
POZNAN UNIVE RSIT Y OF TE CHNOLOGY ACADE MIC JOURNALS
No 91 Electrical Engineering 2017

DOI 10.21008/j.1897-0737.2017.91.0014

* Gdansk University of Technology.

Robert SMYK*
Maciej CZYŻAK*

HIGH LEVEL SYNTHESIS IN FPGA
OF TCS/RNS CONVERTER

The work presents the design process of the TCS/RNS (two's complement–to–
residue) converter in Xilinx FPGA with the use of HLS approach. This new approach
allows for the design of dedicated FPGA circuits using high level languages such as
C++ language. Such approach replaces, to some extent, much more tedious design with
VHDL or Verilog and facilitates the design process. The algorithm realized by the given
hardware circuit is represented as the program in C++. The performed design
experiments had to show whether the obtained structures of TCS/RNS converter are
acceptable with respect to speed and hardware complexity. The other aim of the work
was to examine whether it is enough to write the program in C++ with the use of basic
arithmetic operators or bit–level description is necessary. Finally, we present the
discussion of results of the TCS/RNS converter design in Xilinx Vivado HLS
environment.

KEYWORDS: high–level synthesis, residue number system, FPGA, C++ language,
two's complement–to–residue converter

1. INTRODUCTION

 The simple FPGA circuits can be designed using schematic approach but
more complex ones require the use of hardware description languages as VHDL
or Verilog. The FPGA architecture can be described using the structural or
behavioural approach. The former requires the definition of components and
appropriate signals that connect blocks of the architecture. However VHDL is a
high level language but it is more adapted to the description of hardware and not
of algorithms. On the other hand a wide number of well–known and verified
algorithms have been implemented in C/C++. It makes that the use of C/C++ is
a more natural approach. In last twenty years high level synthesis (HLS)
techniques have been extensively studied and a number of HLS tools have been
developed [1]. HLS, also known as behavioural synthesis, is the technology
which automatically translates behavioural design descriptions in C/C++ into

Robert Smyk, Maciej Czyżak

144

register transfer level (RTL). The HLS approach considerably reduces the
development time from weeks to days, but the price paid may be the greater
hardware complexity of the obtained architecture. So it seems indispensable to
verify experimentally how the C++ constructs map onto the FPGA architecture
and identify the operations which lead to the substantial increase of hardware
complexity. In this work we have considered the use of the HLS technique for
the design of two’s complement–to–residue converter.

The Residue Number System(RNS) [2–4] is the non–weighted number
system that allows for fast realization of addition, subtraction and multiplication
without carries between the digits of the number. The RNS had its beginnings in
ancient China but the renewed interest arose at the end of 50's of XX century
when its application to fault detection in computers was examined [2]. There
were also attempts to design RNS arithmetic units for general–purpose
computers but difficulties in realization of operations such as division, sign
detection, magnitude comparison and conversion to weighted systems have
limited the use of the RNS to selected areas of cryptography and digital signal
processing where it can be useful for high–speed signal processors. The other
applications are in low–power and fault–tolerant arithmetics. Usually the input
to residue processors is encoded in a weighted system such as the natural binary
system or two's complement, therefore as the first step the conversion to the
RNS has to be performed. Several converters were presented in the literature
[4–8]. The DSP systems based on residue arithmetic are becoming more
complex, therefore the design methods are sought for that would speed up the
design and testing process. One approach to attain this goal would be the use of
high level FPGA synthesis. We have performed experiments in order to state
which instructions and how should be used when describing an architecture to
obtain an effective structure with respect to hardware complexity.

In Section 2 the residue number system is reviewed, in Section 3 we analyze
the problem of two’s complement–to–residue conversion. In Section 4 we give
the converter algorithm and in Section 5 we present the results of high level
synthesis of two’s complement–to–residue converter.

2. THE RESIDUE NUMBER SYSTEM

The residue number system is determined by its base,
},...,,{ 21 nmmmB  where im , i = 1,2,3,...,n, are nonnegative integers termed the

moduli. The number range M of the system is  


n
1i imM . If the moduli are

pairwise relatively prime, i.e. if ,1),gcd(kj mm ,kj  nkj ,..,2 ,1,  , then every
integer X from]1,0[M , is represented by the n–tuple  110 ,...,, lxxx , where

High level synthesis in FPGA of TCS/RNS converter

145

imi Xx  , in one–to–one correspondence manner.. The residue operations can

be defined as      nnn zzzyyyxxx ,...,,,...,,,...,, 212121  , where
imiii yxz  ,and

 may denote addition, subtraction or multiplication. As seen from the above
formula the operations are performed in small integer rings  imR , i=1,2,..., n.
The condition of mutual primality assures that the mapping between the ring
modulo M and the direct sum of  imR , i=1,2,...,n. is isomorphic. This
mapping can be performed using the Chinese Remainder Theorem or the
mixed–radix conversion[2, 3].

3. TWO’S COMPLEMENT–TO–RESIDUE CONVERSION

The binary–to–residue conversion is the process of finding the set of
residues, i.e. the residue representation),...,,(

11 mmm
XXX

nn
, for the number

)(021 , ,x,xxX = l-l- represented in a certain l–digit binary code,
(0,1) xi , eg. the natural binary, one’s complement or two’s complement.

Below we shall consider only two’s complement representation and we assume
that Mll  1-22- .

m

l-

i
m

i
i

m

l

i

i
im

xxX 







1

0

1

0

22 (1)

The hardware implementation (Fig. 1) of conversion by (1) requires, in
general, the computation of

m

i2 , 1210  ,...,l,,i , summation of
m

i2 for

these i, for which 0ix and the modulo m operation. The most direct approach

to compute
m

i2 is s.c. wire splitting where the xi wire is splitted, in general,

into   mlog wires with each wire representing the power of i2 that is present

in the binary representation of
m

i2 . This approach seems to be impractical for

longer words due to the complex wiring and the large number of addends.
Premkumar [6] proposed computation of

m

i2 , instead of storing, but his

approach leads to the structures with the large hardware amount.
Piestrak [5] shown that to determine the residue of the number represented by

the given segment, the computation of
m

i2 can be avoided by using the

property of periodicity or half–periodicity of the series
m

i2 . Periodicity means

Robert Smyk, Maciej Czyżak

146

that
m

j2 and
m

mPij)(2  have the same residues modulo m, where P(m) is

called the period of the modulus.
In this approach the converted word is divided into segments of P(m)–bit

length that can be directly added. This approach can be useful when only one
residue is generated and P(m) is small. If we have a base consisting of 5–6–bit
moduli this approach becomes impractical if P(mi) are different for the
individual moduli of the RNS base. The makes that the converters for the
individual residue channels call for various hardware amounts and may have
different delays.

m
X

Fq

Fig. 1. The general scheme of one channel of the B/RNS converter, where  mq log

is a length of segment and  )/)((qnnqllq ssF  is a length of the most significant
segment and l is a length of the binary representation of X, ns – number of segments

In order to diminish the number of addends in (1), we can divide the

representation of X into segments with the first segment of  mq 2log bits,

2sn  sn/)ql( –bit segments and one final (MSB)
 )/)((qnnqllq ssF  – bit segment. The first segment has usually

  1log m bitlength, so there is no need to use the modulo generation for this
segment because it represents the residue modulo m itself. We can generate the
residues for the individual segments and then compute their sum as

  
















1

0

1

0

1

0
2s

i

s

i

s

i
i

s

i

n

s m

ls

si
i

i
m

n

s ms
m

n

s sm
xXXX (2)

where s is the index of segment, ns – number of segments and ls – is the segment
length.

High level synthesis in FPGA of TCS/RNS converter

147

If l is sufficiently small (l <1012) the conversion can be performed, using
only one segment, by memory look–up applying, for example, ROM

  ml log2  , provided that the memory block will not limit the pipelining
frequency. In FPGAs, which are our consideration, ROMs can be used that are
placed outside the FPGA matrix or the decomposed memory represented by
LUTs with the 4–6 bit address. Their use imposes a form of dividing the input
word into smaller segments. However the problem becomes more difficult when
we consider conversion of two’s complement numbers.

Assume that a signed integer X is represented in two's complement code
using 1l –bit representation  02-1-1 ,...,,, xxxxX lll ,  1,0ix . Signed
integers are usually represented in the RNS in such a manner that for M odd, the
number range is]2/)1(,2/)1([ MM and for M even,]12/,2/[ MM .
Assume henceforth M even without loss of generality. Then the interval

]12 ,0[1 l will be converted into the part of the interval]12/,0[M and the
interval]1 ,2[1  l is converted to the subrange of]1,2/[ MM . For X < 0
we have to determine

m
XM - , that can be obtained as

im
Xm- .

For X<0 we want to represent –X as a sum of negative or zero numbers
represented by the consecutive segments. We have

)(...)(021 XXXX ss   (3)
Then

i
iiii mmmsmsm

XXXXM 021 0...00   . (4)

Moreover we have

iii msimsms XmXX 1110   (5)

In order to use this form for conversion we have first to recover the absolute
value X from X* being the 2’s complement representation of –X. We have

XX l  2* , (6)
hence

*12 XX l   , (7)
1)12(*1   XX l , (8)

where the expression in parenthesis denotes the negation of X. Therefore once X
is recovered form X* we can perform

i
iiii mmimsimsim

XmXmXmXM 021 ...   (9)

Robert Smyk, Maciej Czyżak

148

4. TWO’S COMPLEMENT TO RESIDUE
CONVERTER ALGORITHM

The presented converter utilizes the principle of segmentation of the input

word. The input word is divided into segments of six–bit length with the
possible exception of the first (msb) segment which can be shorter if the length
of the input word is not an integer multiple of 6.

The input vector has a following form),...,(0xxl . It is divided into segments
in such a manner that each segment contains 5 bits of the x input vector and the
sign bit s, for example, for 15–bits we have the vector

),,,,,s,,,,,,s,,,,,,s(01234567891011121314 xxxxxxxxxxxxxxx
The sign bits are used to signal that the given segment represents the negative
number. If the msb bit of the input word is equal to 0, so the number is non
negative, we use the formula

mmi

i
i

mi

i
i

mi

i
im

xxxA 



4

0

9

5

15

10
222 , (10)

and for negative numbers

mmi

i
i

mi

i
i

mi

i
im

xmxmxmA 



4

0

9

5

15

10
222 (11)

Once the residues for the segments have been obtained their sum modulo m
has to be determined by using a multi–operand modulo adder. Such adder can be
realized as the tree of n/2 two operand adders or by performing first binary
summation and next the modulo m reduction of the sum.

The formulas (10) and (11) can be implemented as the structure given in
Fig. 2.

Fig. 2. TCS/RNS converter structure based on ROMs

High level synthesis in FPGA of TCS/RNS converter

149

5. HIGH LEVEL SYNTHESIS OF TCS/RNS CONVERTER

The synthesis of the presented converter has been carried out in the Xilinx
HLS integrated environment. This approach radically shortens the project
development time in FPGAs. The standard FPGA design process requires the
description of circuit operation at RTL niveau with the use of the hardware
description in VHDL or Verilog. This description can be automatically
translated to the netlist. The focus of the netlist abstraction layer is to define the
Boolean functionality of the design with appropriate area, performance and
power, what is the final stage of an FPGA implementation. In case of the ASIC
design the elaboration of appropriate masks is needed for the fabrication of the
VLSI circuit. The essence of the approach related to the use HLS involves
applying the high–level programming language such as C/C++ as well for
design as for testing.

There is no need to simulate and test the algorithm outside the Xilinx
environment. In the classical approach these steps are carried out externally and
once the algorithm is deemed correct the design of FPGA implementation may
start. Within the Xilinx HLS environment several programming mechanisms
have been applied that facilitate high–level synthesis. The high–level synthesis
requires an adequate description of the input and the output and internal
registers of the system. A need emerged to introduce arithmetic types with the
selectable bit length. In order to make it possible new parametrized class types
have been introduced such as, for example, ap_int, defined in <ap_int.h>.
The ap_int type is used to define input and output signals with the
wordlength from 1 do 1024 bits. This class disposes over suitable constructors
which are used to create objects representing system input and system output as
well as internal signals. The parametrized type can be used directly or we can
introduce a new name for the parametrized type as in Fig. 3. For example, we
can define 5–bit unsigned int type . as uint5

Fig. 3. Introduction of the new name for ap_unt <5>

The TCS/RNS converters were synthesized in Xilinx Vivado HLS using 6–
bit modulo generators implemented with the use of ROMs and adder tree
consisting of 5–bit Two–Operand Modular Adders (TOMA). Below we shall
show results of experiments which have been performed in order to find such
the programmatical description of the fragment of the converter that leads to the
optimal converter architecture with respect to minimum hardware complexity.
In system architectures that use the RNS, the crucial operation that considerably
influences the complexity, is the modulo reduction operation. The first factor

Robert Smyk, Maciej Czyżak

150

that determines its complexity is the binary size of the modulus. It can be a
small modulus mi , being one of the system moduli or the RNS number range M.
For DSP systems with the moderate number range, mi binary size belongs to [3,
12] and M to [20, 50]. The second factor is the binary size of the word to be
reduced. The direct approach to perform modulo reduction operation is to carry
out integer division and find the remainder. The C++ version used in Vivado
HLS allows to use the standard modulo ‘%’ operator. In the architecture being
the result of HLS synthesis this operation is implemented with division and
remainder determination. This, however, requires the integer divider in the
system. The divider is usually iterative and introduces considerable delay. Such
modulo reduction operation has a general character and can be performed
independently of the relationship between the number to be reduced and the
modulus. But in certain cases the modulo reduction can be significantly
simplified. If, for example, X<2m, we compute r = X mod m by calculating
d= X – m, then if d<0, then r = X else r = d. In the program only if–else
instruction is needed. If X exceeds 2m, nested if instruction can be used.
 In Fig. 4 the C++ function is shown that corresponds to the block with two
five–bit inputs w1 and w2 and five–bit output. The input signals w1 and w2
address ROM memories and w1 and w2 are treated as representations of the
binary numbers. Next summation of the residues x1 and x2 is performed and
subsequently the reduction modulo 29 using % operator is made. ROM
memories are implemented as one–dimensional int tables const uint5
ROM1mod29[32], ROM2mod29[32].

Fig. 4. B/RNS conversion for 10–bit word using memory look–up
and modulo reduction with % operator

In the next experiment mod 29 operator (%) was replaced by if–else

instruction (Fig. 5).
In the last experiment the direct structure based on (10) and (11) was

benchmarked (Fig. 6).
The synthesis results of the above models are presented in Fig. 7. It can be

observed that the use of C++ in–built operators leads to the more complex
architecture (Fig. 7c). The best results have been obtained using ROMs and

High level synthesis in FPGA of TCS/RNS converter

151

modulo reduction using if–else and subtraction. We can draw, at least in this
case, a conclusion that direct high–level description may accelerate the
implementation but the result is less effective with respect to hardware amount .

Fig. 5. B/RNS conversion for 10–bit word using memory look–up
and modulo reduction using if–else

Fig. 6. TCS/RNS memoryless conversion for 10–bit word using modulo reduction with if–else

Robert Smyk, Maciej Czyżak

152

In order to obtain an effective system structure the high–level description
should reflect the properties of the hardware in the given FPGA design
environment.

 a)

b)

c)

Fig. 7. The results of various methods of modulo reduction a) using ROMs, adders and divider b)
ROM and subtraction (if–else) c) using adders and dividers chosen of the synthesis tool

For the description of the TCS/RNS converter for the synthesis in Xilinx
Vivado HLS two approaches have been selected. The first, being the most
limited, is based on adders and ROMs and most lavish makes use of the high–
level description of the algorithm.. The synthesis results for Xilinx Atrix
xc7a75tlftg256 are given in Fig 8 and Fig 9. It turns out that the optimized

High level synthesis in FPGA of TCS/RNS converter

153

description of the TCS/RNS algorithm requires about 6 times less hardware
than in the case of the direct high–level synthesis. The testbench result of the
TCS/RNS converter is given in Fig. 10.

Fig. 8. Synthesis results for 16–bit TCS/RNS converter based on ROMs
(target device xc7a75tlftg256–2l)

Fig. 9. Synthesis results for 16–bit TCS/RNS converter based on adders
(target device xc7a75tlftg256–2l)

Fig. 10. TCS/RNS converter testbench result

Robert Smyk, Maciej Czyżak

154

6. CONCLUSIONS

The paper presents the results of design experiments using high level
synthesis approach for TCS/RNS converter design. The experiments has been
performed using Xilinx Vivado HLS. The aim of the experiments was to judge
the influence of the form of the description of the system architecture on the
hardware complexity of the TCS/RNS converter. In residue systems modulo
reduction is the crucial operation with respect to hardware complexity. It was
stated that the direct realization of modulo reduction using standard C++
operator leads to more complex architectures than the use of modulo reduction
based on subtractions and comparisons which was in accordance with the
expectations. The direct realization of fragment of converter using C++ modulo
operator gave in result about six times greater hardware requirement than in the
case of reduction based on additive operations and comparison. A conclusion
can be drawn that however the HLS approach can considerably shortens the
development process but it should be considered in common careful use with
the standard operators.

REFERENCES

[1] Meeus W, Van Beeck K., Goedemé T., Meel J., Stroobandt D., An overview of

today’s high–level synthesis tools, DOI 10.1007/s10617–012–9096–8, Springer,
2012.

[2] Szabo N.S. and Tanaka R.J., Residue Arithmetic and its Applications to
Computer Technology, New York, McGraw–Hill, 1967.

[3] Soderstrand M. et al., Residue Number System Arithmetic: Modern Applications
in Digital Signal Processing, IEEE Press, NY, 1986.

[4] Alia G., Martinelli E., "VLSI binary–residue converters for pipelined
processing," Computer J., vol. 33, no.5, pp. 473–475, 1990.

[5] Piestrak S.J., Design of residue generators and multioperand modulo adders
using carry–save adders, IEEE Trans. Comp., Volume 43, Pages 68–77, Jan.
1994.

[6] Premkumar A.B., A formal framework for conversion from binary to residue
numbers, IEEE Trans. Circuits and Systems–II, Volume 49, Number 2, Pages
135–144, Feb.2002.

[7] Czyżak M., High–speed binary–to–residue converter with improved architecture,
27th Int. Conf. on Fundamentals of Electrotechnics and Circuit Theory,
Gliwice–Niedzica, May 26–29, Pages 431–436, 2004.

[8] Premkumar A.B., Improved memoryless RNS forward converter based on
periodicity of residues, IEEE Trans. Circuits and Systems–II, Express Briefs,
Volume 53, Number 2, Pages 133–137, Feb. 2006.

(Received: 10. 02. 2017, revised: 28. 02. 2017)

