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The work presents the design process of the TCS/RNS (two's complement–to–
residue) converter in Xilinx FPGA with the use of HLS approach. This new approach 
allows for the design of dedicated FPGA circuits using high level languages such as 
C++ language. Such approach replaces, to some extent, much more tedious design with 
VHDL or Verilog and facilitates the design process. The algorithm realized by the given 
hardware circuit is represented as the program in C++. The performed design 
experiments had to show whether the obtained structures of TCS/RNS converter are 
acceptable with respect to speed and hardware complexity. The other aim of the work 
was to examine whether it is enough to write the program in C++ with the use of basic 
arithmetic operators or bit–level description is necessary. Finally, we present the 
discussion of results of the TCS/RNS converter design in Xilinx Vivado HLS 
environment. 
 
KEYWORDS: high–level synthesis, residue number system, FPGA, C++ language, 
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1. INTRODUCTION  
 
 The simple FPGA circuits can be designed using schematic approach but 
more complex ones require the use of hardware description languages as VHDL 
or Verilog. The FPGA architecture can be described using the structural or 
behavioural approach. The former requires the definition of components and 
appropriate signals that connect blocks of the architecture. However VHDL is a 
high level language but it is more adapted to the description of hardware and not 
of algorithms. On the other hand a wide number of well–known and verified 
algorithms have been implemented in C/C++. It makes that the use of C/C++ is 
a more natural approach. In last twenty years high level synthesis (HLS) 
techniques have been extensively studied and a number of HLS tools have been 
developed [1]. HLS, also known as behavioural synthesis, is the technology 
which automatically translates behavioural design descriptions in C/C++ into 
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register transfer level (RTL). The HLS approach considerably reduces the 
development time from weeks to days, but the price paid may be the greater 
hardware complexity of the obtained architecture. So it seems indispensable to 
verify experimentally how the C++ constructs map onto the FPGA architecture 
and identify the operations which lead to the substantial increase of hardware 
complexity. In this work we have considered the use of the HLS technique for 
the design of two’s complement–to–residue converter. 

The Residue Number System(RNS) [2–4] is the non–weighted number 
system that allows for fast realization of addition, subtraction and multiplication 
without carries between the digits of the number. The RNS had its beginnings in 
ancient China but the renewed interest arose at the end of 50's of XX century 
when its application to fault detection in computers was examined [2]. There 
were also attempts to design RNS arithmetic units for general–purpose 
computers but difficulties in realization of operations such as division, sign 
detection, magnitude comparison and conversion to weighted systems have 
limited the use of the RNS to selected areas of cryptography and digital signal 
processing where it can be useful for high–speed signal processors. The other 
applications are in low–power and fault–tolerant arithmetics. Usually the input 
to residue processors is encoded in a weighted system such as the natural binary 
system or two's complement, therefore as the first step the conversion to the 
RNS has to be performed. Several converters were presented in the literature 
[4–8]. The DSP systems based on residue arithmetic are becoming more 
complex, therefore the design methods are sought for that would speed up the 
design and testing process. One approach to attain this goal would be the use of 
high level FPGA synthesis. We have performed experiments in order to state 
which instructions and how should be used when describing an architecture to 
obtain an effective structure with respect to hardware complexity. 

In Section 2 the residue number system is reviewed, in Section 3 we analyze 
the problem of two’s complement–to–residue conversion. In Section 4 we give 
the converter algorithm and in Section 5 we present the results of high level 
synthesis of two’s complement–to–residue converter. 
 

2. THE RESIDUE NUMBER SYSTEM 
 

The residue number system is determined by its base, 
},...,,{ 21 nmmmB  where im , i = 1,2,3,...,n, are nonnegative integers termed the 

moduli. The number range M of the system is  


n
1i imM . If the moduli are 

pairwise relatively prime, i.e. if ,1),gcd( kj mm  ,kj   nkj   ,..,2 ,1,  , then every 
integer X from ]1,0[ M , is represented by the n–tuple  110 ,...,, lxxx , where 



High level synthesis in FPGA of TCS/RNS converter 
 
 

145 

imi Xx  , in one–to–one correspondence manner.. The residue operations can 

be defined as      nnn zzzyyyxxx ,...,,,...,,,...,, 212121  , where 
imiii yxz  ,and 

  may denote addition, subtraction or multiplication. As seen from the above 
formula the operations are performed in small integer rings  imR , i=1,2,..., n. 
The condition of mutual primality assures that the mapping between the ring 
modulo M and the direct sum of  imR , i=1,2,...,n. is isomorphic. This 
mapping can be performed using the Chinese Remainder Theorem or the 
mixed–radix conversion[2, 3]. 
 

3. TWO’S COMPLEMENT–TO–RESIDUE CONVERSION 
 

The binary–to–residue conversion is the process of finding the set of 
residues, i.e. the residue representation ),...,,(

11 mmm
XXX

nn
, for the number 

 )( 021 ,  ....,x,xxX =  l-l- represented in a certain l–digit binary code, 
(0,1) xi , eg. the natural binary, one’s complement or two’s complement. 

Below we shall consider only two’s complement representation and we assume 
that Mll  1-22- . 

m

l-

i
m

i
i

m

l

i

i
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xxX 





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1

0

1

0

22        (1) 

The hardware implementation (Fig. 1) of conversion by (1) requires, in 
general, the computation of 

m

i2 , 1210  ,...,l,,i , summation of 
m

i2  for 

these i, for which 0ix  and the modulo m operation. The most direct approach 

to compute 
m

i2  is s.c. wire splitting where the xi wire is splitted, in general, 

into   mlog  wires with each wire representing the power of i2  that is present 

in the binary representation of  
m

i2 . This approach seems to be impractical for 

longer words due to the complex wiring and the large number of addends. 
Premkumar [6] proposed computation of 

m

i2 , instead of storing, but his 

approach leads to the structures with the large hardware amount. 
Piestrak [5] shown that to determine the residue of the number represented by 

the given segment, the computation of 
m

i2  can be avoided by using the 

property of periodicity or half–periodicity of the series 
m

i2 . Periodicity means 
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that 
m

j2  and 
m

mPij )(2   have the same residues modulo m, where P(m) is 

called the period of the modulus.  
In this approach the converted word is divided into segments of P(m)–bit 

length that can be directly added. This approach can be useful when only one 
residue is generated and P(m) is small. If we have a base consisting of 5–6–bit 
moduli this approach becomes impractical if P(mi) are different for the 
individual moduli of the RNS base. The makes that the converters for the 
individual residue channels call for various hardware amounts and may have 
different delays. 

m
X

Fq

 
Fig. 1. The general scheme of one channel of the B/RNS converter, where  mq log   

is a length of segment and   )/)(( qnnqllq ssF   is a length of the most significant 
segment and l is a length of the binary representation of X, ns – number of segments 

 
In order to diminish the number of addends in (1), we can divide the 

representation of X into segments with the first segment of  mq 2log  bits, 

2sn   sn/)ql(  –bit segments and one final (MSB) 
  )/)(( qnnqllq ssF  – bit segment. The first segment has usually 

  1log m  bitlength, so there is no need to use the modulo generation for this 
segment because it represents the residue modulo m itself. We can generate the 
residues for the individual segments and then compute their sum as  
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where s is the index of segment, ns – number of segments and ls – is the segment 
length. 
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If l is sufficiently small (l <1012) the conversion can be performed, using 
only one segment, by memory look–up applying, for example, ROM 

  ml log2  , provided that the memory block will not limit the pipelining 
frequency. In FPGAs, which are our consideration, ROMs can be used that are 
placed outside the FPGA matrix or the decomposed memory represented by 
LUTs with the 4–6 bit address. Their use imposes a form of dividing the input 
word into smaller segments. However the problem becomes more difficult when 
we consider conversion of two’s complement numbers. 

Assume that a signed integer X is represented in two's complement code 
using 1l –bit representation  02-1-1 ,...,,, xxxxX lll ,  1,0ix . Signed 
integers are usually represented in the RNS in such a manner that for M odd, the 
number range is ]2/)1(,2/)1([  MM  and for M even, ]12/,2/[  MM . 
Assume henceforth M even without loss of generality. Then the interval 

]12 ,0[ 1 l  will be converted into  the part of the interval ]12/,0[ M  and the 
interval ]1 ,2[ 1  l  is converted to the subrange of ]1,2/[  MM . For X < 0 
we have to determine 

m
XM - , that can be obtained as 

im
Xm- .  

For X<0 we want to represent –X as a sum of negative or zero numbers 
represented by the consecutive segments. We have  

)(...)( 021 XXXX ss        (3) 
Then  

i
iiii mmmsmsm

XXXXM 021 0...00   .  (4) 

Moreover we have 

iii msimsms XmXX 1110       (5) 

In order to use this form for conversion we have first to recover the absolute 
value X  from X* being the 2’s complement representation of –X. We have 

XX l  2* ,          (6) 
hence 

*12 XX l   ,          (7) 
1)12( *1   XX l ,        (8) 

where the expression in parenthesis denotes the negation of X. Therefore once X 
is recovered form X* we can perform  

i
iiii mmimsimsim

XmXmXmXM 021 ...    (9) 
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4. TWO’S COMPLEMENT TO RESIDUE  
CONVERTER ALGORITHM  

 
The presented converter utilizes the principle of segmentation of the input 

word. The input word is divided into segments of six–bit length with the 
possible exception of the first (msb) segment which can be shorter if the length 
of the input word is not an integer multiple of 6. 

The input vector has a following form ),...,( 0xxl . It is divided into segments 
in such a manner that each segment contains 5 bits of the x input vector and the 
sign bit s, for example, for 15–bits we have the vector 

),,,,,s,,,,,,s,,,,,,s( 01234567891011121314 xxxxxxxxxxxxxxx  
The sign bits are used to signal that the given segment represents the negative 
number. If the msb bit of the input word is equal to 0, so the number is non 
negative, we use the formula 
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and for negative numbers  
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Once the residues for the segments have been obtained their sum modulo m 
has to be determined by using a multi–operand modulo adder. Such adder can be 
realized as the tree of n/2 two operand adders or by performing first binary 
summation and next the modulo m reduction of the sum.  

The formulas (10) and (11) can be implemented as the structure given in 
Fig. 2. 

 

 
 

Fig. 2. TCS/RNS converter structure based on ROMs 
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5. HIGH LEVEL SYNTHESIS OF TCS/RNS CONVERTER 
 

The synthesis of the presented converter has been carried out in the Xilinx 
HLS integrated environment. This approach radically shortens the project 
development time in FPGAs. The standard FPGA design process requires the 
description of circuit operation at RTL niveau with the use of the hardware 
description in VHDL or Verilog. This description can be automatically 
translated to the netlist. The focus of the netlist abstraction layer is to define the 
Boolean functionality of the design with appropriate area, performance and 
power, what is the final stage of an FPGA implementation. In case of the ASIC 
design the elaboration of appropriate masks is needed for the fabrication of the 
VLSI circuit. The essence of the approach related to the use HLS involves 
applying the high–level programming language such as C/C++ as well for 
design as for testing. 

There is no need to simulate and test the algorithm outside the Xilinx 
environment. In the classical approach these steps are carried out externally and 
once the algorithm is deemed correct the design of FPGA implementation may 
start. Within the Xilinx HLS environment several programming mechanisms 
have been applied that facilitate high–level synthesis. The high–level synthesis 
requires an adequate description of the input and the output and internal 
registers of the system. A need emerged to introduce arithmetic types with the 
selectable bit length. In order to make it possible new parametrized class types 
have been introduced such as, for example, ap_int, defined in <ap_int.h>. 
The ap_int type is used to define input and output signals with the 
wordlength from 1 do 1024 bits. This class disposes over suitable constructors 
which are used to create objects representing system input and system output as 
well as internal signals. The parametrized type can be used directly or we can 
introduce a new name for the parametrized type as in Fig. 3. For example, we 
can define 5–bit unsigned int type . as uint5 

 

 
 

Fig. 3. Introduction of the new name for ap_unt <5> 
 

The TCS/RNS converters were synthesized in Xilinx Vivado HLS using 6–
bit modulo generators implemented with the use of ROMs and adder tree 
consisting of 5–bit Two–Operand Modular Adders (TOMA). Below we shall 
show results of experiments which have been performed in order to find such 
the programmatical description of the fragment of the converter that leads to the 
optimal converter architecture with respect to minimum hardware complexity. 
In system architectures that use the RNS, the crucial operation that considerably 
influences the complexity, is the modulo reduction operation. The first factor 
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that determines its complexity is the binary size of the modulus. It can be a 
small modulus mi , being one of the system moduli or the RNS number range M. 
For DSP systems with the moderate number range, mi  binary size belongs to [3, 
12] and M to [20, 50]. The second factor is the binary size of the word to be 
reduced. The direct approach to perform modulo reduction operation is to carry 
out integer division and find the remainder. The C++ version used in Vivado 
HLS allows to use the standard modulo ‘%’ operator. In the architecture being 
the result of HLS synthesis this operation is implemented with division and 
remainder determination. This, however, requires the integer divider in the 
system. The divider is usually iterative and introduces considerable delay. Such 
modulo reduction operation has a general character and can be performed 
independently of the relationship between the number to be reduced and the 
modulus. But in certain cases the modulo reduction can be significantly 
simplified. If, for example, X<2m, we compute r = X mod m  by calculating  
d= X – m, then if d<0, then r = X  else r = d. In the program only if–else 
instruction is needed. If X  exceeds 2m, nested if instruction can be used. 
 In Fig. 4 the C++ function is shown that corresponds to the block with two 
five–bit inputs w1 and w2 and five–bit output. The input signals w1 and w2 
address ROM memories and w1 and w2 are treated as representations of the 
binary numbers. Next summation of the residues x1 and x2 is performed and 
subsequently the reduction modulo 29 using % operator is made. ROM 
memories are implemented as one–dimensional int tables const uint5 
ROM1mod29[32], ROM2mod29[32]. 
 

 
 

Fig. 4. B/RNS conversion for 10–bit word using memory look–up  
and modulo reduction with % operator 

 
In the next experiment mod 29 operator (%) was replaced by if–else 

instruction (Fig. 5). 
In the last experiment the direct structure based on (10) and (11) was 

benchmarked (Fig. 6). 
The synthesis results of the above models are presented in Fig. 7. It can be 

observed that the use of C++ in–built operators leads to the more complex 
architecture (Fig. 7c). The best results have been obtained using ROMs and 
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modulo reduction using if–else and subtraction. We can draw, at least in this 
case, a conclusion that direct high–level description may accelerate the 
implementation but the result is less effective with respect to hardware amount . 

 

 
 

Fig. 5. B/RNS conversion for 10–bit word using memory look–up  
and modulo reduction using if–else 

 

 
 

Fig. 6. TCS/RNS memoryless conversion for 10–bit word using modulo reduction with if–else 
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In order to obtain an effective system structure the high–level description 
should reflect the properties of the hardware in the given FPGA design 
environment. 
 

 a) 

b) 

c) 
 

Fig. 7. The results of various methods of modulo reduction a) using ROMs, adders and divider b)  
ROM and subtraction (if–else) c) using adders and dividers chosen of the synthesis tool 
 

For the description of the TCS/RNS converter for the synthesis in Xilinx 
Vivado HLS two approaches have been selected. The first, being the most 
limited, is based on adders and ROMs and most lavish makes use  of the high–
level description of the algorithm.. The synthesis results for Xilinx Atrix 
xc7a75tlftg256 are given in Fig 8 and Fig 9. It turns out that the optimized 
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description of the TCS/RNS algorithm requires about 6 times less hardware 
than in the case of the direct high–level synthesis. The testbench result of the 
TCS/RNS converter is given in Fig. 10. 
 

 
 

Fig. 8. Synthesis results for 16–bit TCS/RNS converter based on ROMs  
(target device  xc7a75tlftg256–2l) 

 

 
 

Fig. 9. Synthesis results for 16–bit TCS/RNS converter based on adders  
(target device  xc7a75tlftg256–2l) 

 

 
 

Fig. 10. TCS/RNS converter testbench result 



Robert Smyk, Maciej Czyżak 
 
 

154 

6. CONCLUSIONS 
 

The paper presents the results of design experiments using high level 
synthesis approach for TCS/RNS converter design. The experiments has been 
performed using Xilinx Vivado HLS. The aim of the experiments was to judge 
the influence of the form of the description of the system architecture on the 
hardware complexity of the TCS/RNS converter. In residue systems modulo 
reduction is the crucial operation with respect to hardware complexity. It was 
stated that the direct realization of modulo reduction using standard C++ 
operator leads to more complex architectures than the use of modulo reduction 
based on subtractions and comparisons which was in accordance with the 
expectations. The direct realization of fragment of converter using C++ modulo 
operator gave in result about six times greater hardware requirement than in the 
case of reduction based on additive operations and comparison. A conclusion 
can be drawn that however the HLS approach can considerably shortens the 
development process but it should be considered in common careful use with 
the standard operators. 
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