, moreover, its limitations will rarely matter
in practice [Hitzler 2005].

2.1. Theoretical Background 37

2.1.6.3 DL-safe Rules

DL-safe rules approach proposed in [Motik 2004] for SHOIN (D) and
[Motik 2006a] for SHIQ(D) considers decidable combination of OWL DL and
rule axioms. The decidability is preserved by forcing each rule to be DL-safe which
means that each variable is bound only to individuals explicitly occurred in the as-
sertional part of the knowledge base. It is similar to dalalog safety described in
Section 2.1.2.1. It is worth noticing that only atomic concepts are allowed to occur
in rules. In case when complex class description matters, they can be easily elimi-
nated from rules by introducing a new atomic concept which is a superclass of the
complex one. As a result, DL-safe approach provides more expressive power than
either of the two elements alone. Moreover, the algorithm for query answering with
DL-safe rules was also proposed in [Motik 2004].

2.1.6.4 Description Logic Rules

Description Logic Rules (DL Rules) proposed in [Krötzsch 2008a] relies on as-
sumption that the body of each DL rule must be tree-shaped. It means that the
body B of a rule “contains exactly one root t, and there is exactly one path from
t to any terms in B. In this case, t is the root of B” [Krötzsch 2010]. The general
idea assumes that pairs of variables connected by roles in the rule form a directed
graph which should be a tree where variables are vertices and roles are edges. If
the graph is not a tree then the body is not tree-shaped. The important notice is that
DL Rules do not increase the expressive power of description logic. Instead of it,
DL Rules identifies fragments of SWRL that can be expressed (or rather emulated)
by a DL knowledge base [Krötzsch 2010]. But the combination of DL Rules with
DL-safe rules provide a new tractable (polynomial) rule language called ELP. ELP
provides the integration of the expressivenesses of the OWL 2 profiles: OWL 2 EL
and OWL 2 RL within a rule-based formalism [Krötzsch 2008b]. This combina-
tion goes beyond the scope of this dissertation. The curious reader is referred to
[Krötzsch 2010].

2.1.6.5 Horn-SHIQ

Horn-SHIQ, introduced in [Hustadt 2005], is a fragment of SHIQ in which dis-
junctions are not allowed. A Horn-SHIQ knowledge base can be translated into
a set of Horn clauses. This approach is similar to Description Logic Programs
but differs in the fragment of the intersection between DL and logic programming
(namely, Horn logic). DLP is focused on straightforward transformation of DL
into rules while Horn-SHIQ allows to define more complex relationships be-
tween these formalisms, e.g. it provides arbitrary use of existential quantifiers

38 Chapter 2. Preliminaries

which are not supported by DLP. Moreover, Horn-SHIQ encompasses also a de-
scription logic DL-lite [Calvanese 2006] (see Section 2.1.6.6), because of the in-
troduction of recursive axioms of form (2.20). The description of Horn-SHIQ,
presented herein, is based on [Hustadt 2007], [Krötzsch 2006, Hitzler 2009a] and
[Eiter 2008a].

Definition 2.37 (Horn-SHIQ). Horn-SHIQ is a fragment of SHIQ DL and
it can be translated into first-order Horn clauses only if every general concept
inclusion axiom can be normalized into one of the following forms:

A ⊓B ⊑ C (2.19)

∃R.A ⊑ B (2.20)

A ⊑ ∀R.B (2.21)

A ⊑ ∃R.B (2.22)

A ⊑≥ mS.B (2.23)

A ⊑≤ 1S.B (2.24)

where A,B,C are concept names, R is a role, S is a simple role, and m ≥ 1.

Definition 2.37 is called a normal form of Horn-SHIQ, to which each Horn-
SHIQ knowledge base can be rewritten [Eiter 2008a]. The normal form can be
transformed into Datalog syntax (Horn clauses). As a result, Horn-SHIQ knowl-
edge base KB is satisfiable iff a translation of it into Datalog syntax Ω(KB) is
satisfiable as shown in [Motik 2006a]. Details of Horn-SHIQ transformation into
Datalog syntax can be found in [Motik 2006a] and [Hustadt 2007].

According to a normal form of Horn-SHIQ, it provides the following expres-
sivity of Web Ontology Language in version 1.1 (OWL 1.1):

• inclusion of simple concepts (e.g. Man ⊑ Person)

• concept disjointness (e.g. Man ⊓Woman ⊑ ⊥)

• domain restrictions (e.g. ∃wifeOf.⊤ ⊑ Woman)

• range restrictions (e.g. ⊤ ⊑ ∀wifeOf.Man)

• functionality restrictions (e.g. ⊤ ⊑≤ 1wifeOf)

• participation constraints (e.g. Wife ⊑ ∃wifeOf.Man)

• role inclusions (hierarchy of roles) (e.g. wifeOf ⊑ spouseOf)

• inverse roles (e.g. wifeOf ≡ husbandOf−)

• symmetric roles (e.g. spouseOf ≡ spouseOf−)

2.1. Theoretical Background 39

• equivalence of roles (e.g. spouseOf ≡ consortOf)

As mentioned before, disjunctions are not allowed, so the following expression is
not expressible in Horn-SHIQ: Man ⊔ Woman ≡ Person. The loss of dis-
junction and imposed constraints (2.19) - (2.24) guarantee that inference tasks in
Horn-SHIQ can be solved in polynomial time (PTIME) w.r.t. the size of data (data
complexity). It is important feature which makes this formalism highly practical
in use. An algorithm for conjunctive query answering, presented in [Eiter 2008a],
shows that the entailment problem for conjunctive queries is EXPTIME-complete
(combined complexity). As a result, Horn-SHIQ provides the balance between
expressivity and ABox reasoning scalability.

2.1.6.6 Other approaches

Aforementioned approaches do not exhaust the research on a combination of de-
scription logics with rules. In this section we provide a short overview of other
important methods in this area.

A classical work on integrating rules with DLs under the semantics of first-
order logic was presented in CARIN [Levy 1996]. The work showed that it is
difficult to combine these two formalisms and even a very simple description logic
combined with an arbitrary Horn logic is undecidable. In [Levy 1996] a description
logic ALCNR combined with a function-free Horn logic provides decidability
with the use of role-safe rules which require that in every role atom at least one
variable that appears in the atom also appears in an atom of a base predicate (i.e., a
predicate that does not appear in the consequent of a Horn rule, and is not a concept
or role predicate).

In AL-log approach [Donini 1998] a description logics ALC is combined with
Datalog where the safety condition occurs: each variable in the head of the rule
must also occur in the body of this rule. Moreover, for a Datalog program P and
ontology O the following conditions must be met:

1. The set of Datalog predicate symbols appearing in P is disjoint from the set
of concept and role symbols appearing in O.

2. The constants of P coincide with individual names from O.
3. P consists of constrained clauses where each one is accompanied by zero or

more constraints of the form C(t), where C is an ALC concept description
and t is a variable.

The constraints restrict the values of variables to instances of concepts. The
query answering procedure, based on SLD-resolution, was also proposed in
[Donini 1998].

DL+log formalism [Rosati 2006] integrates description logics with disjunctive
Datalog. The approach assumes a new safeness condition, called weak safeness,

40 Chapter 2. Preliminaries

which states that every head variable must occur in a non-DL literal in the rule
body. As a result, weak safeness allows for the presence of variables that only occur
in DL-atoms in the body of the rule. It is worth noticing that DL predicates are
interpreted under open world assumption while Datalog predicates are interpreted
under closed world assumption. The satisfiability problem of a DL+log knowledge
base is decidable iff Boolean query containment problem for (union of) conjunctive
queries is decidable in the DL used.

Another combination of description logics and disjunctive Datalog was pro-
posed in [Motik 2007] as hybrid MKNF (Minimal Knowledge and Negation as
Failure) which is based on logic proposed in [Lifschitz 1991]. Hybrid MKNF
approach is a seamless integration of closed- and open-world reasoning within a
single framework. It is easy to switch between closed- and open-world views on
arbitrary predicates from description logic and logic programming. The integration
is “faithful in the sense that it provides exactly the same consequences as DL and
LP, respectively, if the other component is empty.” [Motik 2007] Hybrid MKNF
formalism generalizes other approaches mentioned earlier: SWRL, CARIN, DL-
safe rules and AL-log [Motik 2006b]. A variant of hybrid MKNF approach con-
sidering nondisjunctive knowledge bases was also proposed [Knorr 2007] under
well-founded semantics.

The combination of disjunctive Datalog (with negation under answer set se-
mantics) and description logics is adopted by dl-programs [Eiter 2008b]. In this
approach rules can contain special atoms (in their bodies) which are interpreted as
queries (dl-queries) to a description logic ontology. Moreover, description logic
atoms (dl-atoms) can specify data which is provided as input to queries, and an-
swers to the queries affect what my be inferred using the rules. As a result, the
bi-directional flow of information between DL component and Datalog program is
enabled [Drabent 2009].

Some other recent approaches that try to integrate OWL 2 (SROIQ or a subset
of it) with rules are the following:

• DAAL [Nalepa 2010] language (Description And Attributive Logic) which
integrates Attributive Logic with description logic aiming that this in-
tegration can be translated and represented using XTT2 rule language
[Nalepa 2008].

• ELP [Krötzsch 2008b] is an OWL-based language which combines EL++

[Baader 2008] based profile of OWL 2 with Description Logic Programs and
DL-safe rules. ELP provides combined polynomial complexity.

Since we consider only formalisms that are used in OWL 1.1, these approaches are
beyond the scope of this dissertation.

2.2. Description of Economic Crimes 41

2.2 Description of Economic Crimes

In this section we provide descriptions of two economic crimes that we are focused
on, namely, fraudulent disbursement and money laundering.

An economic crime, according to the Polish Penal Code (PC) [Sejm 1997],
is a forbidden act or neglect in order to achieve economic (usually financial) gain.
Such crimes affect organizations worldwide (public and private), despite increasing
regulatory actions [PricewaterhouseCoopers 2009]. As a result, typical victims of
economic crimes include organizations, groups of people and individuals against
which the crime was directed. In some cases a group of victims is extended by
ordinary citizens which are indirectly affected by an economic crime (e.g. when an
illegal act was directed against a public organization).

Association of Certified Fraud Examiners (ACFE)2 in its Occupational Fraud
and Abuse Classification System divides crimes into three categories: corruption,
asset misappropriation and fraudulent statements. Next, asset misappropriation is
divided into cash and non-cash (in our terminology money, the cash being form of
money and non-monetary assets). The large category of money related crimes are
fraudulent disbursements.

According to PricewaterhouseCoopers3 (PwC) economic crimes can be divided
into: asset misappropriation, accounting fraud, bribery and corruption, intellectual
property infringement, money laundering, tax fraud, illegal insider trading, market
fraud involving cartels colluding to fix prices, espionage, and others. As we can
see, the classification of PwC is wider than ACFE.

The global economic crime survey [PricewaterhouseCoopers 2011] shows that
top three types of economic crimes are: asset misappropriation (72%), accounting
fraud (24%) and bribery and corruption (24%). In comparison to the earlier re-
port from PwC [PricewaterhouseCoopers 2009] asset misappropriation increased
5% whereas accounting fraud and bribery and corruption decreased, 14% and 3%
respectively. Moreover, most frauds are committing by internal fraudsters (56%)
[PricewaterhouseCoopers 2011]. As a result, economic crimes are very costly
(losses may be higher than five million US dollars on average). It appears, from
aforementioned reports, that economic crimes have an important influence on busi-
ness, organizations and even ordinary people.

Next subsections provide a brief overview of a fraudulent disbursement (as a
subset of asset misappropriation) and a money laundering.

2http://www.acfe.com/
3http://www.pwc.com/

http://www.acfe.com/
http://www.pwc.com/

42 Chapter 2. Preliminaries

2.2.1 Fraudulent Disbursement
A fraudulent disbursement is the most common form of asset misappropriation
[ACFE 2008]. In this economic crime an employee uses his position in a company
to cause a payment for some inappropriate purpose. Fraudulent disbursements are
divided into the following schemes [Albrecht 2008, ACFE 2008]:

• Billing schemes which involve employers making payments based on false
invoices for personal purchases.

• Payroll schemes in which payment is based on false documentation (resem-
ble billing schemes) and indicates that compensation is fraudulently due to
an employee.

• Expense Reimbursement schemes in which claims of fictitious or inflated
business expenses appear.

• Check Tampering schemes in which a person steals funds by forging or al-
tering an organization’s check.

• Register disbursement schemes in which an employee makes false entries or
no-sale transactions to conceal the removal of cash.

The most common fraud scheme of fraudulent disbursement is the billing
scheme [ACFE 2008]. As a result, this scheme is of a special interest in the con-
text of this thesis and we now describe it in the details according to descriptions
provided in [ACFE 2008] and [Albrecht 2011]. Curious reader can find detailed in-
formation about other economic crime schemes (including fraudulent disbursement
schemes) in [Albrecht 2011].

In a billing scheme the perpetrator submits or alters an invoice that causes her or
his employer to issue a payment for fictitious goods or services, inflated invoices,
or invoices for personal purchases. For example, an employee may create a shell
company and then bills his employer for non-existent services or goods. As a
result, the employer buys non-existent goods or services, overpriced or not needed
merchandises.

The purpose of most billing schemes is to obtain an illicit gain of cash for the
fraudster. In a typical billing scheme an employee creates fraudulent documents,
which can include orders, invoices, receiving reports and so on. These documents
cause the victim organization to make a money transfer or to pay in cash. Usu-
ally, the cash hits the perpetrator’s pocket. In some cases perpetrators create a
dummy (shell) company which send invoices to the victim organization. As a re-
sult, the money goes to the account of the shell company. Another way to achieve
an illicit gain is to generate fraudulent disbursement by using the invoice of a non-
accomplice vendor or by paying some invoice twice and then asking for one of the

2.2. Description of Economic Crimes 43

payment to be returned to the perpetrator’s account. In case, when the documents
were issued to purchase personal goods or services, the perpetrator falsifies the na-
ture of the order, claiming that they were bought on the organization’s behalf. In
all cases the perpetrator achieves an illicit gain whereas the employer is the victim.

Summarizing, the categories of billing schemes include:

• Setting up shell companies to submit invoices to the victim organization
• Paying a non-accomplice vendor’s statements
• Making personal purchases with organization’s funds

Billing schemes are very expensive, the median cost of billing schemes in the
ACFE Report to the Nation on Occupational Fraud and Abuse [ACFE 2012] is
100.000 US dollars. Moreover, “since the majority of most businesses’ disburse-
ments are made in the purchasing cycle, larger thefts can be hidden through false
billing schemes than through other kinds of fraudulent disbursements. Employees
who utilize billing schemes are just going where the money is.” [Albrecht 2011]

2.2.2 Money Laundering
Money laundering is the most common tax fraud scheme
[PricewaterhouseCoopers 2011] which consist of actions that try to legit-
imise the proceeds of a crime by concealing the source, identity or destination of
funds. The phrase "money laundering" indicates money which is "dirty" because
it was generated illegally. Money which is "laundered" is made to appear that it
has legitimate origin [Albrecht 2011]. We now describe the money laundering
process and schemes according to descriptions presented in [Salinger 2004],
[Albrecht 2011], [FATF 2012] and [JMLSG 2012].

The process of legitimizing illegally gained money involves the number of var-
ious transactions and actions. Usually, it consists of the following three steps:

1. Placement. In this stage, the launderer inserts "dirty" money into a legitimate
financial institution. Such action requires making cash deposit to a bank,
This stage is the riskiest one because large cash deposit may rise so-called
"red flags" and banks are required to report details of such transaction to
the governmental institution (in Poland it is Generalny Inspektor Informacji
Finansowej 4).

2. Layering. This stage is the most complex step in the money laundering pro-
cess. The launderer tries to make the dirty money difficult to trace. Various
transactions are performed to distance funds from their source and to make
the flow of funds difficult to follow. The funds may be transferred through

4http://www.mf.gov.pl/ministerstwo-finansow/dzialalnosc/giif/
aktualnosci

http://www.mf.gov.pl/ministerstwo-finansow/dzialalnosc/giif/aktualnosci
http://www.mf.gov.pl/ministerstwo-finansow/dzialalnosc/giif/aktualnosci

44 Chapter 2. Preliminaries

accounts located in different countries attached to different names. Layering
may also include making deposits and withdrawals, exchanging money to a
new currency, purchasing high-value items (e.g. cars, jewellery, yachts) to
change the form of the assets.

3. Integration. In this stage the funds re-enter the legitimate economy in a form
that appears to come from a legal transaction. The transaction may involve
investing in some business or the sale of assets bought in the previous stage.
As a result, the money reintroduced as "clean" into the economy can be con-
sumed by the launderer. If documents that can track earlier stages do not
exist, it is extremely difficult to reveal a laundering scheme.

As we can see, money laundering refer to a wide area of illegal activities and
it is not only associated with mafia or drug dealers but often with prominent and
respectable individuals and organizations.

Generally speaking, there are as many different money laundering schemes as
there are people involved in them [Albrecht 2011] but we can distinct four common
techniques [Salinger 2004]:

1. Bank methods which include various exchange transactions in which cash
is converted, for example wire transfers. In this method the launderer is
required to change cash into any non-cash form.

2. Smurfing method which is based on making many cash deposits into several
bank accounts. Each deposit is required to be under the minimum amount
that banks report to the governmental institution. As a result, a significant
amount of cash can laundered without being detected.

3. Currency exchange method in which cash in domestic currency is exchanged
into foreign currency and later processed through banks. Converted cash
can be introduced into legitimate banking channels and consumed by the
launderer.

4. Double-invoicing method in which the launderer hides financial gains by
sending invoices to a domestic or foreign organization for an overpriced mer-
chandises and the depositing the profits. As a result, the source of the funds
is disguised by manipulating business documents (invoices, account books
etc.).

Money laundering often takes place across many countries. That is why the
Financial Action Task Force5 (FATF) was established in 1989 as an international
governmental body that strives to combat money laundering. FATF publishes rec-
ommendations on fighting with money laundering and even the financing of ter-
rorism. A detailed list of the FATF recommendations can be found on the FATF
website.

5http://www.fatf-gafi.org/

http://www.fatf-gafi.org/

2.2. Description of Economic Crimes 45

Money laundering often accompanies other illegal activities. During an inquiry,
investigators are able to discover the number of crimes and criminals by uncovering
a money laundering scheme. An example case of fraudulent disbursement accom-
panied by money laundering is presented in Section 3.1.

Both economic crimes, fraudulent disbursement and money laundering, have
a damaging effect on business, financial institutions as well as ordinary customers
and citizens. This is the reason why we are interested in support investigators in the
process of analysing data at the semantic level with the rule-based query answering
methods.

CHAPTER 3

Knowledge base of economic crimes

In this chapter we present the ontological modelling of knowledge concerning the
class of linked economic crimes, namely the fraudulent disbursement accompanied
by money laundering. We present the example real world crime case - the Hydra
case in which both crimes occurred. We describe the main parts of the created
ontology and rules: determining legal sanctions for crime perpetrators, discovering
crime activities and roles of people engaged in a crime.

Economic crimes are particularly difficult to model [Kingston 2005] and code
into an expert system. For example, fraudsters use many types of schemes, tech-
niques and transactions to achieve their goals, so it has seemed impossible to con-
struct a simple conceptual model of any generality. Only recently has the integrated
use of semantics expressed by means of ontologies and rules achieved the capabil-
ity of analysing large practical problems, such as applying reasoning over legal
sanctions on the basis of investigation facts and rules appearing in penal codes.

It is worth noticing that a definition of money laundering differs between ju-
risdictions [FATF 2012]. The Polish Penal code [Sejm 1997] defines it in a way
similar to the UK law as taking any action with property of any form which is
either wholly or in part the proceeds of a crime that will disguise the fact that the
property is the proceeds of a crime. Here we restrict the notion to engaging in finan-
cial transactions to conceal the identity, source, or destination of illegally gained
money.

Our approach is based on the suitable application of an ontology that forms a
“minimal layer” - it contains only necessary concepts that follow the logical order
of uncovering a crime. The approach is so-called the Minimal Ontology Model
(MinOn). The ontology contains necessary concepts, roles and rules for taking
decisions in companies of various sizes and activities related to transactions and
whether persons in these companies formally documented their activities. The on-
tology makes it possible to differentiate roles of key people in the crime scheme,
and map their crimes into a specific set of penal code articles in differentiated
ways. Moreover, the MinOn ontology was established on a basis 10 large cases for
which investigation, indictment and sentence data had been complete (or almost
complete). Out of these cases the Hydra case was related as the most general, and
delivering rich enough crime scheme.

We apply the MinOn model to describe over 85% of relevant information for
the Hydra case, and, as a result, we are able to effectively infer from these facts

48 Chapter 3. Knowledge base of economic crimes

the legal qualifications for this case. As a result, the model is realistic and contains
many variants of a given crime typology.

The conceptual minimal ontology model consists of eight layers of concepts,
structured in order to use available data on facts to uncover relations. Using these
concepts and appropriate relations and rules, we are able to map crime activity
options (roles of particular type of managers). This makes it possible to phrase
these roles in the language of penal code sanctions. Finally, the roles of persons in
the crime are mapped into a set of sanctions.

In Section 3.1 we present a real crime case, so-called the Hydra Case. In Sec-
tion 3.2 we describe the employed methodology to construct the minimal ontology
model. Section 3.3 contains the detailed description of the MinOn model where
we derive rules that define logical activities appearing in the Penal Code based
on physical activities (e.g. signing a document that contains untrue content is a
falsification). Additionally, the section is devoted to mapping logical activities cor-
responding to legal sanctions for crime perpetrators. Conclusions and future work
are presented in Section 3.5.

3.1 The Hydra Case

In this section we describe the most clean real case of fraudulent disburse-
ment accompanied by money laundering, which is so-called Hydra Case (HC)
[Więckowski 2009].

Comp. A Comp. B

Single
person

Comp.C

Single

person

Comp. D

service/goods

invoice 976

fictitious work
statement

CEO of

Comp. A

CEO of

Comp. B
Owner of
Comp. D

wire 854 wire 450

difference between
transfers 122
(commission)

service/goods service/goods

invoice 854 invoice 854

fictitious work
statement

work done by

Comp. A itself

attempt of withdrawal of

450 cash

intended cash flow

no work statement

wire 976

Owner of

Comp. C

Fraudulent

Disbursement Money Laundering

Figure 3.1: The Hydra case [Martinek 2008].

3.1. The Hydra Case 49

The (whitened) facts of the economic crime considered here were initially writ-
ten on 7 pages in a textual form by a public prosecutor and then processed by a
knowledge engineer [Martinek 2008], to obtain a description in a natural-like lan-
guage (with sentence schemes like “Company C1 hires company C2 to do work W
at location L.”). On the basis of facts the crime scheme in Figure 3.1 was created,
which illustrates acting agents (companies and persons) and chains of their activ-
ities. These activities are divided into 4 types of flows of: services/goods (here,
the construction work), invoices accompanied by money amounts, wired money
amounts and authorized legal documents concerning the services/goods. In the
real case, fitting to this scheme, the Chief executive officer, (CEO) of company A
(Hydra) subcontracts construction work. The work is then consecutively subcon-
tracted through a chain of phony companies B, C, and D (Hermes, Dex, Mobex).
Each company is getting a commission for money laundering and falsifies docu-
ments stating that the contracted work had been done. Actually, what was to be
done as “subcontracted construction work” company A did itself. At the end of the
chain, the owner of a single person company D attempted to withdraw cash, and
there was a suspicion that this cash had reached the management of company A
“under the table” (“intended cash flow” in Figure 3.1).

The skeletal story of the Hydra case, depicted in Figure 3.1 is described as
follows (not all details are shown, i.e. family relationships between persons, levels
of responsibility in a company, company’s financial activities etc.; also, no temporal
relations are given):

• Company A hires company B to do work W at location L.
• Company B hires single person company C to do work W at location L.
• Single person company C hires single person company D to do work W at

location L.
• Company A does work W at location L.
• Company B does no work W at location L on behalf of A.
• Single person company C does no work W at location L on behalf of B.
• Single person company D does no work W at location L on behalf of single

person company C.
• Persons P1 and P2 representing companies A and B respectively, sign work

acceptance document D1 related to work W not done at location L.
• Persons P3 and P4 representing companies B and C respectively, sign work

acceptance document D2 related to work W not done at location L.
• Single person company D issues invoice I1 to single person company C for

work W not done at location L.
• Single person company C issues invoice I2 to company B for work W not

done at location L.

50 Chapter 3. Knowledge base of economic crimes

• Company B issues invoice I3 to company A for work W not done at location
L.

• Company A makes payment to company B for invoice I1 related to work W
not done at location L, transferring money from account A1 in bank B1 to
account A2 in bank B2.

• Company B makes payment to single person company C for invoice I2 re-
lated to work W not done at location L, transferring money from account A2
in bank B2 to account A3 in bank B3.

• Single person company C makes payment to single person company D for
invoice I3 related to work W not done at location L, transferring money from
account A3 in bank B3 to account A4 in bank B4.

• Person P5 is the owner of single person company D.
• Person P5 gives an order to bank B4 to perform operation O on account A4

of single person company D existing in this bank.
• O is a cash withdrawal from account A4 in bank B4.
• Bank B4 blocks operation O on account A4 of single person company D

existing in this bank, ordered by person P5.

In the next stage the sentences were broken into RDF triples, which were the
basis for concepts, relations and rules design. Such a representation largely facil-
itates asking relevant questions about connections between financial entities and
people associated with them, which is conducive to evidence building and assign-
ing a sanction for a crime.

The Hydra case is simple but powerful crime scenario in the form of asset
misappropriation. We decided to use this case as a base of the MinOn model,
since it is the most clean case of fraudulent disbursement accompanied by money
laundering. The legal implications of the model has been verified by legal experts
within the Polish Platform for Homeland Security framework.

Next section describes the employed methodology in ontology creation sup-
ported by rules.

3.2 Ontology Design Method
In contemporary information systems not only structures and formats of the pro-
cessed data should be explicitly given – the system’s data and processes are
to be also semantically specified, forming the conceptual model of the system
[Goczyła 2011]. Such a model may be defined in the form of an ontology and used
during the creation of the system or its exploitation or both. Our aim is to have an
ontological model that aims at conceptualizing economic crimes in order to sup-
port the exploitation phase of the police system under construction [Cybulka 2008].

3.2. Ontology Design Method 51

Particularly, having described the semantics (with the relevant ontological expres-
siveness) of crime-sensitive data, we can automate: the acquisition of this data to
the system, the extraction of data from the system (by means of semantic queries)
and possibly the data exchange between similar systems (in the paradigm of the
semantics-directed translation). The police system is to support the teamwork to
collectively detect the crime schemes on the basis of the gathered data. Here, ontol-
ogy also has its role by means of giving a model of a workflow among collaborating
users (’agents’) [Cybulka 2009]. The legal sanctions levied against people engaged
in a crime may be deduced with the help of rules that are also part of the ontology.
Now, we use our model in experiments that are the part of the prototyping phase,
so currently this ontology is not linked to the Police system.

The ontology is created according to the chosen method, the application of
which results in obtaining a layered ontological structure with the foundational
level on top of it and the application level at its bottom. The foundational level
semantic entities were identified with the use of content design pattern technique
of the adopted method, namely the pattern of constructive descriptions and situ-
ations (c.DnS). A content design pattern serves as a conceptual mean (which de-
termines a conceptual expressiveness of the ontology) that is suitable to represent
a chosen view on reality. Every foundational ontology involves such means and
may be treated as a content design pattern. The only operations that we do on
content patterns are their specialization ("is subsumed by") and linking them via
the basic formal relations (coming from the foundational ontology). The applica-
tion level entities of our layered ontological structure, concerning real crime cases,
were manually separated from the motivating crime scenarios. As usual, this level
may be divided into two parts: a domain-based and a task-based one. The for-
mer concerns the conceptualization of "a domain" whose attributes and relations
are of interest while the latter supports the realization of the functionality of a cer-
tain application ("a task"). The domain-based ontology is engineered in the OWL
language for we want to "name" concepts, relations and their instances. The task-
based part is implemented via rules in SWRL language.

The foundational level of economic crimes ontology is beyond the scope of this
thesis since we are focused on the application level. In this thesis we present the
MinOn model which consists of two parts: domain-based part and task-based part.
More detailed information about the foundational level ontology can be found in
[Cybulka 2009], [Cybulka 2010b] and [Bak 2013]

3.2.1 Ontology Overview

In information technology, an ontology is a set of concepts and roles in some par-
ticular domain of knowledge. The ontology defines domain knowledge (objects
and properties) and also should provide operational knowledge on use (how do we

52 Chapter 3. Knowledge base of economic crimes

use the objects?, what answers can we get?, and how could we query?). In general,
the model represents machine readable projection of a larger domain expressed in
a formalized language. We follow less general but more practical bottom-up path.
We are interested in legal case description we build hierarchy of objects possess-
ing inheritance, along with their properties such as attributes, and restrictions that
apply to the class. We apply rules to support reasoning about combined each other
roles and concepts.

We concentrate on most precise description of a single case. However, we do
not limit ourselves with only facts of the case. We consider also possible variants
of the case together with their legal implication.

The MinOn model has been developed in language Horn-SHIQ (tractable part
of OWL 1.1) which supports maximum expressive power (in rule-based represen-
tation of an ontology) without loss of decidability and computational complete-
ness. We define Horn clauses in SWRL language, which extends the expressivity
of OWL supporting the use of ontology axioms in rules. We also use SWRLB
language (SWRL Built-ins) to extend SWRL with additional functions. Generally,
we use SWRLB Comparisons to compare variables and to put some constraints on
them.

Such a model with ontology and rules needs an appropriate reasoner. There are
several of them, for example: Pellet [Parsia 2012] and KAON2 [KAON2 2012].
Our data are stored in a relational database, so we have to use a reasoner which
supports querying ’on-the-fly’ according to defined semantics and with the use
of rules. We decided to use our own tool - the Semantic Data Library which is
presented in details in Chapter 5.

We stress that some of the presented facts, for example ApprovalOfWorkNot-
Done(?d), will be put into the system by a prosecutor or other person connected
with an investigation. We also want to mention that all variables appearing in
rules which have different names are treated as having different values. To ex-
press that we need to use SWRLB constructions (for example: swrlb:equal (’=’),
swrlb:notEqual (’!=’), swrlb:greaterThan (’>’) etc.).

3.2.2 Adopted Method

To build the ontology of economic crimes (both domain and task parts) the elements
of the engineering methods proposed in [Gangemi 2007, Gómez-Pérez 2008] were
used. The NeOn method suggests formulating the specification of an ontology by
expressing:

1. Purpose of the ontology.
2. Scope of the ontology.
3. Level of formality.

3.2. Ontology Design Method 53

4. Intended users of the ontology.
5. Intended uses ("functionality") of the ontology.
6. Requirements specification (in the form of competency questions and an-

swers).
7. Pre-glossary of concepts and individuals.

During the specification phase of an ontology creation, the source knowledge is
processed, enabling to single out relevant ’pieces of semantics’ that are to be put
into the ontology. The formulation of the ontology specification is as follows.

Purpose, scope and level of formality of the ontology. The fraudulent disburse-
ment’s and money laundering ontology aims at providing the knowledge model of
this kind of economic crime. The scope is determined by the motivating scenario,
which is a description of one particular case of a crime that is an instantiation of
one scheme of such an offense. Such a representation largely facilitates asking rel-
evant questions about connections between financial entities and people associated
with them, which is conducive to evidence building and assigning a sanction for a
crime. The ontology is formalized in OWL-DL and SWRL ontological languages.

Intended users of the ontology. Among the users we distinguish crime domain
experts (who create crime scenarios) and also humans and software agents who
communicate with the knowledge base. The software agents mentioned are pro-
cesses of automate knowledge acquisition, extraction and exchange.

Intended uses of the ontology. Ontology may be used as a semantic refer-
ence for domain experts who organize and communicate knowledge concern-
ing new cases of fraudulent disbursement crime. For example, with the existent
c.DnSForAFraudulentDisbursement tuple in mind, the expert, if necessary, can spe-
cialize it with new concepts or can build a new c.DnS "capsule" and link it to the
existing ones via the existent formal relations. Also, such experts can query the
knowledge base (see Chapter 6) containing data related to crimes, with the use of
the defined rules.

Requirements specification and pre-glossary of terms. While the domain-
based part of the ontology is embedded in the foundational level, the task-based
part is crafted strictly to a task, meaning it uses only necessary concepts that follow
in the logical order of uncovering a crime. At the first stage, goods or services
transfer data is analysed with relation to three basic flows: of money, of invoices,
and of other documents (i.e., confirming that the service or goods have been de-
livered). Also, at this stage responsible or relevant people within companies are

54 Chapter 3. Knowledge base of economic crimes

identified and associated with particular illegal activities. The major features of
this part of the ontology are the following:

• only facts contributing to evidence or possible sanctions are kept

• answers to difficult questions are left to a human: i.e. deciding whether
the work has or has not been done; (this requires sending an expert to the
field who will do a construction inspection, taking testimonies, finding that
a company that presumably did the job was a straw company, i.e. with no
experience in construction, having no equipment, etc.; in some cases finding
out that the work was underpriced or overpriced is very difficult but a critical
issue in a case)

• considered events or attributes are reduced to a minimum, for example:

– at the first stage of the Hydra case analysing it was not necessary to deal
with the place of construction, for the scheme would be a crime no mat-
ter where the construction was taking place (for a given jurisdiction);
however, this information has to appear in the indictment

– an invoice can be issued or received, we combine these two events into
a single one; invoices may be lost or destroyed – in cases for which
these facts will be of importance, and then possibly we would have to
enhance the model

• knowledge about the case appears explicit as presented by facts, and implicit
– such as regular business procedures; once the payment is approved, it is
then executed and we are not interested who actually did it; such an approach
of complementing a scenario with "external knowledge" is similar to that
taken in Abraxas project [Aleven 2003]; this spares us representing a trade
code.

The competency questions that lay the ground for our model are:

• Between what entities (companies and people) are the transactions?
• What is a record of business activities and bank accounts of these entities?
• What is a record of tax statements of these entities?
• What are subjects of transactions?
• What was the ground for payments?
• What are documents of transactions?
• What is a hierarchy of management in involved companies?
• What is the decision structure and who (meaning positions, not people) au-

thorizes particular decisions (signs relevant documents) within the structure?

3.2. Ontology Design Method 55

• Which persons can be associated with relevant activities (for a given crime
mechanism)?

• Who knew about these activities?
• Who could possibly benefit from a crime?
• What are possibly legal sanctions related to a given crime typology?
• Who are accomplices in wrong doing?
• What were the roles of crime perpetrators (organizers, helping parties, straw

companies and straw persons)?

3.2.3 Applied Rules
Rules play a very important role in the layered architecture of the Semantic Web.
They are used for freely mixing of property and class expressions which is not
allowed in OWL. Generally, rules in the Semantic Web are needed for:

• inferencing about OWL properties and classes,
• mapping ontologies in data integration,
• transforming data from one to another format,
• querying with the use of complex queries based on OWL, SWRL etc. ax-

ioms,
• and many more.

Usually, rules are distinguished into deduction rules, production rules, norma-
tive rules, reactive rules, defeasible rules, etc. In our approach we apply two kinds
of rules: deduction and production rules. We use deduction rules to infer about
facts in the knowledge base. They add new implicit statements about connections
between persons, documents, money transfers and legal sanctions. According to
them we can discover crime scheme and suggest legal sanctions for people in-
volved in crime. These rules are defined in SWRL language with the use of SWRL
Built-ins. Deduction rules are also used for querying Jess engine’s working mem-
ory. Query rule contains only the body part and after hybrid or extended rules rea-
soning (executed by SDL with Jess) activations of this rule are obtained as query
results.

Production rules are used for mapping between ontology axioms (properties
and classes) and data stored in a relational database. These rules are defined in Jess
language. Their creation is supported by the SDL-GUI module which is the part of
the SDL tool. Mapping utilizes simple rule that every “essential” axiom (property
or class) has defined appropriate SQL query for mapping (see Section 4.4).

It is worth noticing that some of the presented rules contain several predicates
in the head. In this case, rules can still be considered as Horn clauses, since they
can be easily transformed into Horn clauses with the Lloyd-Topor transformation

56 Chapter 3. Knowledge base of economic crimes

[Lloyd 1984]). Several predicates in the heads of rules is employed for the sake of
increasing their readability.

3.3 Minimal Ontology Model

The minimal ontology model consists of eight layers that are structured in order
of uncovering the facts and are presented in Table 3.1. The competency questions
presented in Section 3.2.2 were related to top five levels of ontology. We could
ask more detailed questions. For example, what is additional information relevant
to sanctions (criminal records, relapse into crime after having served a sentence,
coercion on some persons by other perpetrators)? In this thesis such information
belongs to levels 7 and 8 of the ontology structure and was not dealt with in the
present MinOn model.

Table 3.1: Layers of concepts for analysis of economic crimes.
Type Concern details

1. General entities as: Companies, Institutions,
Single person companies, levels of autho-
rization, documents having legal meaning.
Money transfer between companies.

2. Invoice flow between companies. Tax state-
ments.

3. Work/Services flow.
4. Roles of decisive people in companies who

accepted work in the chain of command.
5. Mapping potential roles coming from posi-

tions in companies to particular activities re-
sulting in a financial crime.

6. People not related to companies but being a
part of crimes. Other relations of people.

7. Information about people, e.g., whether they
were sentenced in the last 10 years, their
criminal connections; school or business etc.,
connections.

8. Additional factors (e.g., learning about
averted criminal plans).

3.3. Minimal Ontology Model 57

A definition of the MinOn model in application to financial crimes, expressed
in Horn-SHIQ language using the editor Protégé 4.11 has a modular structure and
contains the following modules:

• Person.owl, describing persons as social entities and groups of persons,
• Document.owl, specifying the legal meaning of documents and their content,
• LegalProvision.owl, defining legal acts and sanctions,
• Action.owl specifying activities,
• Object.owl describing other entities, i.e. goods (work or service),
• MinimalModel.owl defining general concepts and roles, it also contains

rules,
• Institution-Organization.owl describing legal entities (rather than dealing

with intentions, it is more important to establish who knew about criminal
activities, and whether a crime was perpetrated by a group).

As relates to sanctions they are specified by a certain number of rules that define
what are conditions of a given crime, what constitutes evidence and how various
activities have to combine to be subjected to a particular sanction.

For example, as is stated in many legal theory texts, fraud must be proved by
showing that the defendant’s actions involved between five to nine [Podgor 1999]
separate elements presented in Table 3.2.

3.3.1 Domain-based Part of the Ontology
The domain-based part of the MinOn ontology contains necessary concepts and
roles to describe the crime schemes of fraudulent disbursement accompanied by
money laundering.

Recalling the requirements regarding the ontology (see Section 3.2.2), we for-
mulated a sequence of competency questions to be answered on the basis of infor-
mation contained in the formalized statements. As it was stated there the questions
serve to reveal only "necessary concepts that follow in the logical order of uncov-
ering a crime". For example, on the basis of the presented Hydra formalization the
following questions may be asked. Answers to them enabled to distinguish three
basic groups of ontological concepts.

1. Q1: What are the general entities?
The following social agents, abstracts and actions:

• company
• single person company
• institution (a bank)

1http://protege.stanford.edu/

http://protege.stanford.edu/

58 Chapter 3. Knowledge base of economic crimes

Table 3.2: Fraud attribute representation.
No. Fraud attribute How it is determined
1 A false statement of a

material fact (in some
works these two are
separated)

Explicitly (falsified
document as proof).

2 Damage to the alleged
victim as a result

Explicitly (payment for
work not done).

3 Knowledge on the part
of the defendant that
the statement is untrue

Conditional (could
know, could not know,
should know – these
are the variants of the
scheme analysed).

4 Intent on the part of
the defendant to de-
ceive the alleged vic-
tim

Testimony.

5 Justifiable reliance by
the alleged victim on
the statement

Implicitly (had fraud
been committed pay-
ment is automatic –
this knowledge comes
from normal opera-
tion procedures in a
company).

• decision maker (representative) in a company
• (legally valid) documents
• money transfer (between companies)
• bank account.

2. Q2: What are the main document’s flows?
The following actions:

• invoice flow between companies
• work acceptance flow between companies

3. Q3: What are other important flows?
The following action:

• goods/services flow.

Let us look in more detail at concepts connected with social persons and docu-
ments. Figure 3.3 and Figure 3.2 present taxonomies of these type concepts. The

3.3. Minimal Ontology Model 59

Figure 3.2: Taxonomy of concepts concerning documents.

former lists social persons while the latter – documents. Social persons and docu-
ments mentioned here constitute a fraudulent disbursement situation. We assume
that a company has a multi-level structure of authorization. In the case of Hydra
it is a three-level structure entailing the following chain of activities: acceptance
of the construction work done by a company B at a given site is first signed by
a manager in a company A responsible for a work supervision at this site (Mid-
dleLevelManager); this is followed by a signature of the higher level manager – a
Director of the company responsible for supervision of all sites. A Director may be
authorized to accept invoices and to order a payment – technically this is and was
done by a written authorization on the back of the invoice. The CompanysPrincipal
might not have known that the work was not being done. However, he was the one
who signed the contract for subcontracting and thus could be implicated. Had the
CompanysPrincipal of A been a person who on the basis of the work acceptance
document had ordered the payment of A to B, upon issuance of an invoice by B,
he would be directly implicated. However, in reality the case was more complex.
In order to represent elementary activities, we need to formalize the concept of a
complex legal document and the concept of hierarchical chain of responsibility in
a company. All of these are described by rules in Section 3.3.2.

60 Chapter 3. Knowledge base of economic crimes

Figure 3.3: Taxonomy of concepts concerning social persons.

MoneyTransfer concept belongs to general semantic entities distinguished on
the basis of the question Q1. We give it the following definition (3.1). This defini-
tion means that a money transfer has one distinctive value, it occurs at exactly one
time instant between a pair of companies, and it is connected with paying for an
invoice.

MoneyTransfer ⊑
∃flowsFrom.Company⊓
∀flowsFrom.Company⊓
∃flowsTo.Company⊓
∀flowsTo.Company⊓
(= 1 occurs ⊓ ∀occurs.T imeInstant)⊓
(= 1 hasV alue ⊓ ∀hasV alue.float)⊓
∃isPaymentFor.Invoice⊓
∀isPaymentFor.Invoice (3.1)

3.3. Minimal Ontology Model 61

It is essential to recognize that documents may require the signing by a subset
of principals within a company according to a statute. In the Hydra case the board
consisted of 5 members, and the chairman of the board was authorized to sign doc-
uments without the consent of the others. Since no involvement of the remaining
4 members was found, here the principal is the CEO. We adopt the 3-level deep
company management structure – the "legal view" on hierarchy, which determines
corporate lines of accountability. We assume that these 3 levels of PersonTakingLe-
galDecisions, starting from the highest levels, are: CompanysPrincipal, Director
and MiddleLevelManager. Members of the executive board are principals, the only
people who can authorize contracts. Certain activities are performed by those in
lower ranks: here directors and middle level managers are legally bound. To show
versatility and flexibility of the model, we admit more options for the crime scheme
("who could do what?"), one of which happened in the real case.

We can also define concepts representing activities described in the Penal Code.
For example, PersonWhoFalsifiedDocument (3.2) is a (social) person connected
to a company who can make decisions and is authorized to sign legally binding
documents (that within a criminal activity may have a falsified content).

PersonWhoFalsifiedDocument ⊑
PersonTakingLegalDecisions⊓
∃worksFor.Company⊓
∀worksFor.Company⊓
∃isAuthorizedToSign.LegalDocument⊓
∃signs.(∃posseses.FalsifiedContent)

(3.2)

The domain-based part of the ontology contains 92 concepts and 60 roles and
3 OWL datatype properties.

3.3.2 Task-based Part of the Ontology

This part of the ontology implements the following categories of queries, concern-
ing:

• (legal) documents and their properties

• hierarchical chain of responsibility in a company

• executed transactions

• actions made by persons

• legal sanctions.

62 Chapter 3. Knowledge base of economic crimes

We have to account for the varying size of incriminated companies – the num-
ber of levels of responsibility ranges from one to three. Thus, the size of companies
is measured by the number of levels of responsibility. For the Hydra case (Figure
3.1), A is a large company (3 levels of responsibility), B and D are medium size
companies (2 levels) and C is a small company. The managers appearing in these
companies are the CompanysPrincipal (CEO or Owner) – at the top level, a Direc-
tor for construction (at the middle level) and The MiddleLevelManager responsible
for a given construction (at the bottom level).

Rules related to consecutive concepts are numbered. These rules are related to
the fraudulent disbursement and money laundering crime.

Several concepts and rules are defined to achieve ability to describe legal doc-
uments:

• ContractDocument - a document that is drawn up between two parties. This
ContractDocument is between two companies, and is signed by principals of
these companies. The signature on behalf of the company can be individual
or joint, depending on the structure of the company. The following gen-
eral rules for the ContractDocument are defined (6 rules); we present only 2
examples here, including rule on a contract between a large and a medium
company (3.3), and a rule on a contract between two medium companies
(3.4):

Document(?d), CompanysPrincipal(?p1), CompanysPrincipal(?p2),

isSignedBy(?d, ?p1), isSignedBy(?d, ?p2), differentFrom(?p1, ?p2)

→
ContractDocument(?d) (3.3)

Document(?d), MajorOwner(?p1), MajorOwner(?p2),

isSignedBy(?d, ?p1), isSignedBy(?d, ?p2), differentFrom(?p1, ?p2)

→
ContractDocument(?d) (3.4)

• InternalLegalDocument – a document drawn up in the company that may be
authorized in stages up to the highest level of authority. It is signed hierar-
chically by the persons with different levels of responsibility.

• ComplexInternalLegalDocument - a virtual hierarchical document which
could consist of several physical documents, that together authorize a pay-
ment (here ComplexInternalLegalDocument consists of a construction work
acceptance document, and a payment authorization signature on the back of

3.3. Minimal Ontology Model 63

an invoice). The series of authorizations reflects the structure of the company
from the lowest to the highest rank of management. ComplexInternalLegal-
Document is defined with the following rules: a rule on a complex internal
legal document (3.5) and a rule on a complex internal legal document signed
on back on invoice (3.6):

ApprovalOfWorkDone(?d), Work(?w), Invoice(?i),

concerns(?i, ?w), concerns(?d, ?w),

isSignedBy(?i, ?p2), isSignedBy(?i, ?p1),

worksFor(?p1, ?c), worksFor(?p2, ?c),

hasLevelOfResponsibility(?p1, ?l1),

hasLevelOfResponsibility(?p2, ?l2),

lessThan(?l1, ?l2), differentFrom(?d, ?i)

→
ComplexInternalLegalDocument(?i) (3.5)

ApprovalOfWorkDone(?d), Work(?w), Invoice(?i),

concerns(?i, ?w), concerns(?d, ?w), isSignedBy(?i, ?p2),

isSignedOnBackOfInvoiceBy(?i, ?p2),

worksFor(?p1, ?c), worksFor(?p2, ?c),

hasLevelOfResponsibility(?p1, ?l1),

hasLevelOfResponsibility(?p2, ?l2),

lessThan(?l1, ?l2), differentFrom(?d, ?i)

→
ComplexInternalLegalDocument(?i) (3.6)

• FalsifiedComplexInternalLegalDocument - ComplexInternalLegalDocu-
ment with approval of work which was not done. FalisfiedComplexInternal-
LegalDocument is calculated with the following rule:

ComplexInternalLegalDocument(?d1),

ApprovalOfWorkNotDone(?d2),

Work(?w), concerns(?d1, ?w), concerns(?d2, ?w),

differentFrom(?d1, ?d2)

→
FalsifiedComplexInternalLegalDocument(?d1) (3.7)

64 Chapter 3. Knowledge base of economic crimes

ComplexInternalLegalDocument(?d1),

ApprovalOfWorkNotDone(?d2),

Work(?w), concerns(?d1, ?w), concerns(?d2, ?w),

isSignedBy(?d1, ?p1), isSignedBy(?d2, ?p2),

differentFrom(?d1, ?d2), differentFrom(?p1, ?p2)

→
FalsifiedComplexInternalLegalDocument(?d1),

isSignedBy(?d1, ?p2) (3.8)

The rule (3.7) defining the falsified complex document consisting of work
approving document and accepted invoice. This two documents authorize
the payment. The rule (3.8) refers to the previous one but specifies who
signed the two constituent documents.

• Transaction - consists of a contract between two companies, the work, an
invoice issued for work and payment. It is defined with the following rule on
a transaction between two companies:

ComplexInternalLegalDocument(?i), ContractDocument(?d),

Invoice(?i), MoneyTransfer(?mt),

Work(?w), Company(?c1), Company(?c2),

concerns(?d, ?w), concerns(?i, ?w),

f lowsFrom(?mt, ?c2), f lowsTo(?mt, ?c1),

isIssuedBy(?i, ?c1), isReceivedBy(?i, ?c2)

→
Transaction(?d), hasInvoice(?d, ?i), hasMoneyTransfer(?d, ?mt),

transactionFrom(?d, ?c2), transactionTo(?d, ?c1) (3.9)

If a contract, work or invoice document turns out to be a FalsifiedDocument,
then the Transaction will be classified as a FalsifiedTransaction.

• Formal hierarchy - the management structure in a company. Cardinality of
managers at each level is 1. In future, we will allow some decisions to be
taken as a group, if roles of managers in the group at the same level were the
same.

Definitions of Logical Activities Appearing in the Polish Penal Code

Using rules we can also query the knowledge base about legal sanctions reached by
the public prosecutor and the judge in accordance with the activities of key persons

3.3. Minimal Ontology Model 65

involved in the Hydra case. At first we characterize these activities. We take into
consideration activities of three types of social agents, namely CompanysPrincipal,
Director and MiddleLevelManager (see Figure 3.3). The MiddleLevelManager and
the Director (this is what happened in reality, a version in which the Director ap-
proved the money transfer) committed intellectual falsification. This is established
beyond doubt, so they are fraudsters unconditionally. The CompanysPrincipal acts
as unconditional fraudster only when he signed the falsified document. There are
three other cases of CompanysPrincipal’s activity (see the sequences listed below).
In the first one he might have intent to commit the crime for he should have known
that the work has not been done. In the second case, he might not have known that
the work has not been done, so he was probably negligent. The last case deals with
CompanysPrincipal’s conditional involvement in the crime, because additional in-
formation is needed to prove that he is the part of it. This decision is left to an
investigator or a prosecutor and may be established in several ways:

1. Through a guilty plea during testimonies or in a court.

2. With the help of other members of the scheme, testifying that he was part of
it.

3. By observing money transfers to his account which cannot be accounted for.

In principle, we could try to design rules for these concepts. Here, these properties
are determined by a human (an investigator or a prosecutor). Even if he was guilty,
he could claim being under duress while giving the testimony (a victim of coer-
cion by prosecutors), or could claim innocence due to mental incompetence at the
time. Summing up the CompanysPrincipal’s involvement in the crime, the follow-
ing theoretical possibilities exist. The CompanysPrincipal could be a part of the
scheme (or even the organizer of the scheme), or would have approved a payment
without knowing that the work had not been done. Suppose the principal claims
he is innocent. If he was not implicated by the MiddleLevelManager and/or the
Director of company A, nor by the CompanysPrincipal of B, nor by money com-
ing to his account, then the CompanysPrincipal was not a part of a scheme. The
full model should decide whether the CompanysPrincipal was negligent (leading to
nonfeasance), since the CompanysPrincipal was obliged to verify work acceptance
documents (he may be charged on the basis of Art. 296 §4 of Penal Code).

All things considered, the activities of the three types of social persons (agents)
form the four following sequences. These agents correspond to the "real world
persons" who are employed in certain positions. The sequences are presented in
Table 3.3.

Presented sequences express persons’ actions that may occur in a crime. The
sequences are alternative crime schemes. Roles of agents (their positions at work)

66 Chapter 3. Knowledge base of economic crimes

Table 3.3: Options in the fraudulent disbursement case of Hydra: detailed activities
of key persons of company A having legal meaning.

Number Sequence
of activities
1

Sequence
of activities
2

Sequence
of activities
3

Sequence
of activities
4

Activities Principal
orders
payment

Director
orders
payment

Director
orders
payment

Director
orders
payment

Principal Principal
accepts the
document
and orders
payment

Should
have known
that the
work has
not been
done, if
he was not
negligent

Might not
have known
that the
work has
not been
done

Part of
the crime
scheme

M
an

ag
er

’s
se

qu
en

ce
of

ac
tiv

iti
es Director Cosigns

falsified
construc-
tion work
acceptance
document

Director
accepts
the docu-
ment and
orders the
payment

Director
accepts
the docu-
ment and
orders the
payment

Director
accepts
the docu-
ment and
orders the
payment

Middle
Level
Manager

Falsified
construc-
tion work
acceptance
document

Falsified
construc-
tion work
acceptance

Falsified
construc-
tion work
acceptance

Falsified
construc-
tion work
acceptance

are used in rules that define sanctions (since the level of responsibility affects the
levied penalty).

The success of our model relies on clear separation of the nature of the facts we
use:

1. Concepts and facts in the MinOn model.
2. Concepts and facts in the external sources. This, for example, includes

knowledge of how a standard company operates. An invoice accepted by
a Principal or Director goes through an accountant and an administrative of-
ficer who actually executes the money transfer. We do not attempt to describe
these activities, unless there is a crime at these stages.

3. Certain facts are left for manual input by an investigator and a prosecutor.

3.3. Minimal Ontology Model 67

In MinOn we explicitly use conditions 1 and 2 from Table 3.2 in the case of
the Director and the MiddleLevelManager. Element 3 is used to judge the involve-
ment of the Principal. Elements 3 and 4 are combined, as knowing about a fraud
also indicates intent. Element 5 is not analysed, because it results from standard
procedures in a company: once a payment was authorized, it is executed.

The decisive document falsifier (for example, an agent issuing an invoice for
work not done) having the intent to do fraudulent disbursement to a company by
illegally transferring money from it, and who gains some amount of this illicit
money, may be defined by the following rule:

PersonWhoFalsifiedDocument(?x), Company(?c),

initiates(?x, ?mt), MoneyTransfer(?mt),

achieves(?x, ?g), IsPartOfTheScheme(?x, ?k) //k − given case

IllicitPersonalGain(?g), hasV alue(?g, ?v2), V alue(?v2),

hasV alue(?mt, ?v1), V alue(?v2), ?v2 ≤?v1

hasGoal(?x, ?go), hasIntentToCommitCrime(?x, ?go)

→
FraudsterInACompany(?x, ?c) (3.10)

The rules for crime activities from Table 3.3 were defined to obtain results from
the current state of the knowledge base. Rules enable users to determine which
sequence of activities is appropriate to a crime schema. The following rules were
defined for sequence of activities 1:

FalsifiedComplexInternalLegalDocument(?d), isSignedBy(?d, ?p1),

isSignedOnBackOfInvoiceBy(?d, ?p2), MiddleLevelManager(?p1),

Director(?p2), P rincipal(?p3), orders(?p3, ?m), Payment(?m),

accepts(?p3, ?d), knowsAbout(?p3, ?d)

→
FraudulentDisbursementCrime(?p1, 1),

F raudulentDisbursementCrime(?p2, 1),

F raudulentDisbursementCrime(?p3, 1) (3.11)

FraudulentDisbursementCrime(?p1, 1),

F raudulentDisbursementCrime(?p2, 1),

F raudulentDisbursementCrime(?p3, 1),

MiddleLevelManager(?p1), Director(?p2), P rincipal(?p3),

worksFor(?p1, ?f1), worksFor(?p2, ?f1), worksFor(?p3, ?f1)

68 Chapter 3. Knowledge base of economic crimes

→
inComplicityWith(?p1, ?p2),

inComplicityWith(?p2, ?p3),

inComplicityWith(?p1, ?p3) (3.12)

Next set of rules constitutes the knowledge of particular criminal activities.
Contrary to many works in legal ontologies, we do not introduce plans and inten-
tions because these are extremely difficult to describe. Some of the constructed
rules are as follows:

• The rule defining complicity of persons working on behalf of the same com-
pany; one person - a construction manager - falsifies ApprovalOfWorkDone
document, and the second one approves the payment of the Invoice by sign-
ing the back of this document.

Company(?c), NoWork(?w), ContractDocument(?d1),

ComplexInternalLegalDocument(?d2), P erson(?p1), P erson(?p2),

concerns(?d1, ?w), concerns(?d2, ?w),

worksFor(?p1, ?c), worksFor(?p2, ?c),

knowsAbout(?p1, ?w), knowsAbout(?p2, ?w),

isSignedBy(?d1, ?p1), isSignedOnBackOfInvoiceBy(?d2, ?p2),

differentFrom(?p1, ?p2), differentFrom(?d1, ?d2)

→
inComplicityWith(?p1, ?p2) (3.13)

• The rule defining complicity of persons working on behalf of different com-
panies executing a fraudulent transaction.

Company(?c1), Company(?c2), NoWork(?w), T ransaction(?t),

worksFor(?p1, ?c1), worksFor(?p2, ?c2),

knowsAbout(?p1, ?w), knowsAbout(?p2, ?w),

transactionFrom(?t, ?c1), transactionTo(?t, ?c2),

differentFrom(?p1, ?p2), differentFrom(?c1, ?c2)

→
inComplicityWith(?p1, ?p2) (3.14)

• The rule defining the MoneyLaundering act committed by the first company
in the money laundering chain (if A paid B, this refers to company B; the
company A is not indicted). Here A is Hydra and B is Hermes.

NoWork(?w), Invoice(?i), T ransaction(?t),

3.3. Minimal Ontology Model 69

Company(?c1), Company(?c2), MoneyTransfer(?mt),

hasInvoice(?t, ?i), concerns(?i, ?w), hasMoneyTransfer(?t, ?mt),

f lowsFrom(?mt, ?c1), f lowsTo(?mt, ?c2), differentFrom(?c1, ?c2)

→
MoneyLaundering(?c2), relatedTo(?c2, ?t) (3.15)

• The rule defining the money laundering act committed by next companies
in the money laundering chain (e.g. companies C, and D, that is Dex and
Mobex).

NoWork(?w), Invoice(?i), T ransaction(?t),

Company(?c1), Company(?c2), MoneyTransfer(?mt),

MoneyLaundering(?c1), hasInvoice(?t, ?i), concerns(?i, ?w),

hasMoneyTransfer(?t, ?mt), f lowsFrom(?mt, ?c1),

f lowsTo(?mt1, ?c2), differentFrom(?c1, ?c2)

→
MoneyLaundering(?c2), relatedTo(?c2, ?t) (3.16)

• The rule defining the sanction PC art. 299 §1 related to money transfer for
work not done (pertains to managers of company B and C).

Art_299_1(?a), NoWork(?w), MoneyLaundering(?m),

Company(?m), ApprovalOfWorkNotDone(?d), T ransaction(?t),

P erson(?p), relatedTo(?m, ?t), worksFor(?p, ?m),

knowsAbout(?p, ?w), concerns(?t, ?w),

concerns(?d, ?w), isSignedBy(?d, ?p)

→
fallsUnder(?p, ?a) (3.17)

• The rule defining the sanction PC art. 299 §1 when the ApprovalOfWork-
Done document does not exist. It happens down the chain that companies do
not bother even create documents. In this case there were no documents for
fictitious work approval between C and D (Dex and Mobex).

Art_299_1(?a), NoWork(?w), MoneyLaundering(?m),

Company(?m), FalsifiedComplexInternalLegalDocument(?d),

T ransaction(?t), P erson(?p), relatedTo(?m, ?t),

worksFor(?p, ?m), concerns(?d, ?w), concerns(?t, ?w),

70 Chapter 3. Knowledge base of economic crimes

knowsAbout(?p, ?w), isSignedBy(?d, ?p)

→
fallsUnder(?p, ?a) (3.18)

• The rule defining the sanction PC art. 299 § 1 when a company accepts
laundered money (here Mobex).

Art_299_1(?a), NoWork(?w), MoneyLaundering(?m),

Company(?m), T ransaction(?t), P erson(?p), relatedTo(?m, ?t),

transactionTo(?t, ?m), worksFor(?p, ?m), concerns(?t, ?w),

knowsAbout(?p, ?w)

→
fallsUnder(?p, ?a) (3.19)

• The rule defining the sanction PC art. 299 § 5 (since he/she was aware what
was the purpose of the scheme and collaborated with others involved - we
know this from testimonies and signing relevant documents). This rule is
related to persons in the same company.

Art_299_5(?a1), Art_299_1(?a2), NoWork(?w),

FalsifiedComplexInternalLegalDocument(?d),

P erson(?p1), P erson(?p2),

fallsUnder(?p1, ?a2), fallsUnder(?p2, ?a2),

knowsAbout(?p1, ?d), knowsAbout(?p2, ?d),

knowsAbout(?p1, ?w), knowsAbout(?p2, ?w),

inComplicityWith(?p1, ?p2), differentFrom(?p1, ?p2)

→
fallsUnder(?p1, ?a1), fallsUnder(?p2, ?a1) (3.20)

• As Rule 8 but related to persons in different companies.

Art_299_5(?a1), Art_299_1(?a2), NoWork(?w),

Company(?c1), Company(?c2), ContractDocument(?d),

Person(?p1), P erson(?p2),

fallsUnder(?p1, ?a2), fallsUnder(?p2, ?a2),

knowsAbout(?p1, ?d), knowsAbout(?p2, ?d),

knowsAbout(?p1, ?w), knowsAbout(?p2, ?w),

inComplicityWith(?p1, ?p2),

3.3. Minimal Ontology Model 71

worksFor(?p1, ?c1), worksFor(?p2, ?c2),

differentFrom(?p1, ?p2), differentFrom(?c1, ?c2)

→
fallsUnder(?p1, ?a1), fallsUnder(?p2, ?a1) (3.21)

• The rule defining the sanction PC art. 299 §5 based on ApprovalOfWorkNot-
Done for workers in 2 different companies (who did not signed a contract
document, as in rules 8 and 9)

Art_299_5(?a1), Art_299_1(?a2), NoWork(?w),

Company(?c1), Company(?c2), P erson(?p1), P erson(?p2),

fallsUnder(?p1, ?a2), fallsUnder(?p2, ?a2),

knowsAbout(?p1, ?w), knowsAbout(?p2, ?w),

inComplicityWith(?p1, ?p2),

worksFor(?p1, ?c1), worksFor(?p2, ?c2),

differentFrom(?p1, ?p2), differentFrom(?c1, ?c2)

→
fallsUnder(?p1, ?a1), fallsUnder(?p2, ?a1) (3.22)

Mapping of Logical Activities to Legal Sanctions for Crime Perpetrators

Legal sanctions were reached by an expert prosecutor and the judge assessing pre-
viously described activities. At first we present some explanatory notes concerning
fraudulent disbursement and money laundering sanctions in the Polish Penal Code
[Sejm 1997]. From analysis of real cases of the considered crime it follows that
most defendants were accused as follows:

1. Art. 296 §1-3 PC – strictly: negligence leading to damage to a company (for
personal benefit). The asset misappropriations including fraudulent disburse-
ment (FD) are prosecuted in Poland based on this article. The phrasing of the
crime in the Polish Penal Code does not exactly agree with its meaning.

2. Art. 296 §4 PC – unknowing negligence leading to damage to a company.

3. Art. 284 §2 PC – personal benefit resulting from activities sanctioned under
art. 296.

4. Art. 294 §1 PC – the offense specified in 284 §2 PC with regard to property
of considerable value.

5. Art. 286 §1 PC – fraud (intentionally deceiving a person (here, a legal person
- a company), which results in a damage to the company.

72 Chapter 3. Knowledge base of economic crimes

6. Art. 271 §3 PC – lying or issuance (signing) a false document with regard to
a circumstance having legal significance.

7. Art. 273 §1 PC using a document mentioned in art. 271 §3 PC.

8. Art. 299 §1 and 5 PC – money laundering (conscious and together with other
persons, constituting a crime group).

9. Art. 18 §1 PC – directing illegal activity performed by another person.

Using the defined and derived properties, the logical characterization of a sus-
pect’s activities are illustrated in Table 3.4.

Legal sanctions reached by an expert prosecutor and the judge can be defined
as rules. Here, we present rules for every variant from Table 3.4:

1. Variant 1:

FalsifiedComplexInternalLegalDocument(?d),

MiddleLevelManager(?p1), Director(?p2),

inComplicityWith(?p1, ?p2), P rincipal(?p3),

NotInComplicity(?p3),

Art_286_1(?a1), Art_294_1(?a2), Art_284_2(?a3),

Art_273(?a4), Art_271(?a5)

→
fallsUnder(?p1, ?a2), fallsUnder(?p1, ?a5), fallsUnder(?p2, ?a1),

fallsUnder(?p2, ?a2), fallsUnder(?p2, ?a3), fallsUnder(?p2, ?a4),

Innocent(?p3)

2. Variant 2:

FalsifiedComplexInternalLegalDocument(?d),

inComplicityWith(?p1, ?p2), MiddleLevelManager(?p1),

Director(?p2), P rincipal(?p3), notInComplicity(?p3),

Negligent(?p3),

Art_286_1(?a1), Art_294_1(?a2), Art_284_2(?a3),

Art_273(?a4), Art_271(?a5), Art_296_4(?a6)

→
fallsUnder(?p1, ?a2), fallsUnder(?p1, ?a5),

fallsUnder(?p2, ?a1), fallsUnder(?p2, ?a2),

fallsUnder(?p2, ?a3), fallsUnder(?p2, ?a4), fallsUnder(?p3, ?a6)

3.3. Minimal Ontology Model 73

Table 3.4: Logical characterization of activities of key persons of company A
in variants of a fraudulent misappropriation scheme. Legal sanctions are those
reached by an expert prosecutor and the judge.

Number Variant 1 Variant 2 Variant 3

Activities

Middle Level
Manager and
Director part of
complicity.
Principal not
part of the
scheme.

Middle Level
Manager and
Director part of
complicity.
Principal not
part of the
scheme but
negligent.

Middle Level
Manager and
Director part of
complicity.
Principal part
of the scheme,
actually the
organizer.

Principal Innocent art. 296 §4 PC art. 296 §1-
3 PC (depending
on the cost of
the damage)
and art. 284 §2
PC and art. 294
§1 PC

L
eg

al
sa

nc
tio

ns Director art. 286 §1 PC i
art. 294 §1 PC,
art. 284 §2 PC,
art. 273 §1 PC;

art. 286 §1 PC i
art. 294 §1 PC,
art. 284 §2 PC,
art. 273 §1 PC;

art. 296 §1-
3 PC (depending
on the cost of
the damage) and
art. 284 §2 PC
and art. 294 §1
PC
art. 273 §1 PC

Middle
Level
Man-
ager

art. 294 §1 PC;
art. 271 §3 PC

art. 294 §; 1 PC
art. 271 §3 PC

art. 296 §1,2, 3
PC and art. 284
§2 PC; and art.
294 §1 PC; art.
271 §3 PC

3. Variant 3:

FalsifiedComplexInternalLegalDocument(?d),

MiddleLevelManager(?p1), Director(?p2), P rincipal(?p3),

inComplicityWith(?p1, ?p2), inComplicityWith(?p2, ?p3),

inComplicityWith(?p1, ?p3), Organizer(?p3),

Art_296(?a1), Art_294_1(?a2)Art_284_2(?a3),

74 Chapter 3. Knowledge base of economic crimes

Art_273(?a4), Art_271(?a5)

→
fallsUnder(?p3, ?a1), fallsUnder(?p3, ?a2),

fallsUnder(?p3, ?a3), fallsUnder(?p2, ?a1), fallsUnder(?p2, ?a2),

fallsUnder(?p2, ?a3), fallsUnder(?p2, ?a4), fallsUnder(?p1, ?a1),

fallsUnder(?p1, ?a2), fallsUnder(?p1, ?a3), fallsUnder(?p1, ?a5)

3.4 Discussion of the Related Work
It is fair to say that Hydra case was quite narrow. For comprehensive domains
Breuker stated “Not one of these ontologies is used for reasoning The reasoner is
only used for consistency checking.” [Breuker 2009]

The presented analysis shows that for the narrow categories of economic crimes
our method is highly effective and reasons out the correct legal sanctions. It is
because the considered cases are based on hard facts, so the relevant knowledge
can be expressed in logic. In general, legal matter is less precise, much more open
for interpretation that sometimes boarders on arbitrariness. For example, European
VAT regulations are such that the border between criminal and legal behaviour is
very thin, and thus a careful VAT avoidance offender is practically immune from
punishment.

Our model contains several restrictions:

• Some facts are assumed given: knowsAbout, assignment for Organizer.
Some concepts such as intentions or that someone should have known that he
was participating in a transaction linked to a criminal act (e.g. VAT evasion)
are much more difficult to define. This would require much more expressive
power than used in presented models.

• At a given level of detail when presenting facts exceptions appear. In the
presented crime types these are rare, e.g. a person who signed a false doc-
ument could have been very sick or blackmailed. In general one should use
defeasible logic [Governatori 2012]. It has not been our goal to completely
displace a human. The system’s result is to be verified by a lawyer.

• Some researchers question a straightforward use of a logic model for legal
reasoning. Instead, the basis for reaching mutually acceptable conclusions,
such as a verdict in a court of justice is argumentation that includes debate
and negotiation. Recently, however, theories have been proposed that are
an extensions of Transaction Logic and provide unifying framework for de-
feasible reasoning called Logic Programs with Defaults and Argumentation
Theories [Fodor 2011].

3.4. Discussion of the Related Work 75

For at least 15 years, ontology-based artificial intelligence and knowledge
engineering techniques have been applied to the legal domain, [Breuker 2009,
Casellas 2008]. The intense effort went in several directions, among others:

1. Legal information extraction and legal document management
[Biasiotti 2008].

2. Formalization of the theory of law and the design of legal core, topical and
domain ontologies, the widely known of which are:

• CLO, Core Legal Ontology2, which is anchored in the foundational on-
tology of DOLCE+ (DOLCE extended by the ontology of Descriptions
and Situations3). It contains the core concepts of the legal domain that
were established coming down from the foundational level.

• LKIF-core, Legal Knowledge Interchange Format [Hoekstra 2007] that
also contains core legal concepts which were separated in the middle-
out manner, meaning that law "users" were asked to define of about
20 most meaningful legal concepts, forming, after some selection and
extension, a base for the ontology. Then, this basic layer may be both
specialized and generalized to obtain new terms.

• FOLaw, the functional ontology of law [Valente 1995] is in fact a cer-
tain formalization of law, in which the whole legal knowledge is classi-
fied by the author into six classes: normative-, world-, responsibility-,
reaction-, creative- and meta- knowledge.

• Frame-based ontology of law of Visser, van Kralingen and Bench-
Capon [Visser 1997] that also gives a formalization of the legal knowl-
edge. It has two layers: a generic one defining the terms of a norm,
an action and a legal concept, and a specific layer concerning a certain
statute (regarding a concrete domain of interest).

• Knowledge-based ontology of Mommers [Mommers 2002] who con-
tinues the work of [Visser 1997] and extends it to encompass different
legal and philosophical attitudes regarding the nature of law, the possi-
bility of representing legal epistemology and differentiating between a
knowledge and beliefs.

• Topical ontology of financial fraud [Zhao 2005] and VAT
[Kerremans 2005], which are examples of a thematic ontology.
They are anchored in a foundational level of SUMO, Suggested

2http://www.loa-cnr.it/ontologies/CLO/CoreLegal.owl
3http://www.loa.istc.cnr.it/ontologies/DLP_397.owl

http://www.loa-cnr.it/ontologies/CLO/CoreLegal.owl
http://www.loa.istc.cnr.it/ontologies/DLP_397.owl

76 Chapter 3. Knowledge base of economic crimes

Upper Merged Ontology4 and its two specializations, namely financial
ontology and the ontology of services.

• OPJK, Ontology of Professional Judicial Knowledge [Casellas 2008]
is a legal ontology that is to support the mapping of questions posed
by junior judges to a set of stored frequently asked questions. The
work on the IURISERVICE [Casellas 2008, Casanovas 2009] applica-
tion that uses OPJK started in 2001. A version 2 had been in a pilot
mode since 2005. Despite its effectiveness the system was deployed in
Spain only in 2010, mainly due conservative attitude and partly resis-
tance of Spanish judges circles.

3. Using formal models of legal knowledge to support legal reasoning. In the
models with narrowly defined entities, one can argue whether child’s bicy-
cle is a vehicle or not, if a camper is a house or a vehicle, and what is the
legal implication of these facts. For broader range of aspects notable was
an introduction of intermediate concepts that allow differentiation between
cases [Aleven 2003, Wyner 2008]. In Wyner’s work logical relations were
designed to achieve a decision that a trade secret has been misappropriated.

As regards to financial fraud ontology, the one developed within the FF Poirot
project [Zhao 2005] is very broad, and consequently difficult to handle. Some con-
cepts used there may help to gain evidence, but in an indirect way (perpetrator’s
personality or a trust is a moral rather than a legal concept). There is already a
wealth of lessons coming from the above-mentioned advances. Most researchers
think that upper level (meaning core or foundational) ontologies alone cannot serve
as a semantic base of practical information systems. The reasoner can only be used
for checking the consistency of these ontologies but the ontologies themselves can-
not be used for reasoning about gathered data. On the other hand topical or domain
ontologies alone are too restricted and can be used with success for closed technical
realms [Darlington 2008]. Doing systematic specializations of upper level ontolo-
gies with domain concepts, individuals, relations, attributes and rules is difficult. In
these limited scope cases when this has been done, such as testing a Dutch traffic
code on consistency and completeness [Breuker 2009], the results are superior to
these that can be achieved by a human.

It appears that one of the most critical issues is the size of an ontology required
to model a given domain. In [Corcho 2003] the attempt was made to build an on-
tology of French law. From an initial list of 118000 legal terms, a list of 16681
fundamental terms was finally considered (unfortunately it is not known how many
of them were related to the legal financial area). Recalling Breuker [Breuker 2009],
it is crucial to determine how such terms affect understanding that is able to make

4http://www.ontologyportal.org/

http://www.ontologyportal.org/

3.5. Conclusion 77

up a coherent "macro-structure" – a model . Suppose, we think of a possible legal
connotations related to a term "invoice". Certainly, we can issue, receive, accept,
sign, co-sign, forge, falsify, or initiate a payment related to an invoice. These
contexts would appear in every financial domain. In some cases invoice can be
destroyed to prevent the investigation of accounting practices in a given company.
Consideration of losing an unsigned paper invoice is not necessary – one can al-
ways issue a paper duplicate or print it. Completely irrelevant for the legal domain
is considering such events as spilling coffee on an invoice or making a paper plane
out of an invoice in its physical form. Eating an invoice (as a means of destroying
it) may have medical rather than legal aspect, since it is not important from a legal
point of view how it was destroyed. It is now easier to understand while, in spite of
having relatively large ontologies, FF Poirot project was only able to describe the
Nigerian letter fraud and fraudulent Internet investment pages. The used ontologies
had too many concepts one could not reason with and at the same time they were
lacking important concepts (we cannot show it exactly since FF Poirot ontologies
are not publicly available).
There exist first attempts to quantify the size of ontologies, e.g. [Zhang 2010].
These, done together with ontology merging, aligning and reuse are the important
steps in the ontology-based system engineering. In the presented context our work
should be seen as an effort to create an ontology that serves as a conceptual model
of the fraudulent disbursement (and crimes linked to it), which, apart from sup-
porting the earlier mentioned tasks, can be used to deduce the sanctions that might
be levied against people engaged in this crime. It is done via reasoning with rules
constituting the task-based part of the ontology. To our knowledge, the work on
mapping of crime activities into criminal law articles has been done only for cyber
crimes [Bezzazi 2007], which have a much narrower scope. Our method enables to
build models for different economic crimes. The method relies on having a general
enough ontology contents design pattern (the ontology of criminal processes and
investigating procedures [Cybulka 2009]) that can be specialized by concepts of a
given type of an economic crime. Our general method is also a specialization of
a pattern, which is a foundational ontology of constructive descriptions and situ-
ations [Gangemi 2008]. It is worth noticing that this design pattern is expressive
enough to incorporate other existent ontologies (for example any of the listed above
core legal ontologies) with a rather minor effort.

3.5 Conclusion

In this chapter we presented the ontological model of the fraudulent disbursement
and money laundering crime expressed using OWL classes and properties, and a
reasonable number of rules (task-based application level of the ontology).

78 Chapter 3. Knowledge base of economic crimes

Our analysis accounts not only for crimes of people associated with Hydra –
company A. We also give sanctions for people in companies B, C, and D – sanctions
for money laundering. The model is not yet able to determine the duration of an
appropriate penalty.

Because fraudsters may use many types of schemes, techniques and transac-
tions to achieve their goals, we need a conceptual model of economic crime with
significant generality. In the future, we intend to demonstrate that we can describe
not just one case but a broad class of economic crimes, such as:

• CausingAssetMisappropriation
• CausingDamageToACompany.

We do not consider this task impossible, although we will always face addi-
tional factors necessary to extend our model. We could, for example ask: was only
the CEO of the Management Board in Hydra implicated? At the time of the inves-
tigation, there was no proof otherwise. But apparently the rest of the Board knew
about the scheme, because several years later they were indicted on a similar count.

We do not dwell on who exactly had the power to sign (in some cases there are
disputes on the validity of supervisory board decisions); this fact must be estab-
lished by a prosecutor. An extent to which the model can be generalized to treat
such more complex schemes will be the subject of a further study. However, af-
ter performing quite a number of reasoning experiments on the 5 most common
economic crime mechanisms in Poland (some results are presented in [Bak 2009],
[Bak 2011a]), we are convinced that a general model can be constructed that han-
dles a few most common economic crimes with 85% use of all pertinent facts (the
Hydra case is somewhat easier than average). In this regard, application of inter-
mediate levels of factors [Wyner 2008] could be helpful.

To our knowledge, the work on mapping of crime activities into criminal law
articles has been done only for cyber crimes [Bezzazi 2007], which have a much
narrower scope, although using result of work [Wyner 2008] it could be straight-
forward for the case. In work [Wyner 2008] only OWL ontology was used for
TBox reasoning (although rules were discussed in a different aspect), whereas our
approach uses ontology and rules.

The MinOn ontology is relatively small, but will be enhanced once we add
other fraud type typologies (for example, the fuel crime [Cybulka 2010a] or the
VAT carousel fraud [Jedrzejek 2011a]). However, the system is able to handle all
possible variants of the Hydra crime depending on who in hierarchy of management
took decisions leading to unlawful disbursements and knew about a scheme. In
short for this particular crime the system has a sufficient expressive power to reason
not only on proof of physical elements of offences but also on some circumstances
of crime elements (intention, knowledge, or negligence). In fact, the system did a
better job than a prosecutor in case of Hydra: the prosecutor chose to use a sanction

3.5. Conclusion 79

under 271 §3 PC instead of Art. 273 §1 PC for the Director of Hydra. In similar
cases, prosecutors often had not assigned Art. 286 §1 PC – fraud, when an offender
intentionally deceived not a physical person up in management but a legal person
– a company, which resulted in a damage to the company.

At present, we do not use defeasible logic for rare exceptions. For example,
lying or issuance (signing) a false document could occur when a person felt so
badly that could not have understood his/her actions or had been blackmailed or
threatened with a loss of life. Nevertheless, an inspection of around 10 real cases
of the fraudulent disbursement type indicates high level of applicability of our de-
scription.

There are areas of detailed sanction determination where the current expressive
power is not sufficient. If we have to consider details of intentions such as these
appearing in 18 definitions of money laundering in various legal systems collected
in [Unger 2007] the problem will became hard (as referred in [Breuker 2009]).
Suppose we would like to distinguish between activities whose purpose is "hide
the proceeds" or "make it appear legal". We cannot at present define these notions,
in general. They would depend on context, which would make us go into deep
detail and would require rules of such complexity that they would be impossible
to handle (in an efficient way). Another important and difficult area is whether a
sanction is to be determined for an act under Polish penal code (PC) and Polish tax
penal code (TPC), much more lenient than PC. On one hand, an offender should be
sentenced on all counts. On the other hand, there exists an interpretation that TPC is
more detailed (lex specialis derogat legi generali) and should have preference over
PC. Currently, Polish courts give sentences using either of these interpretations for
seemingly very similar cases. This indicates that certain areas of the legal doctrine
are very difficult to interpret not only by a machine but also for expert humans.

It is true that we selected the most favourable crime to be analysed with our
model. Even in Hydra case we would face difficulty, whether in this case a crimi-
nal group is an organized criminal group. There is no definition of “an organized
criminal group” in the Polish PC. Therefore, inferring the legal qualifications for
this case (that is whether Article 258 §1 applies) is subject to interpretation that has
to be provided by legal communities to design appropriate rules. In any case the
results of our model have to be verified by leading legal experts.

We are convinced that the increased cooperation between legal community and
knowledge engineers would possibly be of great use for society.

CHAPTER 4

Methods for a rule-based query
answering

This chapter presents our approaches concerning a rule-based query answering
(RQA) and the combination of an ontology with a relational database. We pro-
pose two methods of reasoning applied in RQA: hybrid reasoning and extended
rules reasoning.

First, we introduce the number of assumptions that we have already made. In a
rule-based query answering method we assume that there exists a knowledge base
which contains two parts: intensional and extensional. The intensional knowl-
edge is represented as a set of rules and describes the source data at a conceptual
(ontological) level. The extensional knowledge consists of facts that are stored in
the relational database as well as facts that were derived in the reasoning process.
Queries can be posed in the terms of the conceptual level. Thus, one gets an eas-
ier way to create a query than using structural constructions from SQL (Structured
Query Language). The rule-based query answering method uses the reasoning pro-
cess to obtain an answer for a given query. During this process facts from a database
are gathered and used to derive new facts according to a given set of rules. Next,
the answer is constructed and presented. The other assumptions are the following:

• We express a conceptual knowledge with a Horn-SHIQ ontology combined
with SWRL (Horn-like) [Horrocks 2004b] rules. Horn-SHIQ is a tractable
fragment of OWL 1.1 [Grau 2006] which can be expressed as Horn clauses.
Only unary or binary predicates are permissible, according to the terms that
appear in OWL (since we use this standard as a way to express a conceptual
knowledge).

• We transform a knowledge base, defined as a Horn-SHIQ ontology com-
bined with SWRL rules, into a set of Horn clauses. As a result, the ontology-
based knowledge is represented as a set of rules. We apply the Horn subset
of the SWRL language which is a decidable fragment of SWRL. We have
developed two methods: simple transformation and Horn-SHIQ transfor-
mation. These methods are described in Chapter 5.

• We assume conjunctive queries (CQ) only, which are built of predicates from
an ontology (concepts and roles).

82 Chapter 4. Methods for a rule-based query answering

• We use the Datalog safety restriction and DL-safe rules to ensure the decid-
ability of the reasoning process and thus the rule-based query answering.

• We apply rules that are Horn clauses [Lloyd 1984]. If there is conjunction of
several predicates in the head, the rule can be easily transformed into Horn
clauses with the Lloyd-Topor transformation [Lloyd 1984].

• We follow the closed-world semantics since this assumption occurs in both
relational databases and Datalog. It means that facts that cannot be proven
are considered false. It results from the fact that we are focused only on hard
evidences in our knowledge base of economic crimes.

• We focus on forward chaining, thus we decided to use the state-of-the-art rea-
soning algorithm - Rete [Forgy 1982] which is implemented in the most pop-
ular and commercial forward reasoning engines, like Clips1 Jess2, Drools3,
OPSJ 4, IBM iLog5 and others.

• We employ the Jess (Java Expert System Shell) engine [Hill 2003], since it
implements Rete and it is one of the fastest commercial engines (with the free
academic use). Jess can be easily integrated with the Java language (which
is the implementation language of the SDL library which implements our
approaches). The Jess engine supports both forward and backward chaining.

• We represent facts as RDF triples since OWL ontologies can be represented
in RDF/XML syntax [Beckett 2004, Horridge 2006]. Each triple is of the
following form:

(triple (p somePredicate) (s someSubject) (o someObject))

where p is a predicate name, s is a subject and o is an object, e.g.,
(triple (p hasFather) (s Mike) (o Chris)) which means that Chris

is a father of Mike. In our examples we use the following form of a triple:
p (s, o), e.g., hasFather(Mike, Chris).

Next two sections describe our RQA methods. Section 4.4 presents the map-
ping between ontology predicates and a relational data. Section 4.5 presents the re-
lated work. In Section 4.6 we provide possible applications of proposed approaches
and conclusions.

1http://clipsrules.sourceforge.net/
2http://www.jessrules.com/
3http://www.jboss.org/drools/
4http://www.pst.com/opsj.htm
5http://www-01.ibm.com/software/websphere/ilog/

http://clipsrules.sourceforge.net/
http://www.jessrules.com/
http://www.jboss.org/drools/
http://www.pst.com/opsj.htm
http://www-01.ibm.com/software/websphere/ilog/

4.1. Hybrid Reasoning Method 83

4.1 Hybrid Reasoning Method

This section presents our hybrid reasoning method applied in a rule-based query
answering. The method is Jess-dependent since we employ backward and forward
reasoning implemented in the Jess engine. Jess-dependent means that we exploit
the backward chaining implemented in Jess which is simulated by the forward
chaining and requires Jess programs to be defined in a particular form.

The backward chaining method in Jess requires a special declaration for tem-
plates (do-backward-chaining). The do-backward-chaining definitions are added
to all deftemplates declarations which are used in backward chaining (for example:
(do-backward-chaining triple)). One can define rules to match backward reactive
templates. The rule compiler rewrites such rules and adds the need- prefix to in-
form the Jess engine when this rule has to be fired (when we need some fact). The
need- prefix can be added manually during the rules creation. To fire a rule Jess
needs a fact with a need- prefix in its working memory. Such fact can be added au-
tomatically (during reasoning) or manually (by the user), for example (need-triple
(predicate "hasSeller") (subject 3) (object ?y)). If the rule fires and there is a way
to obtain needed facts, they appear in the Jess working memory. The need- facts are
the so called triggers (in the Jess language terminology). These facts correspond
to the goals in the backward reasoning method. We apply manual addition of the
need- prefix in rules as well as the generation of need- facts which allows the rules
to be fired.

The hybrid reasoning method of RQA consists of the following elements:

• Set of facts.

• Set of rules for forward chaining.

• Set of rules for backward chaining.

• Set of mapping rules.

• Query algorithm.

The set of facts is stored in a relational database and are gathered during the
reasoning process. Data (as triples) is obtained using a set of mapping rules.
These rules define mappings between ontology predicates and the relational data.
Ontology-based knowledge is represented as a set of rules for forward chaining.
These rules are generated automatically by SDL and reflect SWRL rules and cal-
culated hierarchies of concepts and properties. This set is transformed into a set of
rules for backward chaining with need- prefix. All rules are in the form of Horn
clauses and are written in the Jess language.

84 Chapter 4. Methods for a rule-based query answering

4.1.1 Generation of Rules for Backward Chaining

This section presents the transformation method of an ontology with rules for the
backward chaining performed by the Jess engine. The transformation results in a
script written in the Jess language. Overall transformation process is the following:

OWL+ SWRL => Rules for FC => Rules for BC

An OWL ontology with SWRL rules is transformed using our simple transforma-
tion into set of rules for forward chaining (FC). This set is an input for the trans-
formation into rules for backward chaining (BC). Both transformations are done
automatically by SDL (see Chapter 5). The transformation methods differ in the
technical details. We describe now the backward mode processing, because it is
more complicated. For the clarity in this work, we do not present full URI ad-
dresses (only short names) and we use the following shortcuts: p - predicate, s
- subject, o - object, and for http://www.w3.org/1999/02/22-rdf-syntax-ns#type -
rdf:type.

The generation of the Jess script in backward mode is done in the following
way:

• The template triple is created: (deftemplate triple (slot p) (slot s) (slot o))
and information that triple is backward-reactive is added: (do-backward-
chaining triple),

• SWRL rules are directly transformed to Jess; for example the rule (?x and ?y
are the companies names and ?InV is a number of issued invoice):

issuedV ATIn(?x, ?InV), receivedV ATIn(?y, ?InV)

→ TransactionBetween(?x, ?y)

is transformed into the following rule:

(defrule Def-TransactionBetween
(need-triple (p "TransactionBetween")(s ?x)(o ?y))
(triple (p "issuedVATIn") (s ?x) (o ?InV))
(triple (p "receivedVATIn") (s ?y) (o ?InV))

=>
(assert(triple (p "TransactionBetween")(s ?x)(o ?y))))

• For the taxonomy of concepts/roles the appropriate rules are created; for
example, for the hierarchy VATInvoice is-a Document the following rule is
created:

4.1. Hybrid Reasoning Method 85

(defrule HierarchyDocument
(need-triple (p "rdf:type")(s ?x)(o "Document"))
(triple (p "rdf:type")(s ?x)(o "VATInvoice"))

=>
(assert (triple (p "rdf:type")(s ?x)(o "Document"))))

Such a generated set of rules can be loaded into a Jess engine to perform back-
ward chaining. With the combination of mapping rules presented in Section 4.4
and a forward reasoning engine the rule-based query answering can be executed.

4.1.2 Query Algorithm for Hybrid Reasoning

Hybrid reasoning process supports rule-based query answering and uses two Jess
engines: one for the forward chaining and one for the backward chaining. The
queries are constructed in the Jess language in terms of ontology predicates.
Queries can be presented as directed graphs (see Chapter 6). A mapping between
the ontology predicates and relational data is used to express the semantics of the
data. Data itself is stored in a relational database. The ontology and the mapping
rules transformed into the Jess language format provide the additional semantic
layer to the relational database. Such an approach allows for querying a relational
database and reasoning using Jess, rules and an ontology.

The reasoning process is fully executed by the Jess engine and managed by the
SDL library (see Chapter 5). We need to use two Jess engines, because backward
chaining mode is very inefficient during queries execution. The reason for this
inefficiency is that the Jess engine creates trigger facts (with need- prefix) during
execution of a query and then calculates rules activations (but it does not fire any
of the rules). This procedure does not occur in the forward chaining mode, so the
answering process is much faster.

The backward chaining engine is responsible only for gathering data from the
relational database. Data is added (asserted in Jess terminology) as triples into
the engine’s working memory. The forward chaining engine can answer a query
with all constraints put on variables in a given query (=, !=, <, > etc.). During the
execution of a query the forward chaining engine does not reason (none of the rules
is fired). Every Jess engine has its own working memory.

The beginning of the querying process involves loading a backward script gen-
erated (or written) in the Jess language into the backward engine. In the forward
engine the template triple is created. Then the user can query about the proper-
ties and classes defined in the transformed ontology. A query is constructed in the
Jess language and can be represented as a directed graph. The query algorithm is
defined in Figure 4.1.

86 Chapter 4. Methods for a rule-based query answering

INPUT: Query Q, set of rules for backward chaining, set of mapping rules. Both
sets are loaded into Jess engine for backward chaining.

OUTPUT: An answer for query Q.

METHOD:

Step 1. Create a rule from a given query Q and name it QUERYRULE.
The query is the body of the rule, and the head is empty. Add
QUERYRULE to the forward chaining engine.

Step 2. In the backward chaining engine, for all concepts/roles occurring
in the query, do:

a) Add need-X fact/facts to the engine (where X is the current con-
cept/role) with bounded variables (if it exists).

b) Run the engine - the reasoning process begins and during it
the instances of the X predicates are obtained from a relational
database.

c) If the group of queries is not empty, the aggregation is performed
and one SQL query is executed. Results are added as triples to
Jess working memory.

d) Copy results to the forward chaining engine, remembering vari-
ables bindings. If there is no result, the engine stops.

e) Clean the working memory of the backward chaining engine.

Step 3. In the forward chaining engine, get activations of the
QUERYRULE. These activations contain facts that are results
for a given query.

Figure 4.1: The hybrid reasoning and query algorithm.

Steps 1, 3 and 4 are executed in the forward reasoning engine, and step 2 in the
backward reasoning engine. The Jess engine allows querying its working memory
using a special function called runQueryStar. We decided to get facts from a rule
activation because it is the most efficient way to obtain Jess query results (according
to the Jess implementation [Hill 2003]).

For better understanding of the presented method, in Figure 4.2 we present an
example with the following query: ’Find companies that received invoices issued
by company Comp1 on product ID=10’. The query, written in the Jess language, is
the following:

(defquery ExampleQuery
(triple (p "issuedVATIn") (s "Comp1") (o ?VIn))

4.2. Extended Rules Method 87

(triple (p "receivedVATIn") (s ?Comp2) (o ?VIn))
(triple (p "refersToGood") (s ?VIn) (o 10)))

Figure 4.2: An example of a query involving three ontology predicates.

Our method is used to execute the query. In the first step, the QUERYRULE
is created and added to the forward engine, so the querying process goes to the
second step.

The second step is executed three times because of three relations in the query
occurred. In this step the (need-triple (p "issuedVATIn") (s "Comp1") (o ?VIn)) is
asserted, and then the backward chaining engine is run. All results are copied to
the forward chaining engine and values of variable ?VIn are remembered. Then
the working memory of the backward chaining engine is cleared. The second step
is executed again, but now the (need-triple (p "receivedVATIn") (p ?Comp2) (o
?VIn)) facts are asserted with bindings of variable ?VIn (for example (need-triple
(p "receivedVATIn") (p ?Comp2) (o "8/2008"))). When results are copied to the
forward chaining engine the second step is executed again and the (need-triple(p
"refersToGood") (s ?VIn) (o 10)) are asserted with values of variable ?VIn.

After reasoning in the backward engine, the query answering process goes to
the third step. The example query is executed in the forward chaining engine and
the query results are obtained.

4.2 Extended Rules Method

In this section we present a modified magic transformation algorithm which to-
gether with the Rete Pattern Matching algorithm increases speed and scalability
of rule-based systems with the forward chaining. Our method is based on depen-
dencies between variables appearing in predicates inside each rule. Our approach
generates rules to be processed by the Rete-based engine which reflects the fact the
extended rules method is Rete-dependent.

The original magic transformation [Bancilhon 1986a] is strongly connected
with order of premises in the body of the rule. Thus, any permutation of atoms
in the body gives a semantically equivalent rule. As a result, we can built different

88 Chapter 4. Methods for a rule-based query answering

sets of magic rules for diverse sequences of the atoms. This flexibility is very im-
portant in building efficient plans of a goal evaluation. Properly chosen subsets of
magic rules form the basis of the extended rules in our our approach.

Arguments in atoms, particularly pertaining to the same variables, play a signif-
icant role, as they form information channels between atoms. In order to efficiently
verify satisfaction of conditions from the rule body and infer a conclusion specified
in the head, we are interested in finding dependencies between the atoms (predi-
cates). We now define a subset of dependent predicates and extended rules.

Definition 4.1 (Dependent predicates). Let B and P be non-empty sets of atoms.
A subset Dep(B,P) of atoms from a set B which share a variable or a constant
with some atom in the set P is called the set of dependent predicates.

Assume that we have two sets of atoms: B = {p(x, y), q(z)} and P =

{r(y), s(w)} then the set of dependent predicates is Dep(B,P) = {p(x, y)}.
The generation method for extended rules with examples is presented in Section
4.2.1.

Definition 4.2 (Extended rules). Let R be a Horn clause, where unary or binary
atoms are allowed. Such a rule is called the basic rule. A set of extended rules exR
is generated automatically in the goal- and dependency-directed transformation
from R for the evaluation purposes. The set exR is semantically equivalent to R.

As mentioned earlier, ontology-based knowledge is represented as a set of rules
(basic rules) and describes a source data at concept (ontological) level. Forward
chaining in the integrated system is performed with extended rules, which are ob-
tained by a goal- and dependency-directed transformation of the basic rules. The
novel feature of our method is generality - every rule is generated so that includes
all possible bindings of the head predicates, and variable dependencies, while in
many implementations of the magic method the succession of bindings depends on
a query. The presented method consists of the following elements:

• Two sets of facts: one including called facts (goals in a goal-directed reason-
ing, annotated with C) and the proper ones.

• Set of the basic rules.
• Set of the extended rules.
• Set of the mapping rules.
• Query algorithm.

The division of the facts is very important in our approach. Proper facts are di-
rectly derived from a relational database, or are inferred by rules from other proper
facts. Called facts reflect goals. They are used to prevent firing more rules than is

4.2. Extended Rules Method 89

required in the query evaluation process and are constructed during a generation of
extended rules.

With the usage of the combination of proper and called facts, we can infer with
the forward chaining scheme like with the backward one, where the reasoning is a
goal-driven process.

The set of basic rules consists of rules which constitute the knowledge base.
The set forms input data in our algorithm for the automatic generation of the ex-
tended rules. The set of extended rules is semantically equivalent to the set of basic
rules. Extended rules contain called and proper predicates which reflect called and
proper facts respectively. Together with the mapping rules (see Section 4.4), the
extended ones are used in the query answering algorithm.

4.2.1 Generation of the Extended Rules
The extended rules are generated on the basis of the basic rules. In principle, we
transform rules according to the magic transformation, the enhancement is pro-
posed by the use of the dependent predicates.

During the generation process the special symbol C (for called atoms) can be
added to predicates in rules. If a predicate does not contain any symbol it means
that it matches only proper facts. If a predicate is annotated with C symbol, it
matches only called facts. For example, the annotated predicate p1(?x, ?y)

C with
variables ?x and ?y, can match following called facts: p1(x, y)

C , p1(x, nil)
C ,

p1(nil, y)
C or p1(nil, nil)

C where x and y are constants, and nil is a special value
denoting an unbound variable.

Now we describe the generation process (an algorithm presented in Figure 4.3)
of the extended rules. It is worth noticing, that each variable from the rule’s head
should occur in the rule’s body (the Datalog safety restriction is used to guarantee
algorithm decidability).

Every basic rule consists of the body B, additional predicates AP (see Section
2.1.3.1 and the head predicate H. In order to denote that B matches only proper or
called facts, we mark it as B and BC respectively. In the same way we indicate the
head of the rule: H (adds proper facts) or HC (adds called facts). Therefore, each
basic rule is represented as follows:

B,AP → H (4.1)

In accordance with magic transformation, the body of the rule (4.1) is first
augmented with the called predicate HC to indicate an expected goal of the rule.
To describe the needed (called) fact, one has to identify its arguments. Moreover, to
define other extended rules for the basic rule (due to magic transformation), one can
compose the appropriate subsets of different proper and called facts, and subsets of
dependent predicates.

90 Chapter 4. Methods for a rule-based query answering

INPUT: Set of basic rules.

OUTPUT: Set of extended rules semantically equivalent to basic rules.

METHOD:

Step 1. For each basic rule (4.1) a rule of the following form is created:

B, AP, HC → H

where HC contains patterns of attributes (the attributes may be bound
or stay unbound) described with the nil alternative.

Step 2. For each basic rule (4.1) a new set of rules is generated, where
none of the variables in the head predicate annotated with C symbol
is bound. In this case, all variables are replaced by the nil value and
rules are generated of the following form:

HC → PC
i

where Pi is a predicate from the body of a basic rule (B = P1, ..., Pn).

Step 3. For each basic rule (4.1) a new set of rules is generated according
to the bindings of variables in the head. Get a set D = Dep(B,H) of
predicates from the set B, which depend on the bound variables in the
head H, and create one rule for each dependent predicate Di from the
set D:

HC → DC
i

Step 4. For each basic rule (4.1) a new set of rules is generated accord-
ing to the bindings of variables in the head and dependent predicates.
The bindings are connected from the body to the head by a chain of
variables. This set contains rules in which called predicates are mixed
with the proper ones with respect to the dependencies between vari-
ables.

Figure 4.3: The gsip strategy for the generation of extended rules.

An adornment of a rule, in our approach, is expressed by the use of nil value
which represents a free variable. A variable that is bound is represented only by
its name and a condition that checks if the variable’s value is different from nil.
Variables that are indicated only by "?" can be bound or free. For example, rule
(2.17) is transformed into the following rule:

p(?x, nil), ?x ̸= nil → q(?x, nil)

4.2. Extended Rules Method 91

We use ? sign when there is no matter if a value is bound or not. The following
rule: p(?x, ?y) → q(?x) we can replace by another one: p(?x, ?) → q(?x). In this
case, these two rules are equivalent to each other.

The algorithm defining a specialized magic transformation is based on the sip
goal- and dependency-directed strategy. As our strategy is query-independent (the
extended rules are generated only once), we call it the general sideways information
passing (gsip) strategy. This algorithm is one of the main results of our work.

We stress out that all AP predicates are added to the body of each created rule
if all variables appearing in predicates from AP also appear in the body.

Applying gsip algorithm to the following rule:

p1 (?x, ?y) , p2 (?y, ?w) , p3 (?w) , ?w ̸=?x → h1(?x, ?w)

we obtain the following sets of rules which correspond to the steps of the algorithm:

1. One rule which is generated by adding the goal connected with the head
predicate:

p1 (?x, ?y) , p2 (?y, ?w) , p3 (?w) , ?w ̸=?x, h1(?x, ?w)
C → h1(?x, ?w)

(4.2)

2. The set of rules with dependent predicates from the set

Dep({p1 (?x, ?y) , p2 (?y, ?w) , p3 (?w)}, {h1 (?x, ?w)})

= {p1 (?x, ?y) , p2 (?y, ?w) , p3 (?w)}

where all the variables from the head are unbound. In such case, the variables
are replaced by the nil value:

h1(nil, nil)
C → p1(nil, nil)

C

h1(nil, nil)
C → p2(nil, nil)

C

h1(nil, nil)
C → p3(nil)

C

3. The set of rules with dependent predicates and different binding patterns of
the head predicate:

h1(?x, ?w)
C , ?x ̸= nil → p1(?x, nil)

C

h1(?x, ?w)
C , ?w ̸= nil → p2(nil, ?w)

C

h1(?x, ?w)
C , ?w ̸= nil → p3(?w)

C

92 Chapter 4. Methods for a rule-based query answering

4. The set of rules with dependencies between proper and called predicates:

h1(?x, ?)
C , p1(?x, ?y) → p2(?y, nil)

C

h1(?, ?w)
C , p2(?y, ?w) → p1(nil, ?y)

C

h1(?, ?w)
C , p2(?y, ?w) → p3(?w)

C

h1(?, ?w)
C , p3(?w) → p2(nil, ?w)

C

h1(?x, ?)
C , p1 (?x, ?y) , p2(?y, ?w) → p3(?w)

C

h1(?, ?w)
C , p1(?x, ?y), p2(?y, ?w) → p3(?w)

C (4.3)

Each extended rule in the fourth step of the algorithm is generated to pass only
one binding of a variable from a proper fact to a called one. In such case, called
predicates are mixed with proper ones in the rule’s body and bindings are passed
through a chain of variables from the body to the head. As a result we will obtain
all possible bindings of variables that are strictly connected with a goal (in this case
h1(. . .)).

Each rule from the generated sets in steps 2-4 contains also a negated head
predicate in the body. This technical modification is introduced because the Jess
engine does not allow for duplicates in the working memory. The negation in this
case should be understood as a condition: if such fact does not exist in the working
memory. For example, the rule (4.3) is writen as follows:

h1(?, ?w)
C , p1(?x, ?y), p2(?y, w), not p3(?w)

C → p3(?w)
C

In rules generated in Step 1 of the gsip algorithm we define C predi-
cates with a nil alternative: p(?x|nil, ?y|nil)C . It is a technical detail com-
patible with operation of the Rete algorithm. For example, if we have facts
p1 (1, 2) , p2(2, 3), p3 (3) and our goal is h1(nil, 3)

C the rule (4.2) will
never fire because the variable ?x is bound to 1 in the proper fact and to nil
in the called fact. If we change our pattern to h1(?x|nil, ?w|nil)C this rule
will fire and we get a result. The pattern for h1 can match the following facts:
h1(x, y)

C , h1(x, nil)
C , h1(nil, y)

C and h1(nil, nil)
C where x and y are con-

stants.

4.2.2 Query Algorithm for Extended Rules Reasoning

In our RQA method with extended rules a user poses a query to a rule-based system.
The query is constructed from the predicates available in the knowledge base and
from the additional predicates used for comparisons (<, ?, etc.). An answer is
obtained as a result of the reasoning process using the forward chaining method.
We assume that the engine contains a knowledge base constructed from extended

4.2. Extended Rules Method 93

INPUT: Query Q, set of extended rules, set of mapping rules. Both sets are
loaded into Jess engine.

OUTPUT: An answer for query Q.

METHOD:

Step 1. Create a special rule from a given query Q and name it
QUERYRULE. The query constitutes the body of the rule. The head
contains invocation of the Java method, which remembers bindings of
the variables in the query when the rule is fired. The number of firings
of the rule is the number of different results. Add QUERYRULE to the
Jess engine.

Step 2. For every predicate pi appearing in the query Q = p1, p2, ..., pn do
the following:

1. Add predicate pi with the C symbol and bound variables (if exist)
to the engine’s working memory. Replace all variables that are
not bound with the nil value.

2. Run the engine - it reasons about facts in the working memory and
generates partial SQL queries, which are grouped by the defined
mapping

3. When reasoning stops, for every group of SQL queries, one ag-
gregated SQL query is created and executed. The results are
added as the instances of the according predicates (facts) to the
working memory.

4. If there are activations of the rules in the engine, go to the point
2), or else go to the point 5).

5. Remember the bindings of the variables appearing in the predi-
cate pi.

Step 3. Return the results and remove QUERYRULE from the engine.

Figure 4.4: The reasoning and query algorithm performed with extended rules.

and mapping rules. Facts are stored in a relational database. The algorithm of the
rule-based query answering with extended rules is presented in Figure 4.4.

The RQA method based on extended rules is similar to the hybrid reasoning
method in the sense that both methods try to increase the efficiency of a rule-based
query answering by the use of a goal-driven reasoning. In our hybrid reasoning
goals are represented by facts preceded by need- prefix whereas in the extended
rules method needed facts are marked with C symbol. The hybrid reasoning can

94 Chapter 4. Methods for a rule-based query answering

be applied only in the Jess engine while extended rules method can be applied
in every Rete-based reasoning engine. This is the reason why the first method is
called Jess-dependent and the second one Rete-dependent. Both methods increase
the speed and the scalability of the Jess reasoning engine. The experiments that
confirm our improvements are presented in Chapter 6. An example application of
extended rules method is presented in Appendix A.

4.3 Complexity of Query Answering

Data complexity of conjunctive query answering in Horn logic is P-complete
[Dantsin 2001]. Thus, data complexity of conjunctive query answering in Horn-
SHIQ is in PTime with respect to data complexity [Calvanese 2013].

However, it is hard to define the computational complexity of our methods,
because the Rete algorithm which is employed in reasoning and query answering
is too complex to be described in general. That is because performance depends on
declared rules and the data that is processed by them. However, the performance
is the same as in the Jess reasoning engine (see Section 2.1.3.2. Additionally, the
computational complexity of the executed SQL queries should be added. Due to
the simple form of queries and the Rete algorithm, the computational complexity
of SQL queries can be skipped.

We stress out that in both RQA methods sets of generated rules are fixed and
contain the fixed taxonomy. Thus, we can consider data complexity as polynomial
[Eiter 2008a], while standard reasoning in Horn-SHIQ is EXPTIME-complete in
general [Krötzsch 2007].

Increased performance of the pure RQA in Jess, presented in Chapter 6, appears
from the fact that modifications of patterns in the rules’ bodies discriminate facts
in the working memory. These discriminations reduce (especially in the extended
rules method) the overall tests performed inside the Rete network. As a result, al-
though the average number of patterns per rule growth, the reasoning performance
increased. We assume that proposed optimization may apply in other reasoning
engines (not Rete-based), but currently, we have not performed any tests. Such
tests require implementation effort combined with analysis of other reasoning al-
gorithms. This the reason for calling our methods as Rete-dependent, since we are
convinced that the extended rules method can be applied in any Rete-based engine.

4.4. Mapping Between Ontology Terms and Relational Data 95

4.4 Mapping Between Ontology Terms and Rela-
tional Data

In order to enable semantic access to relational data, it is necessary to express re-
lational concepts in terms of ontology concepts, that is to define mapping between
the relational schema and ontology classes (concepts) and relations (roles). Given
such a mapping, one can transform relational data to RDF triples and process that
copy in semantic applications. This method has obvious drawback, such as main-
taining synchronization. Another method is to create a data adapter based on query
rewriting. Such adapters can rewrite SPARQL [Consortium 2008] query to SQL
[Falkowski 2009] query and execute it in RDBMS. This method could be fast in
data retrieval, but without a reasoner, the full potential of ontology cannot be ex-
ploited. The third method is to generate semantic data from relational data “on-the-
fly”, on demand for the requesting application, and then process that data with a
reasoner. We use this method to fill a gap between the relational data representation
and the semantically described data.

An important step in our RQA methods consists of linking data stored in a re-
lational database to the knowledge base. We accomplish this by creating a special
rules which contain simple SQL queries in their bodies. These rules serve as map-
pings that are used to relate knowledge predicates and the corresponding database.
This section presents a method for mapping creation between terms of rule-based
system and relational data. We describe this straightforward method and present
some examples. We also propose a grouping algorithm to improve the database
query answering process.

The mapping method between terms of rule-based system and relational data
is based on "essential" predicates. We assume that every "essential" predicate has
a corresponding SQL query. "Essential" means that the instance of the predicate
cannot be derived from a set of rules during the reasoning process. Instead, it can
be obtained only in the direct way as a result of the SQL query evaluation in the
database. For example, in the OWL hierarchy of classes ChairmanOfTheBoard
is-a CompanysPrincipal is-a PersonConectedToCompany is-a Person, where the
class ChairmanOfTheBoard is a subclass of the class CompanysPrincipal etc. The
class ChairmanOfTheBoard is then represented as an "essential" predicate. Usu-
ally, "essential" axioms are lowest level taxonomy axioms. Predicates that are not
"essential" can be mapped also, but there is no need for such mapping since in-
stances of these predicates can be obtained during the reasoning process.

In the extended rules method "essential" predicates with the C symbol express
that appropriate facts are needed in the reasoning process. These predicates are
equivalent to need- facts in the hybrid reasoning method. Presented examples are

96 Chapter 4. Methods for a rule-based query answering

based on the extended rules method, since it is Rete-dependent and thus more gen-
eral.

In the mapping method we assume also that the ontology which is used and
transformed into rules is properly constructed (the ontology is classified without
inconsistencies).

A predicate-database mapping is defined as a set of rules, where each rule is of
the following form:

SQL_query → essential_predicate (4.4)

A body of each mapping rule contains SQL query which is defined manually
by a user. We assume that every SQL query has the following permissible form:

SELECT [R] FROM [T] < WHERE > < C, AND, OR > (4.5)

where:

• R are the attributes (columns) - one or two according to the unary or binary
terms (OWL Class, OWL DataProperty or OWL ObjectProperty),

• T is a table which is queried,

• WHERE is an optional clause to specify the constraints,

• C are the constraints in the following form: <attribute, comparator, value>,
for example: Age > 21,

• AND - is the optional SQL command.

Only this form (4.5) of queries is permissible in our system. As an example, as-
sume that we have a table Employee with the following attributes: ID, Name, Com-
panyID and Position. The example of SQL query for the concept ChairmanOfThe-
Board can be defined as follows:

SELECT ID FROM Employee WHERE Position = Chairman;

When we want to apply more constraints, we may use OR / AND clauses. The
mapping process requires defining SQL queries for all "essential" classes and prop-
erties. Take the example of the mapping of the property isSignedBy:

SELECT IDDoc, IDEmp FROM Signature; (4.6)

The execution of the query (4.6) results in obtaining all instances of the relation
between IDDoc of the document and IDEmps of the employees that signed this
document. If the query is executed, the results are added to the working memory
as proper facts.

4.4. Mapping Between Ontology Terms and Relational Data 97

During the reasoning process many SQL queries are generated. We devel-
oped an algorithm which groups queries that correspond to the same essential term.
These queries are aggregated and only one SQL query is executed. The algorithm
is presented in Figure 4.5. This algorithm is enabled due to a very simple form (4.5)
of the permissible SQL queries. For instance, if we have the following unknown
(needed) facts: isSignedBy (5, nil)C and isSignedBy (10, nil)C , and the mapping
query (4.6), our grouping algorithm will create a query:

SELECT IDDoc, IDEmp FROM Signature

WHERE (IDDoc = 5 OR IDDoc = 10);

Then, the query is executed in the relational database and results are added as
facts to the reasoning engine’s working memory. It is worth noticing that mapping

Relational

Database

Jess Engine

Jess Working

Memory

runQueriesFromJess

call

Answers as

the Jess facts

JessDBAccess class

Does the rule

concerns new

concept?

Yes

No

Create one

aggregate SQL

query from all

queries in the

current group.

Execute SQL

query

Add results as

Jess facts to Jess

engine working

memory

SQL

query

Results

Add query and its

parameters to the

group of queries

Delete current group

and create the new

one for the new

concept

Continue reasoning

Figure 4.5: The grouping algorithm.

rules are automatically generated by SDL according to defined mappings between
ontology predicates and SQL queries (see Chapter 5).

Function runQueriesFromJess allows accessing a relational database. It has the
following parameters:

• name of the rule,
• SQL query defined for mapping,
• names of columns used to obtain results,
• variables values (if determined),
• name of the template used to add Jess fact (e.g. triple),
• connection to the relational database,

98 Chapter 4. Methods for a rule-based query answering

• instance of a Jess engine where facts should be added.

The presented algorithm of grouping SQL queries is implemented in the SDL li-
brary described in details in Chapter 5.

4.5 Discussion of the Related Work

In this chapter attention is focused on efficient rule-based query answering and an
integration of system built of a rule-based component and a relational database.
Our first solution was presented in [Bak 2009], where the hybrid system is de-
scribed which consists of two reasoning engines, and relatively complex and costly
data flow. Extended rules approach was published in [Bak 2011a]. Both our RQA
methods are implemented in the SDL library.

More generally, we can find different strategies for processing conjunctive
queries in relational databases. Most of the work, including that of Bancil-
hon [Bancilhon 1986a, Bancilhon 1986b], Ramakrishnan [Beeri 1987] and others
[Lukácsy 2009] was done in eighties, when knowledge based systems were cre-
ated for the first time. Various strategies of bottom-up, top-down and combined
evaluation of queries are analysed by the authors together with different optimiza-
tion techniques, such as magic set transformation of rules, or efficient counting and
filtering.

A very close work is presented in [Brass 2010] where data-driven backward
chaining is described. With automatically generated goals, a capability to repre-
sent unbound variables in goals and support for unification a system presented in
the paper satisfies a lot of requirements of rule-based query answering systems.
The main difference of our approach is that we modify a set of rules, whereas in
[Brass 2010] they modified also a reasoning engine (architecture of a rule system).

Along the same lines contemporary efforts are also undertaken in view of
the important task of data and systems integration. Two computation paradigms,
namely relational databases and rule systems, need to be tightly and smoothly
linked to better satisfy requirements of database and web programmers. This
amounts for deriving queries from ontologies and thus deal with the semantic as-
pects of data. With standard languages of description logics the semantic web
initiative contributes to a grow up of various rule systems. A thorough analysis of
different technologies, performance and scalability results of the systems can be
found in OpenRuleBench report [Liang 2009a].

There are several tools addressing the semantics-based relational querying
problem or OWL to Jess mapping issue. OWLJessKB6 project (discontinued since

6http://edge.cs.drexel.edu/assemblies/software/owljesskb/

http://edge.cs.drexel.edu/assemblies/software/owljesskb/

4.5. Discussion of the Related Work 99

2005) enabled mapping between OWL and Jess. In this approach, created tem-
plates (data structures in Jess) were stored as triples with URI (Uniform Resource
Identifier)7 addresses. OWLJessKB do not support SWRL and access to a rela-
tional database. Extended support of the OWL semantics and SWRL rules is pro-
vided by OWL2Jess [Mei 2005] and SWRL2Jess8 tools. These tools do not provide
relational database access or backward chaining.

Tools with database access include DataMaster 9, D2RQ10 and KAON211.
DataMaster [O’Connor 2007b, O’Connor 2007a] is a Protégé-OWL12 plug-in that
allows to import a relational database structure or content into an OWL ontol-
ogy. At present it just allows to populate the ontology with data from a relational
database and to save this ontology to file and then query it with other Protégé plug-
ins. Another tool is D2RQ [Bizer 2004, Bizer 2006], which allows treating rela-
tional databases as virtual RDF graphs. It works as a plug-in to RDF repositories,
such as Jena13 and Sesame14, and it transforms relational data to RDF instances
data. This transformation requires the description of a relation between an ontol-
ogy model and a relational model, stated in terms of D2RQ Mapping Language.
Data requested by the repository is transformed ’on-the-fly’ to the RDF model.
D2RQ acts as RDF adapter to relational data. In the ontology-based data access
presented in [Poggi 2008] the mapping method was proposed. The main differ-
ences in comparison to our approach include: use of other formalism DL-LiteA,
top-down reasoning method, and a query rewriting technique. This approach goes
beyond Datalog (because of applied function symbols) and does not use rules for
directly accessing data. Rules are used to prepare an SQL query which will obtain
required data. As a result, this approach differs in many aspects in comparison to
the work presented in this thesis.

For more complex reasoning problems the leading tool is the KAON2 reason-
ing engine. This tool allows reasoning with OWL ontology and SWRL rules and
enables to connect to the relational database through an additional mapping ontol-
ogy (it has to be included into OWL ontology as an import). Mapping ontology
has to be written manually. Such ontology enables to query the relational database
’on-the-fly’ during reasoning.

As we can see, rule systems and reasoning engines form an interesting mul-
tiparadigm research area, where different methods and ideas are successfully ap-
plicable. Such significant examples are, for instance, ontology-based data access

7http://tools.ietf.org/html/rfc3986#section-3
8http://www.ag-nbi.de/research/owltrans/
9http://protegewiki.stanford.edu/wiki/DataMaster

10http://d2rq.org/
11http://kaon2.semanticweb.org/
12http://protege.stanford.edu/
13http://jena.apache.org/
14http://www.openrdf.org/

http://tools.ietf.org/html/rfc3986#section-3
http://www.ag-nbi.de/research/owltrans/
http://protegewiki.stanford.edu/wiki/DataMaster
http://d2rq.org/
http://kaon2.semanticweb.org/
http://protege.stanford.edu/
http://jena.apache.org/
http://www.openrdf.org/

100 Chapter 4. Methods for a rule-based query answering

system, QuOnto [Poggi 2008] and Dlog [Lukácsy 2009] systems, specialized for
Prolog.

4.6 Conclusion

In this chapter we presented two approaches that enable a rule-based query answer-
ing performed with the state-of-the-art Rete-based reasoning engine. Data is stored
in a relational database and queries are posed in terms of an ontology concepts and
roles.

In the hybrid reasoning method forward and backward chaining is used. In the
extended rules method only forward chaining is executed. Both RQA methods use
the reasoning process to obtain an answer for a given query. During this process
facts from database are gathered and used to derive new facts according to a given
set of rules. Next, the answer is constructed and presented. In both our methods
the Horn clauses are used as the form of permissible rules. Our work is based
on the Rete reasoning algorithm which is, for instance, implemented in the Jess
engine. Moreover, the problem of the combination between ontology predicates
and a relational database was also provided in this chapter.

These approaches allow the integration of an ontology, rules and database ex-
pressed in one format acceptable by the Jess engine. We believe that our approach,
which enables complex queries to be created in a simple way, has advantages over
SQL querying (creation of appropriate queries in SQL is more difficult). These
methods can also be used in expert systems, which require many rules and lots of
data from relational databases.

In our methodology an answer is always up-to-date, because a query is executed
on the current state of the relational database. This is a very useful feature, because
we do not have to prepare data to begin an execution of the query (in contrast to
the forward chaining method in a pure reasoning engine).

The presented approaches have some significant limitations. Currently, the
head of every rule contains only the assert command (it adds facts). We would
like to be able to handle the modify and retract commands in the heads of the rules.
We have to read data from a database and then we can test it (in the Jess terminol-
ogy this means comparing values of variables). So we have to load some excess
information. It would be better if we could test data during the load process and
exclude data not fulfilling constraints.

Extended rules method is more general than the hybrid one. It depends only
on the Rete algorithm. Extended, goal- and dependency-directed rules are con-
structed independently of a query, for all the binding patterns. Rule generation is
performed only once, but with possibility to define diverse, specialised strategies.

4.6. Conclusion 101

Such approach increases also a scalability of a pure reasoning engine. Extended
rules approach can be applied in every Rete-based reasoning engine.

The user of our system gets an easier way to pose queries (due to ontology ori-
gin of rules) than using structural constructions from SQL. The creation of queries,
presented in the performance evaluation, is extremely difficult when we want to use
pure SQL constructions. As a result, our method is useful in every system which
requires data semantics to be explicitly given. Moreover, the graph-based represen-
tation of queries provides a very easy way to query and analyse such semantically
described data.

Our methods largely remove a deficiency of the pure Jess engine mentioned
on page 11 of [Liang 2009b]. It is worth noticing that engines were tested with
all data in RAM memory, whereas our system is a complete platform that fetches
only needed data into the working memory. This fact would be advantageous if
combined rules execution and loading times were tested. The experiments that
confirm the increased performance of the Jess engine are presented in Chapter 6.

CHAPTER 5

Implementation of SDL

In this chapter we present the Semantic Data Library (SDL) which is used to query
a relational database at conceptual (ontological) level. SDL integrates a rule en-
gine, a relational database and a set of rules obtained from the transformation of an
ontology. We assume that the ontology can contain both OWL axioms and SWRL
rules. This combination allows querying and inferring with data stored in a rela-
tional database using concepts (classes), roles (properties) and rules. Moreover, it
simplifies the way of posing queries than using structural constructions from SQL.
We describe an implementation of both rule-based query answering (RQA) meth-
ods and two transformation methods of OWL ontologies into sets of rules.

5.1 SDL Overview
SDL integrates ontologies, relational data and rules which represent domain knowl-
edge. We need such tool when we have to pose complicated queries to the standard
relational database. Due to the formally defined semantics we can pose a semantic
query and get a corresponding semantic answer. SDL generates rules automatically
which is very important for knowledge bases that often change.

The presented tool provides an easy way to query a relational database and
both a query and an answer are based on the semantics defined in an OWL
[Consortium 2006] ontology. The ontology describes data at the conceptual (on-
tological) level and introduces a formal definition of concepts and roles which do
not exist directly in the database. For example, let us assume that we have a ta-
ble Persons(id, father_id, mother_id, gender). In the corresponding OWL
ontology we can define the following concepts: Grandfather, Grandmother,
Cousin and roles: hasBrother, hasSister, hasCousin. These concepts and
roles are not defined directly in the database. But with the use of the OWL on-
tology and SWRL [Horrocks 2004b] rules we can obtain instances of the afore-
mentioned terms. Moreover, we can use these terms in queries which are in the
form of directed graphs.

In the SDL implementation we apply rules that are obtained from a given Horn-
SHIQ ontology. We adopt an approach that first calculates hierarchies of concepts
and relations and then transforms these hierarchies into a set of rules. The TBox
reasoning is performed by the Pellet engine [Sirin 2007]. Next, a classified form of

104 Chapter 5. Implementation of SDL

the ontology is transformed into rule definitions in the Jess language. SWRL DL-
safe rules (if they occur) are also transformed into the Jess language with SWRL
Built-ins1 used as comparison predicates. SWRL extends the expressivity of OWL,
supporting the use of ontology axioms in rules. Only unary and binary predicates
are allowed.

Rules are also used to establish mappings between ontology axioms (properties
and classes) and data stored in a relational database. These are defined in the Jess
language and their creation is supported by SDL-GUI (see Section 5.5). They map
"essential" axioms to appropriate SQL queries. "Essential" means that the instance
of this axiom cannot be obtained from the taxonomy or rules, only directly from a
database.

The SDL library is implemented in the Java language. We implemented our
RQA approaches with the Jess reasoning engine. Extended rules method is directly
applicable (not counting an interface modifications) to every engine, which exploits
the Rete algorithm. Hybrid reasoning method is Jess-dependent since it uses Jess-
specific backward chaining (see Chapter 4). All generated rules are in the form of
Horn clauses.

5.2 SDL Architecture and Integration Process
The architecture of SDL, which covers both our approaches, is presented in Figure
5.1. The central part, which gathers input from other system elements and pro-
cesses rules, are one [Bak 2011a] or two [Bak 2009] Jess engines used for forward
and backward chaining.

Query

Rule-based

knowledge

Mapping rules

Ontology-based

knowledge

transformed into rules

Answer

Jess engine(s)

Relational

Database

Figure 5.1: The architecture of the Semantic Data Library.

The hybrid approach [Bak 2009] exploits both forward and backward reason-
ing. The backward method is responsible for gathering data from a relational

1http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

5.2. SDL Architecture and Integration Process 105

database and the forward chaining is used to answer a given query. One instance
of the Jess engine is created for each reasoning method. It means that we use two
instances of the Jess engine in the hybrid approach.

Figure 5.2 presents the integration scheme of an OWL ontology with SWRL
rules, the Jess engine and a relational database in RQA method with the hybrid
reasoning. In this case, the transformation from OWL to Jess results in 3 Jess
scripts: for forward and backward reasoning and a set of mapping rules. The set of
rules which is obtained during the transformation from an OWL+SWRL ontology
is saved as a Jess script file FScript.clp. The script is then transformed into a set
of rules assigned to backward chaining (BC) - BScript.clp. Next, the mapping
rules for BC are generated according to the defined mappings. A user can load:
BScript.clp and a mapping rules Jess script; then establish a database connection
and pose queries with SDL and Jess using our hybrid RQA method. FScript.clp
can be deleted, it is needed only as a middle layer between an ontology and a set
of rules assigned to backward chaining. It is worth noticing that rules assigned to
BC are generated for all possible bindings of variables. It means they are aimed to
determine if a given variable is free or bound. As a result, for each rule from a set
stored in FScript.clp file the following number of rules is generated:

• 4 rules if a rule defines a property,

• 2 rules if a rule defines a class.

This generation method results from the implementation of the Jess engine
[Hill 2003]. According to it, the backward chaining is simulated in the Jess engine
and can be performed faster if we differentiate patterns in the body of a rule that
match a backward chaining reactive templates. Determining bindings of variables
in patterns improves the detection and matching of needed facts.

In the extended rules [Bak 2011a] approach we use one instance of the Jess
engine, because only the forward reasoning method is used. Extended means that
these rules are generated automatically from the basic ones for the evaluation pur-
poses, and the modification is strongly connected with the magic transformation
method. The set of basic rules consists of rules which constitute the knowledge
base. The rule-based knowledge base comes from an OWL to Jess transformation.
The set of extended rules is semantically equivalent to the set of basic rules. The
extended rules are generated in the goal- and dependency-directed transformation.
In this method we are interested in dependencies between variables appearing in
predicates inside each rule. Together with mapping rules, the extended ones are
used in the rule-based query answering algorithm. We implemented this approach
according to the described algorithm. All sets of rules are generated automatically.
Basic set of rules is generated from a given ontology. Extended set of rules is gen-
erated from the basic one. Mapping rules are generated from the defined mappings.

106 Chapter 5. Implementation of SDL

OWL+SWRL

ontology

Ontology and SWRL

rules in the Jess

language for FC

Jess Engine BC

Transform

all to Jess

Load rulesMapping rules in the

Jess language for BC

Create

Mapping

Save as rules

Relational

Database

Ontology and SWRL

rules in the Jess

language for BC

Transform

Load rules

Figure 5.2: The integration scheme executed in the SDL library with the hybrid
reasoning approach.

Figure 5.3 presents the integration scheme of an OWL ontology with SWRL
rules, the Jess engine and a relational database in RQA method with the extended
rules method. Such OWL+SWRL ontology is transformed into a set of rules in
the Jess language. The set of rules is stored as a Jess script file BRScript.clp. The
script is then transformed into a set of extended rules (ExRScript.clp). The map-
ping rules are automatically generated from a given mappings between ontology
predicates and relational data. A user can load: ExRScript.clp and a mapping rules
Jess script; then establish a database connection and pose queries with SDL and
Jess. BRScript.clp can be deleted, it is needed only as a middle layer between a
Horn-SHIQ ontology and a set of extended rules. It is worth noticing that a trans-
formation in both our RQA methods need to be done only once (besides changes
of an OWL ontology, SWRL rules or a database schema).

Both RQA methods employ a triple template to represent facts in generated Jess
scripts. The triple consists of tree slots: subject, predicate, object. This template
is augmented with a slot called kind used to represent proper or called facts in
the extended set of rules. This slot does not occur in the hybrid approach. As
mentioned in Chapter 4 we use shortcuts p, s, o to represent predicates, subjects
and objects respectively. For better understanding of the representation we show
an example of one of the generated extended rules (from the minimal ontology
model) for obtaining instances of the class ContractDocument (we omit URIs in
the example):

(defrule MAIN::Rule14
(triple (kind P)(p "rdf:type")(s ?d)(o "Document"))
(triple (kind P)(p "isSignedBy")(s ?d)(o ?p1))

5.3. OWL to Jess Transformation Methods 107

OWL+SWRL

ontology

Ontology and SWRL rules

in the Jess language

Jess Engine

Transform

all to Jess

Generate

extended

rules

Load rules

Extended rules in

the Jess language

Mapping rules

in the Jess language

Create

Mapping Save as rules

Relational

Database

Load rules

Figure 5.3: The integration scheme executed in the SDL library with the extended
rules approach.

(triple (kind P)(p "rdf:type")(s ?p1)(o "CompanysPrincipal"))
(triple (kind P)(p "isSignedBy")(s ?d)(o ?p2))
(test (neq ?p1 ?p2))
(triple (kind P)(p "rdf:type")(s ?p2)(o "CompanysPrincipal"))
(triple (kind C)(p "rdf:type")(s ?d)(o "ContractDocument"))

=>
(assert
(triple (kind P)(p "rdf:type")(s ?d)(o "ContractDocument"))))

5.3 OWL to Jess Transformation Methods

The SDL library supports two main methods of transforming OWL ontologies into
rules expressed in the Jess language: simple and Horn-SHIQ. The simple method
transforms taxonomies of concepts and roles into a set of rules. These taxonomies
are calculated by the Pellet engine first. SWRL rules and SWRLB predicates are
also transformed into rules and Jess expressions. Symmetric properties of objects
are also transformed into rules. The simple transformation can be done in the
following modes:

Mode 1. Jess script assigned to forward chaining.

Mode 2. Jess script assigned to backward chaining.

Mode 3. Jess script assigned to forward chaining with extended rules.

The Horn-SHIQ transformation is an extension of the simple one. In this case,
additional rules are generated according to OWL 1.1 Horn-SHIQ axioms. Rather
than transforming the semantics of the OWL language into rules we create rules
according to this semantics and a given ontology (in contrast to work presented in
[Mei 2005] and [Meditskos 2008]). For example, when we have an ObjectProperty

108 Chapter 5. Implementation of SDL

inComplicityWith which is a SymmetricObjectProperty we create a rule which re-
flects that when an instance of this property occurs, a symmetric instance should
also occur:

(defrule MAIN::HST-SymmetricProperty-inComplicityWith
(triple (p "inComplicityWith") (s ?x) (o ?y))

=>
(assert (triple (p "inComplicityWith") (s ?y) (o ?x))))

Currently, the implementation is prototypical and does not support all Horn-SHIQ
axioms from the W3C specification [Grau 2006]. The SDL allows using simple
atomic concepts (A, C), and roles (R). We assume that a concept C is simple if it is
in one of the following form: A, ∃R.A, ∀R.A, or ≤ 1R.A. Complex constructions
are not supported. The universal and the existential quantifiers are used only as
restrictions in the same way as presented in [Grosof 2003].

Currently supported OWL axioms are taken from the official Horn-SHIQ
specification [Grau 2006] and cover the following list:

1. Class axioms:

• equivalentClasses: URI | ObjectIntersectionOf | ObjectSomeValues-
From

• subClass: URI | ObjectUnionOf | ObjectIntersectionOf | Object-
SomeValuesFrom

• superClass: URI | ObjectIntersectionOf

2. Property axioms: URI | equivalentObjectProperties | subObjectPropertyOf
| objectPropertyDomain | objectPropertyRange | functionalObjectProperty |
inverseFunctionalObjectProperty | symmetricObjectProperty

The Horn-SHIQ transformation can be executed in Mode 1 and Mode 3. In
Mode 2 only simple transformation is implemented. SDL also provides the Horn-
SHIQ transformation without hierarchy rules. This feature can be helpful to use
scripts in different reasoning tasks.

5.4 Mapping Rules

The mapping method between ontology predicates and a relational data was de-
scribed in Section 4.4. We now describe the implementation of this method.

Each mapping is transformed into one Jess rule. It means that we need exactly
as many rules as defined mappings. The transformation is done according to the
specified template:

5.4. Mapping Rules 109

Rule name: "Def-" + name of the mapping concept/relation

Body: ?r <- (need-triple (p "predicate’s name") (s ?x) (o ?y)

Head: (call of the runQueriesFromJess function with its parameters) (retract ?r)

The need- facts which are triggers to fire rule are deleted from Jess working mem-
ory (retract ?r). For this reason duplicates of firing the same rule do not occur. The
example rule for property MoneyTransferTo between ID of the money transfer and
the receiver’s company name is shown below:

(defrule Def-MoneyTransferTo
?r <-(need-triple (p "MoneyTransferTo") (s ?x) (o ?y))
=>
(bind ?query (str-cat "SELECT Id, Receiver FROM transfers;"))
(?*access* runQueriesFromJess

"Def-MoneyTransferTo" ?query
"s;id;o;receiver;p;MoneyTransferTo;"
(str-cat ?x ";" ?y ";")
"triple" ?*conn* (engine))

(retract ?r))

Function runQueriesFromJess allows accessing a relational database. The function
takes the following arguments:

• name of the rule, e.g. "Def-MoneyTransferTo",
• SQL query defined for mapping, e.g. "?query",
• names of columns (assigned to slots in a template) used to obtain results, e.g.
"s;id;o;receiver;p;MoneyTransferTo;",

• variables values (if determined), e.g. (str-cat ?x ";" ?y ";"),
• name of the template used to add Jess fact, e.g. "triple",
• connection to the relational database, e.g. ?*conn*,
• instance of a Jess engine where facts should be added, e.g. (engine).

An example of a mapping rule for a property "MoneyTransferTo" presents our map-
ping method in the hybrid reasoning approach. In the extended rules method the
head of the rule is the same, but the body differs in a need- prefix and an additional
kind slot. This difference is applied to all mapping rules in the extended rules
method. For instance, the counterpart of the previous example in the extended
rules approach is the following:

(defrule Def-MoneyTransferTo
?r <-(triple (kind C) (p "MoneyTransferTo") (s ?x) (o ?y))
=>
(bind ?query (str-cat "SELECT Id, Receiver FROM transfers;"))

110 Chapter 5. Implementation of SDL

(?*access* runQueriesFromJess
"Def-MoneyTransferTo" ?query
"s;id;o;receiver;p;MoneyTransferTo;"
(str-cat ?x ";" ?y ";")
"Triple" ?*conn* (engine))

(retract ?r))

In Section 4.4 we present a mapping scheme where an SQL query is in the body
of the rule and a predicate in the head. But, as we can see from the aforementioned
examples the mapping scheme presented here is in reverse order. This difference
results from the fact, that in Section 4.4 we presented a logical view on mapping.
In this section the implementation in a goal-directed fashion requires reverse order,
because SQL queries are posed only when an instance of a predicate is needed.

5.5 SDL Features
The SDL tool is implemented in the Java language. It is split into two modules:

• SDL-API (Application Programming Interface), which provides all func-
tions,

• SDL-GUI (Graphical User Interface), which exploits SDL-API functions for
defining the mapping between ontology terms and relational data; and pro-
vides automatic transformation of ontology into rules and the generation of
Jess scripts.

The SDL-API module provides the following functionalities:

• reading a relational database schema,
• executing SQL query or procedure (results are added into Jess engine as

facts),
• reading OWL ontology (with SWRL rules if available) and Jess scripts,
• Jess scripts generation (forward and backward chaining, extended rules,

Horn-SHIQ transformation) from OWL ontology,
• mapping between ontology concepts/roles and relational data,
• executing a Jess query which consists of the concepts and roles from OWL

ontology or templates defined in Jess language,
• rule-based query answering methods: hybrid and extended rules,
• Jess engine reasoning management (in forward and backward chaining).

SDL-GUI module of the library enables executing the following functions:

• reading ontology and viewing of concepts/roles hierarchies; the view con-
tains classes hierarchy, object properties hierarchy and datatype properties
hierarchy. These hierarchies are calculated by the Pellet engine [8],

5.5. SDL Features 111

• viewing a relational database schema which contains tables, views, columns
and data types,

• mapping between ontology concepts/roles and relational data,
• populating an ontology with data from a relational database according to the

specified mapping,
• creating Jess facts from a relational database according to the specified map-

ping,
• transforming OWL ontologies to Jess scripts,
• transforming Jess scripts into Jess scripts with extended rules (only triple

template of facts is currently supported).

SDL supports interaction with the Pellet engine (for TBox reasoning with ontol-
ogy and its classification), exploits OWL API [Horridge 2009, Horridge 2011] (for
handling OWL files) and uses JDBC 2 library for MS SQL 2008 Server3 access.
The taxonomies of ontology classes and properties are classified by SDL-GUI with
Pellet 2.3.0 and prepared for a user, who can define SQL mapping queries on these
calculated taxonomies.

Figure 5.4: The SDL tool with minimal ontology model and database connection.

Figure 5.4 presents our minimal ontology model loaded into SDL-GUI and
established connection to the corresponding relational database. A user gets a pre-
sentation of tables and views which exist in a database.

2http://msdn.microsoft.com/en-us/sqlserver/aa937724.aspx
3http://www.microsoft.com/en-us/sqlserver/default.aspx

http://msdn.microsoft.com/en-us/sqlserver/aa937724.aspx
http://www.microsoft.com/en-us/sqlserver/default.aspx

112 Chapter 5. Implementation of SDL

5.6 Conclusion
In this chapter we described the SDL library. We presented two methods of trans-
formation of an OWL ontology into Horn-SHIQ rules in the Jess language.

The SDL library is useful for queries creation because a user of our system gets
an easier way to pose queries (due to ontology origin of rules) than using structural
constructions from SQL. The creation of queries is extremely difficult when we
want to use pure SQL constructions. The strictly defined semantics (in the form of
an ontology) is another advantage of our tool.

In future, we are going to extend our approach to handle predicates with an
arbitrary number of arguments. We will improve the rule-based query answering
algorithm by using optimizations that concern extended rules and magic transfor-
mation.

Our SDL tool is available as a binary distribution and is free of charge for non-
commercial academic usage (for universities only) and can be downloaded from
the following Web site: http://draco.kari.put.poznan.pl/.

http://draco.kari.put.poznan.pl/

CHAPTER 6

Experimental Evaluation

In this chapter we present an experimental evaluation of two proposed rule-based
query answering (RQA) methods applied to the knowledge base of economic
crimes. The Semantic Data Library (SDL) is used to query a relational database at
a conceptual (ontological) level. The minimal ontology model acts as a knowledge
base, which is, for the evaluation purposes, transformed into set of Horn clauses.
SDL uses and integrates the Jess engine, a relational database and the set of rules.
This combination allows querying and inferring a crime scheme and identifies pos-
sible charges; in particular, it discovers crime activities and roles (of particular
types of owners, managers, directors and chairs) using concepts, appropriate roles
and rules. The performance evaluation is based on the financial crime minimal
ontology model and artificially generated data sets.

The generated sets reflect data gathered during investigation and relevant to the
potential charges. The ontology provides concepts and roles to which relational
data is mapped and hierarchies of concepts and roles. Rules express dependencies
and domain knowledge that allows querying about crime members’ activities from
a legal point of view. Therefore, the experimental evaluation is based on a single
fraudulent disbursement typology (the Hydra case) combined with money launder-
ing and core data related to this case. The rest of the data simulate variants of this
crime by stochastically changing the values of the most important attributes. For
some of these parameters no crime occurs, but generally various possible variants
of persons’ criminal activities are selected. The system goal is to detect a crime oc-
currence and bring proper charges based on people’s activities. Despite handling a
restricted class of crime, options of the crime case exhibit richness that is sufficient
from a legal point of view. Instantiating the ontology allows querying of various
aspects of the crime.

This experimental evaluation aims at proving that the system is practical and
can be of big help if extended to a larger set of crimes. Since the analytic capabil-
ity of institutions, such as the Police or Prosecutor’s Office in Poland, is limited,
the system has to hide the complexity of data structures and reasoning engines and
expose friendly interfaces. One of the most costly and hard to trace crimes are eco-
nomic crimes. The level of complicity and amount of proxy and scam companies
involved make it difficult to identify details of crime schemes. Another issue is to
properly formulate an indictment based on evidence, that, in particular, identifies
roles and activities of members of a crime group.

114 Chapter 6. Experimental Evaluation

SDL users will receive a convenient way to query a relational database and both
a query and an answer are based on the semantics defined in an ontology. The on-
tology describes data at the conceptual (ontological) level and introduces a formal
definition of concepts and roles which do not exist directly in the database. As a
result, SDL handles the problem of gathering, managing, querying and interpreting
data relevant to building the evidence necessary for an indictment. Moreover, SDL
allows for classification of illegal activities and assignment of sanctions based on
the roles of people in companies. As a result, the SDL tool will help investigators
and prosecutors to conduct investigations of financial crimes and manage the data
gathered.

During the development and research process, we have proposed and imple-
mented two methods of querying a relational database: hybrid reasoning and for-
ward reasoning with extended rules. In the following sections we:

• evaluate our minimal ontology model with both RQA methods,
• show that our approaches increase the scalability of the Jess engine and out-

performs its rule-based query answering method.

Section 6.1 presents the Hydra-case-like simulated input data generation. In Sec-
tion 6.2 we describe example queries selected according to the minimal ontology
model. These queries are used to test different aspects of our query answering
mechanisms. The performance evaluation and comparison with the pure Jess rea-
soning is given in Section 6.3. Section 6.4 contains concluding remarks and future
work plans.

6.1 Generation of the Hydra-case-like simulated in-
put data

For a practical demonstration of our rule-based query answering methods for a
knowledge base of economic crimes (the minimal ontology model), we need data
stored in a relational database. We implemented a generation tool in Java which
enables us to generate a relational database with the size of a crime case as parame-
ters: the number of companies and number of documents (invoices, work approval
documents and money turnovers). The relational database reflects data gathered
during investigation and relevant to the potential charges. The Hydra case genera-
tor provide data concerning:

• Information about employees and their position in a company - Employee
table.

• Invoices with all obligatory elements (payer, seller, product, etc.) - Invoice
table.

6.1. Generation of the Hydra-case-like simulated input data 115

• Work approval documents (or the lack of them) - Document table.
• Signatures on documents - Signature table.
• Goods and services - GoodService table.
• Companies and their legal form - Company table.
• Money turnovers: money transfers, payments and withdrawals - Money-

Turnover table.
• Legal articles (name, ID and content) - LegalActs table.
• Information about illicit personal gains and damages to companies (with val-

ues) - DamageAndGain table.
• Other facts, like who knows about what (Person knowsAbout document) -

these data result from testimonies. These facts are in the form of RDF triples
(the table contains three columns: subject, predicate, object). These facts are
stored in RDFfacts table.

Figure 6.1: Database schema for the Hydra case.

116 Chapter 6. Experimental Evaluation

The seed of the generator is fixed, so if the number of the documents is grow-
ing, the query results (i.e., the number of cases found criminal) from the bigger
database contains all the results from the smaller database (and some extra results,
possibly). The tool generates the Hydra case in four variants (as presented in Chap-
ter 3) and also generates some obscuring data (other documents, invoices, etc.) to
make reasoning more realistic. Every generated element has its own identification
number. In this manner data are combined and internally coherent. The database
schema is presented in Figure 6.1.

Data stored in relational databases is mapped to ontology predicates. A map-
ping between these two elements consist of 57 rules. We now provide two examples
of mapping rules for extended rules reasoning (URI’s are omitted). First example
concerns Director concept and the following SQL query:

SELECT ID FROM Employee

WHERE Position = ′Director′;

The generated mapping rule is the following:

(defrule MAIN::DB_Def-Director
?r <- (triple (kind C) (p "rdf:type") (s ?x) (o "Director"))
=>
(bind ?query
(str-cat

"SELECT ID FROM Employee WHERE Position = ’Director’;"))
(?*access* runQueriesFromJess

"MAIN::DB_Def-Director"
?query
"subject;ID;object;Director;predicate;hrdf:type;kind;P;"
(str-cat ?x ";")
"triple" ?*conn* (engine)))

Second example establish mapping between knowsAbout role and the following
SQL query:

SELECT Subject, Object FROM RDFfacts

WHERE Predicate = ′knowsAbout′;

The generated mapping rule is the following:

(defrule MAIN::DB_Def-knowsAbout
?r <- (triple (p "knowsAbout") (s ?x) (o ?y) (kind C))
=>
(bind ?query
(str-cat "SELECT Subject, Object FROM RDFfacts

6.2. Example Queries 117

WHERE Predicate = ’knowsAbout’;"))
(?*access* runQueriesFromJess

"MAIN::DB_Def-knowsAbout"
?query
"subject;SUBJECT;object;OBJECT;predicate;knowsAbout;kind;P;"
(str-cat ?x ";" ?y ";")
"triple" ?*conn* (engine)))

6.2 Example Queries

To realize what could be possible questions to the system, we present the relevant
part of one count of charges in the Polish Penal Code:
“Article 296.

§1. Whoever, while under an obligation resulting from provisions of law, a deci-
sion of a competent authority or a contract to manage the property or busi-
ness of a natural or legal person, or an organizational unit which is not a legal
person, by exceeding powers granted to him or by failing to perform his du-
ties, causes it to suffer considerable material damage, shall be subject to the
penalty. . .

§2. If the perpetrator of the offence specified in §1 acts in order to gain a material
benefit. . .

§3. If the perpetrator of the offence specified in §1 or 2 causes significant material
damage of great extent. . .

§4. If the perpetrator of the offence specified in §1 or 3 acts unintentionally. . . ”

The specificity and the simple nature of the Hydra case is that all persons, pos-
sibly including the CEO, knew that they were committing a crime; therefore, the
model does not have concepts and data explaining their intentions. It is extremely
difficult to model and answer predicates like: “exceed powers granted to him”
(which could depend, for example, on taking an excessive risk) or “fail to perform
his duties”. A judge has to answer these questions that pertain to a given crime’s
attributes. At this stage our model does not contain such soft crime attributes. It
contains facts and hard concepts, such as “cause a company to suffer considerable
material damage”. The system is not prepared to answer directly all questions a
judge might ask. However, we could ask questions: all counts of criminal activities
of a person X, or all persons subject to counts of a charge C.

We have prepared five queries to test different aspects of the query answering
mechanism. Descriptions of queries are the following:

118 Chapter 6. Experimental Evaluation

Q1. Query searches for a person (?p) which caused damage (?d) in a company (?c)
and gained money in an illicit way. The damage has a high value (?h) which
is more than 100.000 Polish zloties. The illicit personal gain is accompanied
by the damage to the company.

Q2. Query searches for a company’s ID (?c) in which person with ID=11 is a
Principal and a person with ID=12 is a Director.

Q3. Query searches for a person (?p) which signed a falsified complex internal
legal document (?d). It is a document that can consist of several documents
that authorize the payment.

Q4. Query searches for a ID of the Penal Code article 299§1 and checks if the
person with ID=11 is a Director and falls under this article.

Q5. Query searches for IDs of articles 299§1 and 299§5 and checks if the person
with ID=84 is a Company’s Principal and falls under these two articles.

The first query contains only variables (without any values) and exploits only
hierarchy rules. The second query contains variables and values; it exploits onto-
logical rules (for inComplicityWith symmetric property). The third query contains
only variables and exploits hierarchy rules. The fourth and fifth queries contain
variables and values, and exploit various characteristics of the knowledge base as
coded by rules. The last two queries are computationally demanding - the property
fallsUnder needs almost all rules to be fired, because it requires evidence why a
person falls under a given article. Moreover, a rule can be fired more than once
in case when appropriate facts exist in an engine’s working memory. Graphical
representation of the queries is presented in Figure 6.2.

Queries were executed with the use of the hybrid reasoning process, the ex-
tended rules reasoning and with the pure forward and backward reasoning in the
Jess engine. Results of the executed queries are presented in Section 6.3.

All queries exploit mapping rules (because they are responsible for gathering
data from the relational databases). For anonymity, the numbers in responses to
queries are IDs of objects (persons, companies); if needed they can be transformed
into real names. Queries without any values need more time to execute because
SDL has to check all possible variable bindings from the database.

6.3 Performance Evaluation

For a practical demonstration of the SDL library we used the minimal ontology
model with artificially generated data sets. These data sets contain information
about: companies, employees, documents, invoices, money turnovers, legal sanc-
tions for this class of crimes, etc. (see Section 6.1). We prepared three databases

6.3. Performance Evaluation 119

?p
rdf:type

Person

Query 1?c

Company

rdf:type

worksFor

?g

isAccompaniedBy

achievesIllicitPersonal

Gain

rdf:type

?d

DamageTo

Company

rdf:type

?h

HighValue

rdf:type

hasValue

Caused

DamageIn

11
rdf:type Companys

Principal

Query 2

?c

Company

rdf:type

worksFor

12

worksFor

inComplicity

With

Director

rdf:type

?p
rdf:type

Person

Query 3

FalsifiedComplex

InternalLegalDocument

rdf:type

?d
isSignedBy

rdf:type

11
fallsUnder

rdf:type
Director

?aArt.296§1

Query 4

84
fallsUnder

rdf:type

?a2

Art.299§5

rdf:type

?a1

Art.299§1

rdf:type

fallsU
nder

Query 5

Companys

Principal

Figure 6.2: The test queries.

which differ in the size of the generated data. The number of companies and em-
ployees are the same in every database (20 companies and 240 people). Generated
databases are the following: 20, 100, 200. These three numbers reflect parameters

120 Chapter 6. Experimental Evaluation

of generation and are included in database’s names. All tests were performed three
times and average numbers were written in the tables.

The following tables: Company, Employee, GoodService and LegalActs are
fixed in the size of data. The numbers of tuples generated in databases are presented
in Table 6.1.

Table 6.1: Numbers of generated tuples in relational databases.
Table Database 20 Database 100 Database 200

Company 20 20 20
DamageAndGain 12 102 218

Document 5 54 133
Employee 240 240 240

GoodService 20 20 20
Invoice 19 96 193

LegalActs 14 14 14
MoneyTurnover 15 84 177

RDFfacts 37 294 597
Signature 16 174 430

Total 398 1098 2042

A mapping between a relational database and ontology consists of 57 mapping
rules. The minimal ontology model contains 42 SWRL DL-safe rules (75 Horn
clauses – some SWRL rules contain conjunctions of predicates in their heads). The
ontology was transformed into rules with the simple transformation, since it is suf-
ficient for our five test queries. We present also an efficiency comparison between
Horn-SHIQ transformation and the simple one. Sets of domain knowledge rules
contain:

• 116 rules for forward chaining generated in the simple transformation.
• 369 rules for backward chaining generated in the simple transformation.
• 3444 rules for the extended rules reasoning generated in the simple transfor-

mation.
• 3585 rules for the extended rules reasoning generated in the Horn-SHIQ

transformation.

We executed our five test queries on a PC machine with the following parameters:

• Processor: Intel Core2 Duo 2GHz, 4MB of cache memory.
• Random Access Memory: 2GB, 667MHz.
• Microsoft SQL Server 2008.

6.3. Performance Evaluation 121

• Java Heap Space was set at 1024MB.

The results of a rule-based query answering with the hybrid reasoning method
(HR) and the extended rules method (ExR) are presented in Table 6.2.

Table 6.2: Results of queries execution in our RQA methods.

Query and info
Database 20 Database 100 Database 200
HR ExR HR ExR HR ExR

Query 1 [ms] 781 219 1 328 891 1 922 969
Results [number] 54 54 474 474 1 036 1 036

Rules Fired [number] 74 251 441 1 630 796 3 001

Query 2 [ms] 2 734 437 37 141 4 125 163 968 19 391
Results [number] 1 1 1 1 1 1

Rules Fired [number] 1 076 1 506 36 260 13 179 225 381 29 593

Query 3 [ms] 2 875 359 36 344 14 938 183 047 116 593
Results [number] 18 18 322 322 1 004 1 004

Rules Fired [number] 1 367 2 005 38 457 41 755 232 583 359 681

Query 4 [ms] 5 437 1 859 128 719 35 656 Time 347 110
Results [number] 1 1 1 1 exceeded 1

Rules Fired [number] 2 040 5 467 57 091 58 520 10 min. 597 711

Query 5 [ms] 9 312 1 234 Time 34 500 Time 343 469
Results [number] 1 1 exceeded 1 exceeded 1

Rules Fired [number] 2 540 5 828 10 min. 61 199 10 min. 608 925

As we can see, simple queries (1, 2, 3) are executed in an efficient way (if we
look at how many rules were fired). For more complex reasoning (queries 4 and
5), further optimization is needed. Results presented in Table 6.2 show that our
extended rules approach beats the hybrid one. Since we did not apply all possible
optimizations (including supplementary magic sets, more efficient implementation,
counting, rule-dependent sips), we are convinced that the efficiency of our method
can be improved. Moreover, we notice that the algorithm presented in Figure 4.3
generates a number of excess rules. If we are able to remove such rules we will
increase the performance of the algorithm described in Figure 4.4.

We compared our results with the Jess engine using forward and backward
chaining separately. Appropriate scripts were loaded into two Jess engines. Facts
(the same as in databases) were loaded from files. A comparison of our results with
pure forward and backward reasoning in Jess system is presented in Table 6.3. The
times of executing queries are measured for the same database (loaded from the
files) and juxtaposed in the table under, respectively, F letter (for forward) and B
letter (for backward). Numbers below F and B indicate times of data loading into
working memory in milliseconds. While loading data from the third database, the

122 Chapter 6. Experimental Evaluation

Table 6.3: Results of queries execution and comparison to the pure forward and
backward Jess engines.

Query and info Database 20 Database 100
F B ExR F B ExR

Facts loading time [ms] 375 534 14 665 183 704

Query 1 [ms] 281 328 219 15 938 19 906 891
Results [number] 54 54 54 474 474 474

Rules Fired [number] 1 873 1 873 251 15 567 15 567 1 630
Query 2 [ms] 234 266 437 14 875 19 344 4 125
Results [number] 1 1 1 1 1 1

Rules Fired [number] 1 820 1 820 1 506 15 094 15 094 13 179
Query 3 [ms] 250 281 359 14 516 19 688 14 938
Results [number] 18 18 18 322 322 322

Rules Fired [number] 1 837 1 837 2 005 15 415 15 415 41 755
Query 4 [ms] 250 250 1 859 14 319 19 718 35 656
Results [number] 1 1 1 1 1 1

Rules Fired [number] 1 820 1 820 5 467 15 094 15 094 58 520
Query 5 [ms] 250 266 1 234 14 559 20 065 34 500
Results [number] 1 1 1 1 1 1

Rules Fired [number] 1 820 1 820 5 828 15 094 15 094 61 199

size of the Java heap space was reached (in both engines), so the queries could not
be executed. It seems obvious that for small databases, it is better to store data
(facts) in the engines’ working memory. But for the bigger databases, the problem
with scalability occurs. In such cases our approach seems promising.

We also executed test queries with extended rules method and Horn-SHIQ
transformation rules and compared them to the results achieved with the simple
transformation rules. The results of the comparison are shown in Table 6.4, where
HS and Simple express the execution of queries using Horn-SHIQ and simple
transformation, respectively. An addition of Horn-SHIQ rules makes query an-
swering process more complicated and computationally demanding. It results from
fact that Horn-SHIQ transformation contains more OWL axioms than the simple
transformation.

Presented results confirm that our approach significantly improves a scalability
of a rule-based system. It is a very important issue, because in the forward chaining
rule-based systems, facts have to be stored in the working memory which is, in
general, limited by the RAM memory. If we store facts outside of the memory and
load them only when they are needed, we achieve better scalability. Unfortunately,
in a case when we pose a query without any bound variable, we have to load all

6.4. Conclusion 123

Table 6.4: Results of queries execution with Horn-SHIQ transformation and ex-
tended rules compared to the simple transformation.

Query and info
Database 20 Database 100 Database 200
HS Simple HS Simple HS Simple

Query 1 [ms] 234 219 718 891 1 547 969
Results [number] 54 54 474 474 1 036 1 036

Rules Fired [number] 450 251 2 896 1 630 5 121 3 001

Query 2 [ms] 1 125 437 21 469 4 125 181 828 19 391
Results [number] 1 1 1 1 1 1

Rules Fired [number] 5 287 1 506 44 413 13 179 262 264 29 593

Query 3 [ms] 1 312 359 33 172 14 938 Java 116 593
Results [number] 18 18 322 322 Heap 1 004

Rules Fired [number] 6 228 2 005 53 842 41 755 Space 359 681

Query 4 [ms] 2 313 1 859 39 063 35 656 Java 347 110
Results [number] 1 1 1 1 Heap 1

Rules Fired [number] 6 748 5 467 63 213 58 520 Space 597 711

Query 5 [ms] 1 610 1 234 40 406 34 500 Java 343 469
Results [number] 1 1 1 1 Heap 1

Rules Fired [number] 7 111 5 828 66 061 61 199 Space 608 925

data from a database. In such a case our method will achieve worse results than the
traditional one, because we lose some time for data loading.

The SDL’s demonstration with above test queries and presented query answer-
ing methods are available on the demo site1. The minimal ontology model is added
to the demo material. On the demo site a user has an option to pose her/his own
query constructed from concepts and roles from the minimal ontology model. Two
databases are available: Database 20 and 100. The SDL demo took part in RuleML
Challenge competitions in 2010 [Bak 2010a] and 2011 [Bak 2011b].

6.4 Conclusion

In this chapter we demonstrated that the SDL library can be used to solve prac-
tical problems with formally defined semantics (in our case the minimal ontology
model). We prepared and executed five queries that are used to test different aspects
of the system.

The SDL library is useful for queries creation because a user of our system gets
an easier way to pose queries (due to ontology origin of rules) than using structural
constructions from SQL. The creation of queries, presented in the performance

1http://draco.kari.put.poznan.pl/

http://draco.kari.put.poznan.pl/

124 Chapter 6. Experimental Evaluation

evaluation, is extremely difficult when we want to use pure SQL constructions.
The strictly defined semantics (in the form of an ontology) is another advantage of
our tool.

Finally, we justified that our approaches increase the scalability of the Jess en-
gine and outperforms its rule-based query answering method.

In further research, we consider the development and implementation is the
reasoning path, which can be presented to the user and can explain what evidence
proves that a person falls under a concrete legal article. Analysis of justifications
may give important information on ontology incompleteness, which often happens
when a model is extended.

The future work could also consist in testing other ontologies with our tool. We
could improve the rule-based query answering algorithm by using optimizations
that concern extended rules and magic transformation.

CHAPTER 7

Conclusions and perspectives

The problem of RQA, undertaken in this thesis, can be perceived as a modifica-
tion of deductive databases approach (DD) [Gallaire 1984]. The main difference
is based on application of a description logic as an ontology, and thus the formal
semantics. Since we employ the Horn-SHIQ language, the rule representation is
similar to DD approaches. However, using ontologies we need to handle only unary
and binary predicates, while in deductive databases n-ary predicates (relations) are
permissible.

Deductive databases have been studied since 1980’s, and main application of
the rule methods in the database area have been inclusion of recursive queries into
SQL engines. Altogether, they have been out of fashion for many years mainly due
to lack of scalability. However, it is a fact that deductive databases are growing
in importance in last few years [Winslett 2006, Hellerstein 2010, Huang 2011] and
we are convinced that our research has a potential in commercial applications.

In recent years Datalog and related languages have been proposed for use
in a wide range of practical settings including security and privacy protocols,
program analysis, natural language processing, probabilistic inference, multi-
player games, telecom diagnosis, declarative networking and distributed systems
[Hellerstein 2010]. Significant improvement of Datalog engine efficiency have
been reported [Tekle 2011, Alviano 2012, Behrend 2011, Liu 2009].

This thesis concerned the following issues:

1. Presentation and evaluation of two novel methods of a rule-based query an-
swering (RQA) applicable to relational databases with formally defined se-
mantics. The methods have been incorporated into the developed SDL envi-
ronment. The second method is related to the magic transformation, however
no comparison with known versions of magic transformations on known re-
sults or accepted benchmarks has been done.

2. Development of the knowledge base of two economic crimes, namely fraud-
ulent disbursement and money laundering. The knowledge base was imple-
mented as a Horn-SHIQ ontology extended by DL-safe rules.

3. Demonstration that the proposed methods gain the performance of a Rete-
based engine for these logic crime models.

126 Chapter 7. Conclusions and perspectives

We conclude our work pointing out the main results in Section 7.1 and indicat-
ing directions for future research in Section 7.2.

7.1 Main Results

We proposed two methods of a query evaluation in a rule-based system where data
is stored in a relational database and queries can be posed at a conceptual (onto-
logical) level. We designed a knowledge base of economic crimes which describes
fraudulent disbursement and money laundering in order to discover crime activities
and to suggest legal sanctions for crime perpetrators. The key contributions include
the following results (listed in the order of significance):

• We devised a novel modification of a magic transformation which intro-
duces extended rules. The approach exploits forward chaining that is based
on the Rete algorithm and combines the Jess engine, a relational database
and a Horn-SHIQ ontology. The combination allows to query a relational
database at a conceptual level. The extended rules method is Rete-dependent.
The method is defined over source data from a relational database, and
with the Rete-based forward chaining reasoning over extended, goal- and
dependency-directed rules. The novel approach is its generality. First of
all, extended rules of the system are constructed independently of a query,
for all the binding patterns. Moreover, rules generation is performed only
once, but with possibility to define diverse, specialised strategies. Such ap-
proach increases also a scalability of a pure reasoning engine. In addition,
the extended rules approach is more efficient than a query answering with
standard forward or backward evaluation, outperforming our hybrid reason-
ing method. Finally, this approach is more flexible and more scalable in
comparison to the pure Jess reasoning.

• We formulated a knowledge base of economic crimes: fraudulent disburse-
ment and money laundering as a minimal ontology model. The ontology de-
scribes a real crime case, the Hydra case, using Horn-SHIQ language and
is implemented in the OWL language supported by SWRL rules. Reasoning
and query answering with the proposed knowledge base determine the pos-
sible types of legal sanctions for crime perpetrators and enable to discover
their crime activities.

• We proposed a straightforward mapping method between a knowledge base
and a relational database. The method is based on so-called essential pred-
icates and SELECT-PROJECT-JOIN SQL queries. As a result, users of
our system will be provided with simplified and more convenient way to

7.2. Future Work 127

pose queries (due to ontology origin of rules) than SQL structural construc-
tions. The creation of queries, presented in the performance evaluation, is
extremely difficult when we want to use pure SQL constructions.

• We proposed a novel approach to query a relational database at a conceptual
level using a hybrid approach. The approach combines forward and back-
ward chaining performed by the Jess engine in a rule-based query answering
task. This is a Jess-dependent method.

• We developed a new SDL (Semantic Data Library) framework, offering the
implementation of both our methods of a rule-based query answering: hy-
brid and extended rules reasoning. The SDL tool can be used in systems that
require many rules and lots of data which currently are processing in an inef-
ficient way. Moreover, an answer for a query, evaluated with SDL, is always
up-to-date because the query is executed on the current state of a relational
database. Since SDL provides an application programming interface, it can
be used as a library or as a standalone application.

• We evaluated our two approaches of a rule-based query answering for a
knowledge base of economic crimes. We compared reasoning techniques
available in the Jess engine with our proposed methods. Performed exper-
iments justified the assumption that optimization of a rule-based query an-
swering is possible in the state-of-the-art Jess reasoning engine, which is an
implementation of the Rete algorithm.

7.2 Future Work

We consider the proposed methods of RQA as a starting point for further research
direction towards modifications of the extended rules approach. This method is
more general than the hybrid reasoning technique, which can be applied only in
the Jess engine (it exploits Jess-specific reasoning).

In further research, we will consider new sideways information passing strate-
gies that could be rule-dependent in a generation of the extended rules (rule-
dependent sip strategy). Currently, we proposed a general sip which is applicable
to each basic rule generated in the transformation of a Horn-SHIQ ontology into
rules.

Another direction of the future work is the research towards OWL 2, which
contains profiles assigned to reasoning with rules and a query answering. Since
we considered only OWL 1.1 in this thesis, this direction seems a very natural
consequence of our work.

128 Chapter 7. Conclusions and perspectives

In both our RQA methods the head of each rule contains only the assert com-
mand. We would like to be able to handle other possible commands like retract (it
deletes data) or modify. The addition of these commands would allow to manage
data according to its semantics and thus extend the possible field of application.

The future work should focus on concentration in developing the explanation
service, which can present individual reasoning steps to a user and thus explain the
results of a given query.

We have already obtained positive results of tests performed on the prototype
system. The comparison of our results and those obtained in a pure Jess system
seems to be an adequate and objective assessment of usefulness of our work. In
future, we will be aimed at making detailed comparisons with systems using vari-
ants of magic transformation. Ultimately we would like also to apply the sys-
tem to the OpenRuleBench suite of benchmarks. Such comparison requires an
extension of our methods to handle predicates with an arbitrary number of argu-
ments. Moreover, it requires a development effort to implement the combination
of OpenRuleBench tests with our RQA methods. The comparison with ontology
benchmarks like LUBM, is also planned. However, it would require a method for
generating data stored in a relational database. It is worth noticing that in most
benchmarks reasoning engines are tested with all data in RAM memory, whereas
our system is a complete platform that fetches only needed data to the working
memory. This fact would be advantageous if combined rules execution and load-
ing times were tested.

In further research, we may also consider the comparison of our mapping
method with other similar approaches, including Quonto, D2RQ, R2RML recom-
mendation (RDB to RDF Mapping Language) and commercial systems for storing
RDF data. A method for selecting essential predicates from an ontology would be
valuable, since we need to choose these predicates manually.

We will continue our research aiming to elaborate a new method of rules trans-
formation, which would allow for more efficient application of rules in a query
answering task. The implementation in other Rete-based engines, e.g. Drools, is
also recommended.

Finally, an obvious future research plan include the implementation and practi-
cal verification of the proposed methods in a tool that could be used by investiga-
tors, prosecutors and policemen each day of their work. We observed that a way of
creating rules in a convenient way is needed. We have already started the research
in this direction [Nowak 2012].

Rule-based systems will soon dominate in areas of combating banking and in-
surance fraud, as they enter into offers of major companies: IBM, FICO, Experian.

7.2. Future Work 129

In addition, there are active start-ups with comprehensive offers: Logicblox1 and
Highfleet2.

The final goal would be application of financial knowledge bases in jurisdiction
on a wide scale. In addition to limitations discussed in Section 3.5 that are of a
conceptual level there are other serious organizational and technical obstacles.

We put facts into structures manually and designed the minimal ontology based
on 10 large cases. This number is much too small to use statistical methods. Ob-
taining data for live cases is legally restricted and in Poland almost impossible.
Anonymization and cleaning data is very expensive (in one of the cases, H. Mu-
sialski case, the name of his company appeared in documents in 72 forms). Even
if one becomes an expert for police, prosecutors or judges (which happened in the
group within which we were working), the details of cases cannot be used.

To automatically process laws that are expressed in natural language, they must
be made machine-readable. There are several approaches to making legal texts
machine-readable, depending on the goals and purposes to be served by the pro-
cessed text. Among the approaches, legal texts may be processed to link docu-
ments, to annotate for information extraction, and to translate them to a formal
representation [Wyner 2012].

We need machine ontology instantiation, rather than manual processing. Our
group is now preparing a prototype of the system that would be capable of doing
this.

It is widely believed that electronic discovery (or e-discovery or eDiscovery) in
investigations and court proceeding that deals with the exchange of information in
electronic format, is a necessary condition to prosecute financial crimes. In the US
“not one banker, not one executive on Wall Street” [Frontline 2013] faced criminal
prosecution for deliberate packaging of toxic loans and selling them to investors
with regard in financial crisis of 2008 because people involved at the top of a major
financial organizations (for whom it is very difficult to prove mens rea – some kind
of evil intent and the system treats them as people who made mistakes negligently),
or because there are too many complexities involved.

In the US the e-discovery market, presenting legal data in electronic format, is
expected to grow from $976 million in 2012 to over $2.3 billion in 2016, represent-
ing an average annual growth rate of over 24% over the next four years. It is rather
difficult to expect this to happen in Poland in the next 10 years.

1http://www.logicblox.com/presentations/sigmod11-tutorial-all.
pdf

2http://www.highfleet.com

http://www.logicblox.com/presentations/sigmod11-tutorial-all.pdf
http://www.logicblox.com/presentations/sigmod11-tutorial-all.pdf
http://www.highfleet.com

APPENDIX A

Example Use of the Extended Rules
Method

In this appendix we present an example application of the extended rules method
to set of two rules. The application is based on the example presented in Section
2.1.2.3. For the convenience of analysing current example we present data and
rules from the previous one.

The extensional part of the knowledge base is presented in Table A.1 whereas
intensional part contains rules (A.1) and (A.2).

Table A.1: An example extensional database.
hasChild Parent Child

p11 p12
p11 p13
p12 p14
p13 p15
p21 p22
p21 p23
p22 p24
p23 p25

hasChild(?x, ?y), hasChild(?x, ?z)

→ hasSiblings(?y, ?z) (A.1)

hasChild(?x, ?z), hasSiblings(?x, ?y), hasChild(?y, ?w)

→ hasCousin(?z, ?w) (A.2)

Applying the gsip algorithm to the set of basic rules (A.1) and (A.2) we obtain
the following sets of rules which correspond to the steps of the gsip algorithm
presented in Figure 4.3:

1. One rule which is generated by adding the goal connected with the head
predicate:

hasChild(?x, ?y), hasChild(?x, ?z), hasSiblings(?y, ?z)C

132 Appendix A. Example Use of the Extended Rules Method

→ hasSiblings(?y, ?z) (A.3)

hasChild(?x, ?z), hasSiblings(?x, ?y),

hasChild(?y, ?w), hasCousin(?z, ?w)C

→ hasCousin(?z, ?w) (A.4)

2. The set of rules with dependent predicates where all the variables from the
head are unbound. In such case, the variables are replaced by the nil value:

hasSiblings(nil, nil)C → hasChild(nil, nil)C (A.5)

hasSiblings(nil, nil)C → hasChild(nil, nil)C (A.6)

hasCousin(nil, nil)C → hasChild(nil, nil)C (A.7)

hasCousin(nil, nil)C → hasChild(nil, nil)C (A.8)

3. The set of rules with dependent predicates and different binding patterns of
the head predicate:

hasSiblings(?y, ?z)C , ?z ̸= nil → hasChild(nil, ?z)C (A.9)

hasSiblings(?y, ?z)C , ?y ̸= nil → hasChild(nil, ?y)C (A.10)

hasCousin(?z, ?w)C , ?w ̸= nil → hasChild(nil, ?w)C (A.11)

hasCousin(?z, ?w)C , ?z ̸= nil → hasChild(nil, ?z)C (A.12)

4. The set of rules with dependencies between proper and called predicates:

hasChild(?x, ?y), hasSiblings(?y, ?)C

→ hasChild(?x, nil)C (A.13)

hasChild(?x, ?z), hasSiblings(?, ?z)C

→ hasChild(?x, nil)C (A.14)

hasChild(?x, ?z), hasCousin(?z, ?)C

→ hasSiblings(?x, nil)C (A.15)

hasChild(?y, ?w), hasCousin(?, ?w)C

→ hasSiblings(nil, ?y)C) (A.16)

hasChild(?x, ?z), hasSiblings(?x, ?y), hasCousin(?z, ?w)C

133

→ hasChild(?y, nil)C (A.17)

hasChild(?y, ?w), hasSiblings(?x, ?y), hasCousin(?z, ?w)C

→ hasChild(?x, nil)C (A.18)

As we can see the algorithm generates a number of excess rules (for example
(A.6) and (A.8)). This can be easily corrected by comparing rules each other, and
by removing repetitions. Currently approach does not remove such excess rules.

We now evaluate query (A.19), looking for all cousins of a person p14 (it is the
same query as in Section 2.1.2.3 query (2.6). The query is evaluated according to
the algorithm presented in Figure 4.4.

hasCousin(p14, ?x) → (A.19)

Table A.2: Example evaluation of query hasCousin(p14, ?x) with extended rules
RQA method Step 2.

No. Goal Used Added Inferred
rule fact fact

0 hasCousin(p14, nil)
C - - -

1 hasCousin(p14, ?x)
C (A.12) - hasChild(nil, p14)

C

2 hasChild(nil, p14)
C DB hasChild(p12, p14) -

3 hasCousin(p14, nil)
C (A.15) - hasSiblings(p12, nil)

C

4 hasSiblings(p12, nil)
C (A.10) - hasChild(nil, p12)

C

5 hasChild(nil, p12)
C DB hasChild(p11, p12) -

6 hasSiblings(p12, nil)
C (A.13) - hasChild(p11, nil)

C

7 hasChild(p11, nil)
C DB hasChild(p11, p13) -

8 hasSiblings(p12, nil)
C (A.3) - hasSiblings(p12, p13)

9 hasCousin(p14, ?x)
C (A.17) - hasChild(p13, nil)

C

10 hasChild(p13, nil)
C DB hasChild(p13, p15) -

11 hasCousin(p14, ?x)
C (A.4) - hasCousin(p14, p15)

12 - (A.20) - saveResults(p15)

In Step 1 the QUERYRULE is created of the following form:

hasCousin(p14, ?x) → saveResults(?x) (A.20)

where saveResults predicate is used to save value of variables each time when
QUERYRULE fires.

134 Appendix A. Example Use of the Extended Rules Method

In Step 2 the following reasoning is performed. We assume that “Added fact”
means that the fact was added to the working memory and comes from the rela-
tional database, and “Inferred fact” means that the fact is a result of the reasoning
process. In case when fact is added, it is denoted in column "Used rule" as "DB".
Point 1 of Step 2 is represented as No. 0 in Table A.2 which results in addition of
called fact hasCousin(p14, nil)

C in the reasoning engine’s working memory.
In Step 3 the result is returned and QUERYRULE is removed.
It is noticeable that the number of steps in the presented method is larger that for

backward or forward chaining, nevertheless the execution time is shorter compared
to these two methods. The reason for this issue is that extended rules are generated
to pass only one binding of a variable from the body to the head of a rule.

Bibliography

[Abiteboul 1995] Serge Abiteboul, Richard Hull and Victor Vianu. Foundations
of databases. Addison-Wesley, 1995. (Cited on pages 14, 16, 18, 20, 22
and 26.)

[ACFE 2008] Association of Certified Fraud Examiners ACFE. Report to the
Nation on Occupational Fraud and Abuse. http://www.acfe.com/

uploadedFiles/ACFE_Website/Content/documents/2008-rttn.pdf,
2008. Accessed: 04/04/2013. (Cited on page 42.)

[ACFE 2012] Association of Certified Fraud Examiners ACFE. Re-
port to the Nation on Occupational Fraud and Abuse. http:

//www.acfe.com/uploadedFiles/ACFE_Website/Content/rttn/

2012-report-to-nations.pdf, 2012. Accessed: 04/04/2013. (Cited on
page 43.)

[Albrecht 2008] Chad Albrecht, Mary-Jo Kranacher and Steve Albrecht. Asset
Misappropriation Research White Paper for the Institute for Fraud Preven-
tion. http://www.theifp.org/research-grants/IFP-Whitepaper-5.
pdf, 2008. Accessed: 04/04/2013. (Cited on page 42.)

[Albrecht 2011] W.S. Albrecht, C.C. Albrecht, C.O. Albrecht and M.F. Zimbel-
man. Fraud examination. Cengage Learning, 2011. (Cited on pages 42, 43
and 44.)

[Aleven 2003] Vincent Aleven. Using background knowledge in case-based legal
reasoning: a computational model and an intelligent learning environment.
Artificial Intelligence, vol. 150, pages 183–237, 2003. (Cited on pages 54
and 76.)

[Alviano 2012] Mario Alviano, Nicola Leone, Marco Manna, Giorgio Terracina
and Pierfrancesco Veltri. Magic-Sets for Datalog with Existential Quanti-
fiers. In Pablo Barceló and Reinhard Pichler, editors, Datalog in Academia
and Industry, volume 7494 of Lecture Notes in Computer Science, pages
31–43. Springer Berlin Heidelberg, 2012. (Cited on page 125.)

[Baader 1991] Franz Baader and Philipp Hanschke. A scheme for integrating con-
crete domains into concept languages. pages 452–457, 1991. (Cited on
page 31.)

http://www.acfe.com/uploadedFiles/ACFE_Website/Content/documents/2008-rttn.pdf
http://www.acfe.com/uploadedFiles/ACFE_Website/Content/documents/2008-rttn.pdf
http://www.acfe.com/uploadedFiles/ACFE_Website/Content/rttn/2012-report-to-nations.pdf
http://www.acfe.com/uploadedFiles/ACFE_Website/Content/rttn/2012-report-to-nations.pdf
http://www.acfe.com/uploadedFiles/ACFE_Website/Content/rttn/2012-report-to-nations.pdf
http://www.theifp.org/research-grants/IFP-Whitepaper-5.pdf
http://www.theifp.org/research-grants/IFP-Whitepaper-5.pdf

136 Bibliography

[Baader 1999] Franz Baader and Ulrike Sattler. Expressive number restrictions
in Description Logics. Journal of Logic and Computation, vol. 9, pages
319–350, 1999. (Cited on page 35.)

[Baader 2003] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele
Nardi and Peter F. Patel-Schneider, editors. The description logic hand-
book: theory, implementation, and applications. Cambridge University
Press, New York, NY, USA, 2003. (Cited on pages 30 and 35.)

[Baader 2008] Franz Baader, Sebastian Brandt and Carsten Lutz. Pushing the EL
Envelope Further. In Kendall Clark and Peter F. Patel-Schneider, editors,
In Proceedings of the OWLED 2008 DC Workshop on OWL: Experiences
and Directions, 2008. (Cited on page 40.)

[Bak 2008] Jaroslaw Bak and Czeslaw Jedrzejek. Querying relational databases
using ontology, rules and Jess reasoning engine. Studia z Automatyki i
Informatyki, vol. T. 33, pages 24–44, 2008. (Cited on page 5.)

[Bak 2009] Jaroslaw Bak, Czeslaw Jedrzejek and Maciej Falkowski. Usage of
the Jess Engine, Rules and Ontology to Query a Relational Database. In
Proceedings of the 2009 International Symposium on Rule Interchange
and Applications, RuleML ’09, pages 216–230, Berlin, Heidelberg, 2009.
Springer-Verlag. (Cited on pages 5, 78, 98 and 104.)

[Bak 2010a] Jaroslaw Bak, Maciej Falkowski and Czeslaw Jedrzejek. Application
of the SDL Library to Reveal Legal Sanctions for Crime Perpetrators in Se-
lected Economic Crimes: Fraudulent Disbursement and Money Launder-
ing. In Monica Palmirani, M. Omair Shafiq, Enrico Francesconi and Fabio
Vitali, editors, Proceedings of the RuleML-2010 Challenge, at the 4th In-
ternational Web Rule Symposium, Washington, DC, USA, October, 21-23,
2010, volume 649 of CEUR Workshop Proceedings. CEUR-WS.org, 2010.
(Cited on pages 6 and 123.)

[Bak 2010b] Jaroslaw Bak and Czeslaw Jedrzejek. Application of an ontology-
based model to a selected fraudulent disbursement economic crime. In
Proceedings of the 2009 international conference on AI approaches to the
complexity of legal systems: complex systems, the semantic web, ontolo-
gies, argumentation, and dialogue, AICOL-I/IVR-XXIV’09, pages 113–
132, Berlin, Heidelberg, 2010. Springer-Verlag. (Cited on page 5.)

[Bak 2010c] Jaroslaw Bak, Czeslaw Jedrzejek and Maciej Falkowski. Application
of an ontology-based and rule-based model to selected economic crimes:
fraudulent disbursement and money laundering. In Proceedings of the 2010

Bibliography 137

international conference on Semantic web rules, RuleML’10, pages 210–
224, Berlin, Heidelberg, 2010. Springer-Verlag. (Cited on page 5.)

[Bak 2011a] Jaroslaw Bak, Grażyna Brzykcy and Czeslaw Jedrzejek. Extended
rules in knowledge-based data access. In Proceedings of the 5th interna-
tional conference on Rule-based modeling and computing on the seman-
tic web, RuleML’11, pages 112–127, Berlin, Heidelberg, 2011. Springer-
Verlag. (Cited on pages 5, 78, 98, 104 and 105.)

[Bak 2011b] Jaroslaw Bak, Maciej Falkowski and Czeslaw Jedrzejek. The SDL
Library: Querying a Relational Database with an Ontology, Rules and the
Jess Engine. In Stefano Bragaglia, Carlos Viegas Damásio, Marco Mon-
tali, Alun Preece, Charles Petrie, Mark Proctor and Umberto Straccia, ed-
itors, Proceedings of the 5th International RuleML2011@BRF Challenge,
co-located with the 5th International Rule Symposium, Fort Lauderdale,
Florida, USA, November 3-5, 2011, volume 799 of CEUR Workshop Pro-
ceedings. CEUR-WS.org, 2011. (Cited on pages 6 and 123.)

[Bak 2013] Jaroslaw Bak, Jolanta Cybulka and Czeslaw Jedrzejek. Ontological
Modeling of a Class of Linked Economic Crimes. T. Computational Col-
lective Intelligence, vol. 9, pages 98–123, 2013. (Cited on pages 5 and 51.)

[Bancilhon 1986a] Francois Bancilhon, David Maier, Yehoshua Sagiv and Jef-
frey D Ullman. Magic sets and other strange ways to implement logic
programs (extended abstract). In Proceedings of the fifth ACM SIGACT-
SIGMOD symposium on Principles of database systems, PODS ’86, pages
1–15, New York, NY, USA, 1986. ACM. (Cited on pages 28, 87 and 98.)

[Bancilhon 1986b] Francois Bancilhon and Raghu Ramakrishnan. An amateur’s
introduction to recursive query processing strategies. SIGMOD Rec.,
vol. 15, no. 2, pages 16–52, June 1986. (Cited on pages 26 and 98.)

[Beckett 2004] Dave Beckett. RDF/XML Syntax Specification (Revised). W3C
recommendation, W3C, 2004. (Cited on page 82.)

[Beeri 1987] Catriel Beeri and Raghu Ramakrishnan. On the Power of Magic. In
Journal of Logic Programming, pages 269–283, 1987. (Cited on pages 5,
26, 28, 29 and 98.)

[Behrend 2011] Andreas Behrend. A Uniform Fixpoint Approach to the Im-
plementation of Inference Methods for Deductive Databases. CoRR,
vol. abs/1108.5451, 2011. (Cited on page 125.)

138 Bibliography

[Bezzazi 2007] El-Hassan Bezzazi. Building an Ontology That Helps Iden-
tify Criminal Law Articles That Apply to a Cybercrime Case. In
Joaquim Filipe, Boris Shishkov and Markus Helfert, editors, ICSOFT
(PL/DPS/KE/MUSE), pages 179–185. INSTICC Press, 2007. (Cited on
pages 3, 77 and 78.)

[Biasiotti 2008] Mariangela Biasiotti, Enrico Francesconi, Monica Palmirani, Gio-
vanni Sartor and Fabio Vitali. Legal Informatics and Management of Leg-
islative Documents, 2008. (Cited on pages 2 and 75.)

[Bizer 2004] Chris Bizer and Andy Seaborne. D2RQ treating non-RDF databases
as virtual RDF graphs. In ISWC, 2004. (Cited on page 99.)

[Bizer 2006] Christian Bizer and Richard Cyganiak. D2R Server – Publishing
Relational Databases on the Semantic Web. Poster at the 5th International
Semantic Web Conference (ISWC2006), 2006. (Cited on page 99.)

[Brass 2010] Stefan Brass. Implementation Alternatives for Bottom-Up Evalu-
ation. In Manuel Hermenegildo and Torsten Schaub, editors, Techni-
cal Communications of the 26th International Conference on Logic Pro-
gramming, volume 7 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 44–53, Dagstuhl, Germany, 2010. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik. (Cited on pages 29 and 98.)

[Breuker 2009] Joost Breuker. Dreams, awakenings and paradoxes of on-
tologies, invited talk presentation, 3rd Workshop on Legal Ontologies
and Artificial Intelligence Techniques. http://ontobra.comp.ime.

eb.br/apresentacoes/keynote-ontobra-2009.ppt, 2009. Accessed:
04/04/2013. (Cited on pages 2, 74, 75, 76 and 79.)

[Bry 1990] François Bry. Query evaluation in recursive databases: bottom-up
and top-down reconciled. Data Knowl. Eng., vol. 5, no. 4, pages 289–312,
October 1990. (Cited on pages 26 and 29.)

[Bry 2007] François Bry, Norbert Eisinger, Thomas Eiter, Tim Furche, Georg Got-
tlob, Clemens Ley, Benedikt Linse, Reinhard Pichler and Fang Wei. Foun-
dations of Rule-Based Query Answering. In Grigoris Antoniou, Uwe Aß-
mann, Cristina Baroglio, Stefan Decker, Nicola Henze, Paula-Lavinia Pa-
tranjan and Robert Tolksdorf, editors, Reasoning Web, volume 4636 of
Lecture Notes in Computer Science, pages 1–153. Springer, 2007. (Cited
on pages 15, 21, 25, 26 and 29.)

http://ontobra.comp.ime.eb.br/apresentacoes/keynote-ontobra-2009.ppt
http://ontobra.comp.ime.eb.br/apresentacoes/keynote-ontobra-2009.ppt

Bibliography 139

[Calvanese 2006] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo,
Maurizio Lenzerini and Riccardo Rosati. Data Complexity of Query An-
swering in Description Logics. In Doherty et al. [Doherty 2006], pages
260–270. (Cited on page 38.)

[Calvanese 2013] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo,
Maurizio Lenzerini and Riccardo Rosati. Data complexity of query an-
swering in description logics. Artif. Intell., vol. 195, pages 335–360, 2013.
(Cited on page 94.)

[Casanovas 2009] Pompeu Casanovas, Núria Casellas and Joan-Josep Vallbé. An
Ontology-Based Decision Support System for Judges. In Proceedings of the
2009 conference on Law, Ontologies and the Semantic Web: Channelling
the Legal Information Flood, pages 165–175, Amsterdam, The Nether-
lands, The Netherlands, 2009. IOS Press. (Cited on page 76.)

[Casellas 2008] N. Casellas. Modelling Legal Knowledge through Ontologies.
OPJK: the Ontology of Professional Judicial Knowledge. PhD thesis, Insti-
tute of Law and Technology, Autonomous University of Barcelona, 2008.
(Cited on pages 2, 75 and 76.)

[Community 2012] JBoss Community. Drools - The Business Logic integra-
tion Platform. http://www.jboss.org/drools/, 2012. Accessed:
04/04/2013. (Cited on page 4.)

[Consortium 2006] WWW Consortium. OWL 1.1 Web Ontology Language.
http://www.w3.org/Submission/owl11-overview/, 2006. Accessed:
04/04/2013. (Cited on pages 31 and 103.)

[Consortium 2008] WWW Consortium. SPARQL Query Language for
RDF. http://www.w3.org/TR/rdf-sparql-query/, 2008. Accessed:
04/04/2013. (Cited on page 95.)

[Consortium 2012] WWW Consortium. OWL 2 Web Ontology Language Profiles
(Second Edition). http://www.w3.org/TR/owl2-profiles/, 2012. Ac-
cessed: 04/04/2013. (Cited on page 31.)

[Corcho 2003] Oscar Corcho, Mariano Fernández-López and Asunción Gómez-
Pérez. Methodologies, tools and languages for building ontologies: where
is their meeting point? Data Knowl. Eng., vol. 46, no. 1, pages 41–64, July
2003. (Cited on page 76.)

[Cybulka 2008] Jolanta Cybulka, Czeslaw Jedrzejek and Jacek Martinek. Police
Investigation Management System Based on the Workflow Technology. In

http://www.jboss.org/drools/
http://www.w3.org/Submission/owl11-overview/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/owl2-profiles/

140 Bibliography

Enrico Francesconi, Giovanni Sartor and Daniela Tiscornia, editors, JU-
RIX, volume 189 of Frontiers in Artificial Intelligence and Applications,
pages 150–159. IOS Press, 2008. (Cited on page 50.)

[Cybulka 2009] Jolanta Cybulka. Applying the c.DnS Design Pattern to Obtain
an Ontology for Investigation Management System. In Proceedings of the
1st International Conference on Computational Collective Intelligence. Se-
mantic Web, Social Networks and Multiagent Systems, ICCCI ’09, pages
516–527, Berlin, Heidelberg, 2009. Springer-Verlag. (Cited on pages 51
and 77.)

[Cybulka 2010a] Jolanta Cybulka. Fuel Crime Conceptualization through Spe-
cialization of Ontology for Investigation Management System. In Ngoc-
Thanh Nguyen and Ryszard Kowalczyk, editors, Transactions on Compu-
tational Collective Intelligence II, volume 6450 of Lecture Notes in Com-
puter Science, pages 123–146. Springer Berlin Heidelberg, 2010. (Cited
on page 78.)

[Cybulka 2010b] Jolanta Cybulka. Metoda tworzenia ontologii na potrzeby
systemu wspomagającego prace dochodzeniowo-śledcze w sprawach
przestępstw gospodarczych. In Jacek Gołaczyński, editor, Informatyza-
cja postępowania sądowego i administracji publicznej, pages 359–370.
Wydawnictwo C. H. Beck, 2010. (Cited on page 51.)

[Dantsin 2001] Evgeny Dantsin, Thomas Eiter, Georg Gottlob and Andrei
Voronkov. Complexity and expressive power of logic programming. ACM
Comput. Surv., vol. 33, no. 3, pages 374–425, September 2001. (Cited on
pages 18 and 94.)

[Darlington 2008] Mansur J. Darlington and Steve J. Culley. Investigating ontol-
ogy development for engineering design support. Advanced Engineering
Informatics, vol. 22, no. 1, pages 112–134, 2008. (Cited on page 76.)

[Dietrich 1989] S.W. Dietrich. A performance comparison of top-down recursive
query evaluation strategies on Datalog benchmarks. In System Sciences,
1989. Vol.II: Software Track, Proceedings of the Twenty-Second Annual
Hawaii International Conference on, volume 2, pages 621 –629 vol.2, jan
1989. (Cited on page 26.)

[Doherty 2006] Patrick Doherty, John Mylopoulos and Christopher A. Welty, ed-
itors. Proceedings, tenth international conference on principles of knowl-
edge representation and reasoning, lake district of the united kingdom, june
2-5, 2006. AAAI Press, 2006. (Cited on pages 139 and 150.)

Bibliography 141

[Donini 1998] FrancescoM. Donini, Maurizio Lenzerini, Daniele Nardi and An-
drea Schaerf. AL-log: Integrating Datalog and Description Logics. Journal
of Intelligent Information Systems, vol. 10, pages 227–252, 1998. (Cited
on page 39.)

[Drabent 2009] Włodzimierz Drabent, Thomas Eiter, Giovambattista Ianni,
Thomas Krennwallner, Thomas Lukasiewicz and Jan Małuszyński. Hy-
brid Reasoning with Rules and Ontologies. In François Bry and Jan
Małuszyński, editors, Semantic Techniques for the Web, volume 5500 of
Lecture Notes in Computer Science, pages 1–49. Springer Berlin Heidel-
berg, 2009. (Cited on page 40.)

[Eiter 2008a] Thomas Eiter, Georg Gottlob, Magdalena Ortiz and Mantas Šimkus.
Query Answering in the Description Logic Horn-SHIQ. In Proceedings
of the 11th European conference on Logics in Artificial Intelligence, JELIA
’08, pages 166–179, Berlin, Heidelberg, 2008. Springer-Verlag. (Cited on
pages 38, 39 and 94.)

[Eiter 2008b] Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, Roman
Schindlauer and Hans Tompits. Combining answer set programming with
description logics for the Semantic Web. Artificial Intelligence, vol. 172,
no. 12–13, pages 1495 – 1539, 2008. (Cited on page 40.)

[Falkowski 2009] Maciej Falkowski and Czeslaw Jedrzejek. An efficient SQL-
based querying method to RDF schemata. Control and Cybernetics,
vol. 38, no. 1, pages 193–213, 2009. (Cited on page 95.)

[FATF 2012] Financial Action Task Force FATF. Money Laundering. http://

www.fatf-gafi.org/pages/faq/moneylaundering/, 2012. Accessed:
04/04/2013. (Cited on pages 43 and 47.)

[Fodor 2011] Paul Fodor and Michael Kifer. Transaction Logic with Defaults and
Argumentation Theories. In John P. Gallagher and Michael Gelfond, edi-
tors, ICLP (Technical Communications), volume 11 of LIPIcs, pages 162–
174. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011. (Cited on
page 74.)

[Forgy 1982] C. L. Forgy. Rete: A fast algorithm for the many pattern/many object
pattern match problem. Artificial Intelligence, vol. 19, pages 17–37, 1982.
(Cited on pages 4, 5, 24 and 82.)

[Frontline 2013] PBS Frontline. The Untouchables. http://www.abc.net.

au/4corners/stories/2013/03/18/3715426.htm, 2013. Accessed:
04/04/2013. (Cited on page 129.)

http://www.fatf-gafi.org/pages/faq/moneylaundering/
http://www.fatf-gafi.org/pages/faq/moneylaundering/
http://www.abc.net.au/4corners/stories/2013/03/18/3715426.htm
http://www.abc.net.au/4corners/stories/2013/03/18/3715426.htm

142 Bibliography

[Gallaire 1978] Hervé Gallaire and Jack Minker, editors. Logic and data bases,
symposium on logic and data bases, centre d’études et de recherches de
toulouse, 1977, Advances in Data Base Theory. Plemum Press, 1978.
(Cited on page 13.)

[Gallaire 1984] Herve Gallaire, Jack Minker and Jean-Marie Nicolas. Logic and
Databases: A Deductive Approach. ACM Comput. Surv., vol. 16, no. 2,
pages 153–185, June 1984. (Cited on page 125.)

[Gallier 1987] Jean H. Gallier. Logic for computer science: Foundations of auto-
matic theorem proving. Wiley, 1987. (Cited on page 21.)

[Gangemi 2007] Aldo Gangemi, Jos Lehmann, Valentina Presutti, Malvina Nissim
and Carola Catenacci. C-ODO: an OWL Meta-model for Collaborative
Ontology Design. In Natalya Fridman Noy, Harith Alani, Gerd Stumme,
Peter Mika, York Sure and Denny Vrandecic, editors, CKC, volume 273 of
CEUR Workshop Proceedings. CEUR-WS.org, 2007. (Cited on page 52.)

[Gangemi 2008] Aldo Gangemi. Norms and plans as unification criteria for social
collectives. Autonomous Agents and Multi-Agent Systems, vol. 17, no. 1,
pages 70–112, August 2008. (Cited on page 77.)

[Goczyła 2011] Krzysztof Goczyła. Ontologie w systemach informatycznych.
Akademicka Oficyna Wydawnicza EXIT, 2011, Warszawa, Poland, 2011.
(Cited on page 50.)

[Gómez-Pérez 2008] A. Gómez-Pérez, C. Suárez de Figueroa Baonza M. and
B. Villazón. NeOn Methodology for Building Ontology Networks: Ontol-
ogy Specification, excerpt from NeOn Deliverable D5.4.1. http://www.

neon-project.org, 2008. (Cited on page 52.)

[Governatori 2012] Guido Governatori, Antonino Rotolo and Erica Calardo. Pos-
sible World Semantics for Defeasible Deontic Logic. In Thomas Ågotnes,
Jan Broersen and Dag Elgesem, editors, DEON, volume 7393 of Lec-
ture Notes in Computer Science, pages 46–60. Springer, 2012. (Cited on
page 74.)

[Grau 2006] Bernardo Cuenca Grau. OWL 1.1 Web Ontology Language Tractable
Fragments. http://www.w3.org/Submission/owl11-tractable/,
2006. Accessed: 04/04/2013. (Cited on pages 81 and 108.)

[Grosof 2003] Benjamin N. Grosof, Ian Horrocks, Raphael Volz and Stefan
Decker. Description logic programs: combining logic programs with de-
scription logic. In Proceedings of the 12th international conference on

http://www.neon-project.org
http://www.neon-project.org
http://www.w3.org/Submission/owl11-tractable/

Bibliography 143

World Wide Web, WWW ’03, pages 48–57, New York, NY, USA, 2003.
ACM. (Cited on pages 36 and 108.)

[Haarslev 2000] Volker Haarslev and Ralf Moeller. Expressive ABox Reason-
ing with Number Restrictions, Role Hierarchies, and Transitively Closed
Roles. Rapport technique, Hamburg, Germany, Germany, 2000. (Cited on
page 35.)

[Hellerstein 2010] Joseph M. Hellerstein. The declarative imperative: experiences
and conjectures in distributed logic. SIGMOD Rec., vol. 39, no. 1, pages
5–19, September 2010. (Cited on page 125.)

[Hill 2003] Ernest Friedman Hill. Jess in action: Java rule-based systems. Man-
ning Publications Co., Greenwich, CT, USA, 2003. (Cited on pages 4, 22,
24, 82, 86 and 105.)

[Hitzler 2005] Pascal Hitzler, Rudi Studer and York Sure. Description Logic Pro-
grams: A Practical Choice For the Modelling of Ontologies. In 1st Work-
shop on Formal Ontologies Meet Industry, FOMI’05, Verona, Italy, June
2005, März 2005. (Cited on page 36.)

[Hitzler 2009a] Pascal Hitzler and Bijan Parsia. Ontologies and Rules. In Stef-
fen Staab and Rudi Studer, editors, Handbook on Ontologies, International
Handbooks on Information Systems, pages 111–132. Springer Berlin Hei-
delberg, 2009. (Cited on page 38.)

[Hitzler 2009b] Pascal Hitzler, Rudolf Sebastian and Markus Krötzsch. Founda-
tions of semantic web technologies. Chapman & Hall/CRC, 2009. (Cited
on pages 14 and 16.)

[Hoekstra 2007] Rinke Hoekstra, Joost Breuker, Marcello Di Bello and Er Boer.
The LKIF Core ontology of basic legal concepts. In In Pompeu Casanovas,
Maria Angela Biasiotti, Enrico Francesconi, and Maria Teresa Sagri, edi-
tors, Proceedings of the Workshop on Legal Ontologies and Artificial In-
telligence Techniques (LOAIT 2007, 2007. (Cited on page 75.)

[Horridge 2006] Matthew Horridge, Nick Drummond, John Goodwin, Alan Rec-
tor and Hai H Wang. The Manchester OWL Syntax. In In Proc. of the 2006
OWL Experiences and Directions Workshop (OWL-ED2006, 2006. (Cited
on page 82.)

[Horridge 2009] Matthew Horridge and Sean Bechhofer. The OWL API: A Java
API for Working with OWL 2 Ontologies. In OWLED, 2009. (Cited on
page 111.)

144 Bibliography

[Horridge 2011] Matthew Horridge and Sean Bechhofer. The OWL API: A Java
API for OWL ontologies. Semant. web, vol. 2, no. 1, pages 11–21, January
2011. (Cited on page 111.)

[Horrocks 1999] Ian Horrocks and Ulrike Sattler. A Description Logic with Transi-
tive and Inverse Roles and Role Hierarchies. JOURNAL OF LOGIC AND
COMPUTATION, vol. 9, no. 3, pages 385–410, 1999. (Cited on page 35.)

[Horrocks 2003] Ian Horrocks, Peter Patel-Schneider and Frank van Harmelen.
From SHIQ and RDF to OWL: The Making of a Web Ontology Language.
J. of Web Semantics, vol. 1, no. 1, pages 7–26, 2003. (Cited on page 31.)

[Horrocks 2004a] Ian Horrocks and Peter F. Patel-Schneider. A proposal for an
owl rules language. In Proceedings of the 13th international conference on
World Wide Web, WWW ’04, pages 723–731, New York, NY, USA, 2004.
ACM. (Cited on page 36.)

[Horrocks 2004b] Ian Horrocks, Peter F. Patel-schneider, Harold Boley, Said
Tabet, Benjamin Grosof and Mike Dean. SWRL: A semantic web rule lan-
guage combining OWL and RuleML. 2004. Accessed: 04/04/2013. (Cited
on pages 81 and 103.)

[Horrocks 2005] Ian Horrocks, Peter F. Patel-schneider, Sean Bechhofer and
Dmitry Tsarkov. OWL Rules: A Proposal and Prototype Implementation.
Journal of Web Semantics, vol. 3, pages 23–40, 2005. (Cited on page 36.)

[Huang 2011] Shan Shan Huang, Todd Jeffrey Green and Boon Thau Loo. Dat-
alog and emerging applications: an interactive tutorial. In Proceedings
of the 2011 ACM SIGMOD International Conference on Management of
data, SIGMOD ’11, pages 1213–1216, New York, NY, USA, 2011. ACM.
(Cited on page 125.)

[Hustadt 2004] Ullrich Hustadt. Reducing SHIQ - Description Logic to Disjunc-
tive Datalog Programs. pages 152–162, 2004. (Cited on page 35.)

[Hustadt 2005] Ullrich Hustadt, Boris Motik and Ulrike Sattler. Data Complexity
of Reasoning in Very Expressive Description Logics. In IN PROC. IJCAI
2005, pages 466–471. Professional Book Center, 2005. (Cited on pages 5
and 37.)

[Hustadt 2007] Ullrich Hustadt, Boris Motik and Ulrike Sattler. Reasoning in De-
scription Logics by a Reduction to Disjunctive Datalog. J. Autom. Reason.,
vol. 39, no. 3, pages 351–384, October 2007. (Cited on pages 35 and 38.)

Bibliography 145

[Jedrzejek 2011a] Czeslaw Jedrzejek, Jaroslaw Bak, Maciej Falkowski, Jolanta
Cybulka and Maciej Nowak. On the Detection and Analysis of VAT
Carousel Crime. In Katie Atkinson, editor, JURIX, volume 235 of Fron-
tiers in Artificial Intelligence and Applications, pages 130–134. IOS Press,
2011. (Cited on page 78.)

[Jedrzejek 2011b] Czeslaw Jedrzejek, Jolanta Cybulka and Jaroslaw Bak. Towards
ontology of fraudulent disbursement. In Proceedings of the 5th KES inter-
national conference on Agent and multi-agent systems: technologies and
applications, KES-AMSTA’11, pages 301–310, Berlin, Heidelberg, 2011.
Springer-Verlag. (Cited on page 5.)

[JMLSG 2012] Joint Money Laundering Steering Group JMLSG.
Money laundering/terrorist financing activities. http:

//www.jmlsg.org.uk/other-helpful-material/article/

money-laundering-terrorist-financing-activities, 2012. Ac-
cessed: 04/04/2013. (Cited on page 43.)

[KAON2 2012] KAON2. KAON2 reasoning engine. http://kaon2.

semanticweb.org/, 2012. Accessed: 04/04/2013. (Cited on page 52.)

[Kelly 2013] Jeff Kelly. Big Data Vendor Revenue and Market Forecast 2012-
2017. http://wikibon.org/wiki/v/Big_Data_Vendor_Revenue_and_

Market_Forecast_2012-2017, 2013. Accessed: 04/04/2013. (Cited on
page 1.)

[Kerremans 2005] Koen Kerremans and Gang Zhao. Topical ontology of
VAT: FF POIROT Deliverable 2.3. http://starlab.vub.ac.

be/research/projects/poirot/Publications/ffpoirot.d2.3.

TopicalOntologyVAT-v1.1.pdf, 2005. Accessed: 04/04/2013. (Cited
on pages 2 and 75.)

[Kingston 2005] John Kingston, Burkhard Schafer and Wim Vandenberghe. No
Model Behaviour: Ontologies for Fraud Detection. In V.Richard Ben-
jamins, Pompeu Casanovas, Joost Breuker and Aldo Gangemi, editors,
Law and the Semantic Web, volume 3369 of Lecture Notes in Computer
Science, pages 233–247. Springer Berlin Heidelberg, 2005. (Cited on
page 47.)

[Knorr 2007] Matthias Knorr, José Júlio Alferes and Pascal Hitzler. A well-
founded semantics for hybrid MKNF knowledge bases. In In Proceedings
ASP-2007, pages 115–131, 2007. (Cited on page 40.)

http://www.jmlsg.org.uk/other-helpful-material/article/money-laundering-terrorist-financing-activities
http://www.jmlsg.org.uk/other-helpful-material/article/money-laundering-terrorist-financing-activities
http://www.jmlsg.org.uk/other-helpful-material/article/money-laundering-terrorist-financing-activities
http://kaon2.semanticweb.org/
http://kaon2.semanticweb.org/
http://wikibon.org/wiki/v/Big_Data_Vendor_Revenue_and_Market_Forecast_2012-2017
http://wikibon.org/wiki/v/Big_Data_Vendor_Revenue_and_Market_Forecast_2012-2017
http://starlab.vub.ac.be/research/projects/poirot/Publications/ffpoirot.d2.3.TopicalOntologyVAT-v1.1.pdf
http://starlab.vub.ac.be/research/projects/poirot/Publications/ffpoirot.d2.3.TopicalOntologyVAT-v1.1.pdf
http://starlab.vub.ac.be/research/projects/poirot/Publications/ffpoirot.d2.3.TopicalOntologyVAT-v1.1.pdf

146 Bibliography

[Kowalski 1974] Robert A. Kowalski. Predicate Logic as Programming Lan-
guage. In IFIP Congress 74, pages 569–574, Stockholm, 1974. North-
Holland. (Cited on page 19.)

[Kremen 2012] Petr Kremen and Zdenek Kouba. Ontology-Driven Information
System Design. IEEE Transactions on Systems, Man, and Cybernetics,
Part C, vol. 42, no. 3, pages 334–344, 2012. (Cited on page 1.)

[Krisnadhi 2011] Adila Krisnadhi, Frederick Maier and Pascal Hitzler. OWL and
Rules. In Reasoning Web, pages 382–415, 2011. (Cited on page 36.)

[Krötzsch 2006] Markus Krötzsch, Pascal Hitzler, Denny Vrandecic and Michael
Sintek. How to reason with OWL in a logic programming system. In
Thomas Eiter, Enrico Franconi, Ralph Hodgson and Susie Stephens, ed-
itors, RuleML, pages 17–28. IEEE Computer Society, 2006. (Cited on
page 38.)

[Krötzsch 2007] Markus Krötzsch, Sebastian Rudolph and Pascal Hitzler. Com-
plexity Boundaries for Horn Description Logics. In Proceedings of the
22nd AAAI Conference on Artificial Intelligence (AAAI’07), pages 452–
457. AAAI Press, 2007. (Cited on page 94.)

[Krötzsch 2008a] Markus Krötzsch, Sebastian Rudolph and Pascal Hitzler. De-
scription Logic Rules. In Malik Ghallab, Constantine D. Spyropoulos,
Nikos Fakotakis and Nikos Avouris, editors, Proceedings of the 18th Eu-
ropean Conference on Artificial Intelligence (ECAI’08), pages 80–84. IOS
Press, 2008. (Cited on page 37.)

[Krötzsch 2008b] Markus Krötzsch, Sebastian Rudolph and Pascal Hitzler. ELP:
Tractable Rules for OWL 2. In Amit Sheth, Steffen Staab, Mike Dean,
Massimo Paolucci, Diana Maynard, Timothy Finin and Krishnaprasad
Thirunarayan, editors, Proceedings of the 7th International Semantic Web
Conference (ISWC’08), volume 5318 of LNCS, pages 649–664. Springer,
2008. (Cited on pages 37 and 40.)

[Krötzsch 2010] Markus Krötzsch. Description logic rules, volume 008 of Studies
on the Semantic Web. IOS Press/AKA, 2010. (Cited on pages 17 and 37.)

[Levy 1996] Alon Y. Levy and Marie-Christine Rousset. CARIN: A Representa-
tion Language Combining Horn Rules and Description Logics. In Wolf-
gang Wahlster, editor, ECAI, pages 323–327. John Wiley and Sons, Chich-
ester, 1996. (Cited on page 39.)

Bibliography 147

[Liang 2009a] Senlin Liang, Paul Fodor, Hui Wan and Michael Kifer. Open-
RuleBench: an analysis of the performance of rule engines. In Proceedings
of the 18th international conference on World wide web, WWW ’09, pages
601–610, New York, NY, USA, 2009. ACM. (Cited on pages 3, 26 and 98.)

[Liang 2009b] Senlin Liang, Paul Fodor, Hui Wan and Michael Kifer. Open-
RuleBench: Detailed Report. http://semwebcentral.org/docman/

view.php/158/69/report.pdf, 2009. Accessed: 04/04/2013. (Cited on
page 101.)

[Lifschitz 1991] Vladimir Lifschitz. Nonmonotonic databases and epistemic
queries. In Proceedings of the 12th international joint conference on Ar-
tificial intelligence - Volume 1, IJCAI’91, pages 381–386, San Francisco,
CA, USA, 1991. Morgan Kaufmann Publishers Inc. (Cited on page 40.)

[Lifschitz 1996] Vladimir Lifschitz. Foundations of Logic Programming. pages
23–37, 1996. (Cited on page 34.)

[Ligeza 2006] Antoni Ligeza. Logical foundations for rule-based systems, 2nd
ed., volume 11 of Studies in Computational Intelligence. Springer, 2006.
(Cited on page 9.)

[Liu 2009] Yanhong A. Liu and Scott D. Stoller. From datalog rules to efficient
programs with time and space guarantees. ACM Trans. Program. Lang.
Syst., vol. 31, no. 6, pages 21:1–21:38, August 2009. (Cited on page 125.)

[Lloyd 1984] J. W. Lloyd. Foundations of logic programming. Springer-Verlag
New York, Inc., New York, NY, USA, 1984. (Cited on pages 9, 18, 23, 56
and 82.)

[Lukácsy 2009] Gergely Lukácsy and Péter Szeredi. Efficient Description Logic
Reasoning in Prolog: The DLog system. CoRR, vol. abs/0904.0578, 2009.
(Cited on pages 98 and 100.)

[Martinek 2008] Jacek Martinek. Hydra case formal structural description. Rap-
port technique, Poznan University of Technology, Poznan, Poland, 2008.
(Cited on pages 48 and 49.)

[Meditskos 2008] Georgios Meditskos and Nick Bassiliades. A Rule-Based
Object-Oriented OWL Reasoner. IEEE Trans. on Knowl. and Data Eng.,
vol. 20, no. 3, pages 397–410, March 2008. (Cited on page 107.)

http://semwebcentral.org/docman/view.php/158/69/report.pdf
http://semwebcentral.org/docman/view.php/158/69/report.pdf

148 Bibliography

[Mei 2005] Jing Mei, Elena Paslaru Bontas and Zuoquan Lin. OWL2Jess: A
Transformational Implementation of the OWL Semantics. In In Proceed-
ings of International Workshops on ISPA, LNCS 3759, pages 599–608,
2005. (Cited on pages 99 and 107.)

[Mommers 2002] Laurens Mommers. Applied legal epistemology. Building a
knowledge-based ontology of the legal domain. PhD thesis, Leiden Uni-
versity, Leiden, 2002. (Cited on page 75.)

[Motik 2004] Boris Motik, Ulrike Sattler and Rudi Studer. Query Answering
for OWL-DL with Rules. In Journal of Web Semantics, pages 549–563.
Springer, 2004. (Cited on pages 34 and 37.)

[Motik 2006a] Boris Motik. Reasoning in description logics using resolution and
deductive databases. PhD thesis, Karlsruhe Institute of Technology, 2006.
http://d-nb.info/1001691709. (Cited on pages 37 and 38.)

[Motik 2006b] Boris Motik and Riccardo Rosati. Closing semantic web ontolo-
gies. Rapport technique, 2006. (Cited on page 40.)

[Motik 2007] Boris Motik and Riccardo Rosati. A faithful integration of descrip-
tion logics with logic programming. In Proceedings of the 20th interna-
tional joint conference on Artifical intelligence, IJCAI’07, pages 477–482,
San Francisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc. (Cited
on page 40.)

[Motik 2008] Boris Motik and Ian Horrocks. OWL Datatypes: Design and Imple-
mentation. pages 307–322, 2008. (Cited on page 31.)

[Nalepa 2008] Grzegorz J. Nalepa and Antoni Ligeza. XTT+ Rule Design Using
the ALSV(FD). In Adrian Giurca, Anastasia Analyti and Gerd Wagner,
editors, RuleApps, volume 428 of CEUR Workshop Proceedings. CEUR-
WS.org, 2008. (Cited on page 40.)

[Nalepa 2009] Grzegorz J. Nalepa. Languages and tools for rule modeling. Hand-
book of Research on Emerging Rule-based Languages and Technologies:
Open Solutions and Approaches. Igi Global, 2009. (Cited on page 22.)

[Nalepa 2010] Grzegorz J. Nalepa and WeronikaT. Furmańska. Integration Pro-
posal for Description Logic and Attributive Logic – Towards Semantic Web
Rules. In NgocThanh Nguyen and Ryszard Kowalczyk, editors, Transac-
tions on Computational Collective Intelligence II, volume 6450 of Lecture
Notes in Computer Science, pages 1–23. Springer Berlin Heidelberg, 2010.
(Cited on page 40.)

Bibliography 149

[Nalepa 2011] Grzegorz J. Nalepa. Semantic knowledge engineering. A rule-
based approach. Wydawnictwa AGH, Kraków, 2011. (Cited on page 30.)

[Nilsson 1995] Ulf Nilsson and Jan Maluszynski. Logic, programming, and pro-
log. John Wiley & Sons, Inc., New York, NY, USA, 2nd édition, 1995.
(Cited on pages 27 and 28.)

[Nowak 2012] Maciej Nowak, Jaroslaw Bak and Czeslaw Jedrzejek. Graph-based
Rule Editor. In Hassan Aït-Kaci, Yuh-Jong Hu, Grzegorz J. Nalepa, Mon-
ica Palmirani and Dumitru Roman, editors, RuleML2012@ECAI Chal-
lenge and Doctoral Consortium at the 6th International Symposium on
Rules, Montpellier, France, August 27th-29th, 2012, volume 874 of CEUR
Workshop Proceedings. CEUR-WS.org, 2012. (Cited on page 128.)

[O’Connor 2007a] Martin J. O’Connor, Ravi D. Shankar, Samson W. Tu, Csongor
Nyulas, Amar K. Das and Mark A. Musen. Efficiently Querying Relational
Databases Using OWL and SWRL. In RR, pages 361–363, 2007. (Cited on
page 99.)

[O’Connor 2007b] Martin J. O’Connor, Samson W. Tu, Csongor Nyulas, Amar K.
Das and Mark A. Musen. Querying the Semantic Web with SWRL. In
RuleML, pages 155–159, 2007. (Cited on page 99.)

[Parsia 2012] Clark & Parsia. Pellet: OWL 2 Reasoner for Java. http://

clarkparsia.com/pellet/, 2012. Accessed: 04/04/2013. (Cited on
page 52.)

[Patel-Schneider 2007] Peter F. Patel-Schneider and Ian Horrocks. A comparison
of two modelling paradigms in the Semantic Web. Web Semant., vol. 5,
no. 4, pages 240–250, December 2007. (Cited on page 18.)

[Podgor 1999] Ellen S. Podgor. Criminal Fraud, 1999. (Cited on page 57.)

[Poggi 2008] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe Gi-
acomo, Maurizio Lenzerini and Riccardo Rosati. Linking Data to Ontolo-
gies. In Stefano Spaccapietra, editor, Journal on Data Semantics X, vol-
ume 4900 of Lecture Notes in Computer Science, pages 133–173. Springer
Berlin Heidelberg, 2008. (Cited on pages 2, 99 and 100.)

[Polleres 2011] Axel Polleres, Claudia d’Amato, Marcelo Arenas, Siegfried Hand-
schuh, Paula Kroner, Sascha Ossowski and Peter F. Patel-Schneider, edi-
tors. Reasoning web. semantic technologies for the web of data - 7th inter-
national summer school 2011, galway, ireland, august 23-27, 2011, tutorial
lectures, volume 6848 of Lecture Notes in Computer Science. Springer,
2011. (Cited on page 9.)

http://clarkparsia.com/pellet/
http://clarkparsia.com/pellet/

150 Bibliography

[PricewaterhouseCoopers 2009] PricewaterhouseCoopers. The
Global Economic Crime Survey. http://www.

pwc.com/en_GX/gx/economic-crime-survey/pdf/

global-economic-crime-survey-2009.pdf, 2009. Accessed:
04/04/2013. (Cited on page 41.)

[PricewaterhouseCoopers 2011] PricewaterhouseCoopers. The Global Economic
Crime Survey. http://www.pwc.com/gx/en/economic-crime-survey/

download-economic-crime-people-culture-controls.jhtml, 2011.
Accessed: 04/04/2013. (Cited on pages 41 and 43.)

[Ramakrishnan 1993] Raghu Ramakrishnan and Jeffrey D. Ullman. A Survey of
Research on Deductive Database Systems. Journal of Logic Programming,
vol. 23, pages 125–149, 1993. (Cited on page 13.)

[Rohmer 1986] J. Rohmer, R. Lescoeur and Jean-Marc Kerisit. The Alexander
Method - A Technique for The Processing of Recursive Axioms in Deductive
Databases. New Generation Comput., vol. 4, no. 3, pages 273–285, 1986.
(Cited on page 29.)

[Rosati 2006] Riccardo Rosati. DL+log: Tight Integration of Description Logics
and Disjunctive Datalog. In Doherty et al. [Doherty 2006], pages 68–78.
(Cited on page 39.)

[Sagiv 1984] Yehoshua Sagiv and Jeffrey D. Ullman. Complexity of a top-down
capture rule. Rapport technique, Stanford, CA, USA, 1984. (Cited on
page 26.)

[Salinger 2004] L.M. Salinger. Encyclopedia of white-collar & corporate crime.
Numeéro t. 1 de Encyclopedia of White-collar & Corporate Crime. SAGE
Publications, 2004. (Cited on pages 43 and 44.)

[Schmidt-Schauss 1991] M. Schmidt-Schauss and G. Smolka. Attributive concept
descriptions with complements. Artificial Intelligence, vol. 48, pages 1–26,
1991. (Cited on pages 30 and 35.)

[Sejm 1997] Polish Sejm. Polish Penal Code. http://isap.sejm.gov.pl/

Download?id=WDU19970880553&type=3, 1997. Accessed: 04/04/2013.
(Cited on pages 41, 47 and 71.)

[Sippu 1990] Seppo Sippu and Eljas Soisalon-Soininen. Multiple SIP strategies
and bottom-up adorning in logic query optimization. In Proceedings of
the third international conference on database theory on Database theory,
ICDT ’90, pages 485–498, New York, NY, USA, 1990. Springer-Verlag
New York, Inc. (Cited on page 26.)

http://www.pwc.com/en_GX/gx/economic-crime-survey/pdf/global-economic-crime-survey-2009.pdf
http://www.pwc.com/en_GX/gx/economic-crime-survey/pdf/global-economic-crime-survey-2009.pdf
http://www.pwc.com/en_GX/gx/economic-crime-survey/pdf/global-economic-crime-survey-2009.pdf
http://www.pwc.com/gx/en/economic-crime-survey/download-economic-crime-people-culture-controls.jhtml
http://www.pwc.com/gx/en/economic-crime-survey/download-economic-crime-people-culture-controls.jhtml
http://isap.sejm.gov.pl/Download?id=WDU19970880553&type=3
http://isap.sejm.gov.pl/Download?id=WDU19970880553&type=3

Bibliography 151

[Sirin 2007] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur
and Yarden Katz. Pellet: A practical OWL-DL reasoner. Web Semant.,
vol. 5, no. 2, pages 51–53, June 2007. (Cited on page 103.)

[Tekle 2011] K. Tuncay Tekle and Yanhong A. Liu. More efficient datalog queries:
subsumptive tabling beats magic sets. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data, SIGMOD ’11,
pages 661–672, New York, NY, USA, 2011. ACM. (Cited on page 125.)

[Unger 2007] B. Unger and Elena Madalina. Busuioc. The scale and impacts of
money laundering / brigitte unger with a contribution of elena madalina
busuioc. Edward Elgar, Cheltenham, UK ; Northampton, MA :, 2007.
(Cited on page 79.)

[Valente 1995] André Valente. Legal knowledge engineering: A modelling ap-
proach. PhD thesis, University of Amsterdam, 1995. (Cited on page 75.)

[van Emden 1976] M. H. van Emden and Robert A. Kowalski. The Semantics of
Predicate Logic as a Programming Language. Journal of the Association
for Computing Machinery, vol. 23, no. 4, pages 733–742, 1976. (Cited on
page 18.)

[van Harmelen 2007] Frank van Harmelen, Vladimir Lifschitz and Bruce Porter,
editors. Handbook of knowledge representation (foundations of artificial
intelligence). Elsevier Science, 2007. (Cited on pages 30, 33 and 34.)

[Vieille 1986] Laurent Vieille. Recursive Axioms in Deductive Databases: The
Query/Subquery Approach. In Expert Database Conf.’86, pages 253–267,
1986. (Cited on page 29.)

[Visser 1997] Pepijn Visser, Robert W. Van Kralingen and Trevor J. M. Bench-
Capon. A method for the development of legal knowledge systems. In
Proceedings of the 6th International Conference on Artificial Intelligence
and Law, ICAIL 1997, Melbourne, Australia, pages 151–160, 1997. (Cited
on page 75.)

[Volz 2004] Raphael Volz. Web ontology reasoning with logic databases. PhD
thesis, 2004. (Cited on page 36.)

[Więckowski 2009] Jacek Więckowski. Hydra case indictment analysis, 2009.
(Cited on page 48.)

[Winslett 2006] Marianne Winslett. Raghu Ramakrishnan speaks out on deduc-
tive databases, what lies beyond scalability, how he burned through $20M

152 Bibliography

briskly, why we should reach out to policymakers, and more. SIGMOD
Record, vol. 35, no. 2, pages 77–85, 2006. (Cited on page 125.)

[Wyner 2008] Adam Wyner. An ontology in OWL for legal case-based reasoning.
Artificial Intelligence and Law, vol. 3, pages 361–387, 2008. (Cited on
pages 76 and 78.)

[Wyner 2012] Adam Wyner, Johan Bos, Valerio Basile and Paulo Quaresma. An
Empirical Approach to the Semantic Representation of Laws. In JURIX,
pages 177–180, 2012. (Cited on page 129.)

[Zhang 2010] Hongyu Zhang, Yuan-Fang Li and Hee Beng Kuan Tan. Measuring
design complexity of semantic web ontologies. J. Syst. Softw., vol. 83,
no. 5, pages 803–814, May 2010. (Cited on page 77.)

[Zhao 2005] Gang Zhao. AKEM: an ontology engineering methodology in FF
POIROT. http://starlab.vub.ac.be/research/projects/poirot/

Publications/ffpoirot.D6.8.AKEMinPOIROT.pdf, 2005. Accessed:
04/04/2013. (Cited on pages 2, 75 and 76.)

http://starlab.vub.ac.be/research/projects/poirot/Publications/ffpoirot.D6.8.AKEMinPOIROT.pdf
http://starlab.vub.ac.be/research/projects/poirot/Publications/ffpoirot.D6.8.AKEMinPOIROT.pdf

	Introduction
	Motivation and Problem Statement
	Research Challenges
	Main Contributions
	Structure of this Thesis

	Preliminaries
	Theoretical Background
	First-order Logic
	Syntax
	Semantics

	Datalog as a First-order Rule Language
	Syntax
	Semantics
	Reasoning

	Rule-based Systems
	Rules and Facts
	The Rete Algorithm
	Forward and Backward Chaining in the Jess Engine

	Rule-based Query Answering
	Sideways Information Passing and Adorned Rules
	Magic Transformation and Other Rule-rewriting Techniques
	Other Optimizations

	Description Logics
	Syntax
	Semantics
	Reasoning

	Combining Description Logics with Datalog
	Semantic Web Rule Language
	Description Logic Programs
	DL-safe Rules
	Description Logic Rules
	Horn-SHIQ
	Other approaches

	Description of Economic Crimes
	Fraudulent Disbursement
	Money Laundering

	Knowledge base of economic crimes
	The Hydra Case
	Ontology Design Method
	Ontology Overview
	Adopted Method
	Applied Rules

	Minimal Ontology Model
	Domain-based Part of the Ontology
	Task-based Part of the Ontology

	Discussion of the Related Work
	Conclusion

	Methods for a rule-based query answering
	Hybrid Reasoning Method
	Generation of Rules for Backward Chaining
	Query Algorithm for Hybrid Reasoning

	Extended Rules Method
	Generation of the Extended Rules
	Query Algorithm for Extended Rules Reasoning

	Complexity of Query Answering
	Mapping Between Ontology Terms and Relational Data
	Discussion of the Related Work
	Conclusion

	Implementation of SDL
	SDL Overview
	SDL Architecture and Integration Process
	OWL to Jess Transformation Methods
	Mapping Rules
	SDL Features
	Conclusion

	Experimental Evaluation
	Generation of the Hydra-case-like simulated input data
	Example Queries
	Performance Evaluation
	Conclusion

	Conclusions and perspectives
	Main Results
	Future Work

	Appendix Example Use of the Extended Rules Method
	Bibliography

