Nr 55

2015 DOI:10.1515/fascmath-2015-0024

Luong Quoc Tuyen

MAPPING THEOREMS ON SPACES WITH sn-NETWORK g-FUNCTIONS

ABSTRACT. Let Δ be the sets of all topological spaces satisfying the following conditions.

- (1) Each compact subset of X is metrizable;
- (2) There exists an *sn*-network *g*-function *g* on *X* such that if $x_n \to x$ and $y_n \in g(n, x_n)$ for all $n \in \mathbb{N}$, then *x* is a cluster point of $\{y_n\}$.

In this paper, we prove that if $X \in \Delta$, then each sequentiallyquotient boundary-compact map on X is pseudo-sequence-covering; if $X \in \Delta$ and X has a point-countable *sn*-network, then each sequence-covering boundary-compact map on X is 1-sequence-covering. As the applications, we give that each sequentially-quotient boundary-compact map on g-metrizable spaces is pseudo-sequence-covering, and each sequence-covering boundary-compact on g-metrizable spaces is 1-sequence-covering.

KEY WORDS: *sn*-networks, *sn*-network *g*-functions, *g*-metrizable spaces, boundary-compact maps, sequentially-quotient maps, pseudo-sequence-covering maps, sequence-covering maps, 1-sequence-covering maps.

AMS Mathematics Subject Classification: 54C10, 54E40, 54E99.

1. Introduction and preliminaries

A study of images of topological spaces under certain sequence-covering maps is an important question in general topology. In 2001, S. Lin and P. Yan proved that each sequence-covering and compact map on metric spaces is 1-sequence-covering ([15]). Furthermore, S. Lin proved that each sequentially-quotient compact maps on metric spaces is pseudo-sequencecovering, and there exists a sequentially-quotient π -map on metric spaces is not pseudo-sequence-covering ([14]). In [1], T. V. An and L. Q. Tuyen proved that each sequence-covering π and s-map on metric spaces is 1-sequence-covering. After that, F. C. Lin and S. Lin proved that each sequence-covering and boundary-compact map on metric spaces is 1-sequence-covering ([10]). Recently, the authors proved that if X is an open image of metric spaces, then each sequentially-quotient boundary-compact map on X is pseudo-sequence-covering ([11]).

Let Δ be the sets of all topological spaces satisfying the following conditions.

- (1) Each compact subset of X is metrizable;
- (2) There exists an *sn*-network *g*-function *g* on *X* such that if $x_n \to x$ and $y_n \in g(n, x_n)$ for all $n \in \mathbb{N}$, then *x* is a cluster point of $\{y_n\}$.

In this paper, we prove that if $X \in \Delta$, then each sequentially-quotient boundary-compact map on X is pseudo-sequence-covering; if $X \in \Delta$ and X has a point-countable *sn*-network, then each sequence-covering boundarycompact map on X is 1-sequence-covering. As the applications, we give that each sequentially-quotient boundary-compact map on g-metrizable spaces is pseudo-sequence-covering, and each sequence-covering boundary-compact on g-metrizable spaces is 1-sequence-covering.

Throughout this paper, all spaces are assumed to be Hausdorff, all maps are continuous and onto, \mathbb{N} denotes the set of all natural numbers. Let \mathcal{P} be a collection of subsets of X, we denote $\bigcup \mathcal{P} = \bigcup \{P : P \in \mathcal{P}\}$.

Definition 1. Let X be a space, $\{x_n\} \subset X$ and $P \subset X$.

- (1) $\{x_n\}$ is called eventually in P, if $\{x_n\}$ converges to x, and there exists $m \in \mathbb{N}$ such that $\{x\} \cup \{x_n : n \ge m\} \subset P$.
- (2) $\{x_n\}$ is called frequently in P, if some subsequence of $\{x_n\}$ is eventually in P.
- (3) P is called a sequential neighborhood of x in X [5], if whenever $\{x_n\}$ is a sequence converging to x in X, then $\{x_n\}$ is eventually in P.

Definition 2. Let \mathcal{P} be a collection of subsets of X.

- (1) \mathcal{P} is point-countable, if each point $x \in X$ belongs to only countably many members of \mathcal{P} .
- (2) \mathcal{P} is locally finite, if for each $x \in X$, there exists a neighborhood V of x such that V meets only finite many members of \mathcal{P} .
- (3) \mathcal{P} is σ -locally finite, if $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$, where each \mathcal{P}_n is locally finite.
- (4) \mathcal{P} is a network at x in X, if $x \in P$ for every $P \in \mathcal{P}$, and whenever $x \in U$ with U open in X, then $x \in P \subset U$ for some $P \in \mathcal{P}$.
- (5) \mathcal{P} is a cs-cover [19], if every convergent sequence is eventually in some $P \in \mathcal{P}$.

Definition 3. Let $\{\mathcal{P}_n : n \in \mathbb{N}\}$ be a sequence of covers of a space X such that \mathcal{P}_{n+1} refines \mathcal{P}_n for every $n \in \mathbb{N}$.

- (1) $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}\$ is a σ -strong network for X [8], if $\{st(x, \mathcal{P}_n) : n \in \mathbb{N}\}\$ is a network at each point $x \in X$.
- (2) $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}\$ is a σ -locally finite strong network consisting of cs-covers for X, if it is a σ -strong network and each \mathcal{P}_n is a locally finite cs-cover.

Definition 4. Let $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ be a cover of a space X. Assume that \mathcal{P} satisfies the following (a) and (b) for every $x \in X$.

(a) \mathcal{P}_x is a network at x.

(b) If $P_1, P_2 \in \mathcal{P}_x$, then there exists $P \in \mathcal{P}_x$ such that $P \subset P_1 \cap P_2$.

- (1) \mathcal{P} is a weak base of X [2], if for $G \subset X$, G is open in X if and only if for every $x \in G$, there exists $P \in \mathcal{P}_x$ such that $P \subset G$; \mathcal{P}_x is said to be a weak neighborhood base at x in X.
- (2) \mathcal{P} is an sn-network for X [12], if each element of \mathcal{P}_x is a sequential neighborhood of x for all $x \in X$; \mathcal{P}_x is said to be an sn-network at x in X.

Definition 5. Let X be a space. Then,

- (1) X is gf-countable [2] (resp., snf-countable [7]), if X has a weak base (resp., sn-network) $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ such that each \mathcal{P}_x is countable.
- (2) X is g-metrizable [17], if X is regular and has a σ -locally finite weak base.
- (3) X is sequential [5], if whenever A is a non closed subset of X, then there is a sequence in A converging to a point not in A.
- (4) X is strongly g-developable [18], if X is sequential has a σ -locally finite strong network consisting of cs-covers.

Remark 1. (1) Each strongly *g*-developable space is *g*-metrizable.

(2) A space X is gf-countable if and only if it is sequential and snf-countable.

Definition 6. Let $f : X \longrightarrow Y$ be a map.

- (1) f is a compact map [4], if each $f^{-1}(y)$ is compact in X.
- (2) f is a boundary-compact map [4], if each $\partial f^{-1}(y)$ is compact in X.
- (3) f is a pseudo-sequence-covering map [8], if for each convergent sequence L in Y, there is a compact subset K in X such that f(K) = cl(L).
- (4) f is a sequentially-quotient map [3], if whenever $\{y_n\}$ is a convergent sequence in Y, there is a convergent sequence $\{x_k\}$ in X with each $x_k \in f^{-1}(y_{n_k})$.
- (5) f is a weak-open map [21], if there exists a weak base $\mathcal{P} = \bigcup \{\mathcal{P}_y : y \in Y\}$ for Y, and for $y \in Y$, there exists $x_y \in f^{-1}(y)$ such that for each open neighborhood U of x_y , $P_y \subset f(U)$ for some $P_y \in \mathcal{P}_y$.
- (6) f is an 1-sequence-covering map [12], if for each $y \in Y$, there is $x_y \in f^{-1}(y)$ such that whenever $\{y_n\}$ is a sequence converging to y in

Y, there is a sequence $\{x_n\}$ converging to x_y in X with $x_n \in f^{-1}(y_n)$ for every $n \in \mathbb{N}$.

(7) f is a sequence-covering map [17], if every convergent sequence of Y is the image of some convergent sequence of X.

Remark 2. (1) Each compact map is a compact-boundary map. (2) Each 1-sequence-covering map is a sequence-covering map.

Definition 7 ([6]). A function $g : \mathbb{N} \times X \longrightarrow \mathcal{P}(X)$ is called an weak base g-function on X, if it satisfies the following conditions.

(1) $x \in g(n, x)$ for all $x \in X$ and $n \in \mathbb{N}$.

(2) $g(n+1,x) \subset g(n,x)$ for all $n \in \mathbb{N}$.

(3) $\{g(n,x): n \in \mathbb{N}\}$ is a weak neighborhood base at x for all $x \in X$.

Note that a weak base g-functions were called CWC-maps and CWBC-maps in [9] and [16], respectively.

Definition 8. A function $g : \mathbb{N} \times X \longrightarrow \mathcal{P}(X)$ is called an sn-network g-function on X, if it satisfies the following conditions.

(1) $x \in g(n, x)$ for all $x \in X$ and $n \in \mathbb{N}$.

(2) $g(n+1,x) \subset g(n,x)$ for all $n \in \mathbb{N}$.

(3) $\{g(n,x): n \in \mathbb{N}\}\$ is an sn-network at x for all $x \in X$.

2. Main results

Let Δ be the sets of all topological spaces satisfying the following conditions.

- (1) Each compact subset of X is metrizable;
- (2) There exists an *sn*-network *g*-function *g* on *X* such that if $x_n \to x$ and $y_n \in g(n, x_n)$ for all $n \in \mathbb{N}$, then *x* is a cluster point of $\{y_n\}$.

Theorem 1. Let $f : X \longrightarrow Y$ be a boundary-compact map. If $X \in \Delta$, then f is a sequentially-quotient map if and only if it is a pseudo-sequence-covering map.

Proof. Necessity. Let f be a sequentially-quotient map and $\{y_n\}$ be a non-trivial sequence converging to y in Y. Since $X \in \Delta$, there exists an *sn*-network g-function g on X satisfying that if $x_n \to x$ and $y_n \in g(n, x_n)$ for all $n \in \mathbb{N}$, then x is a cluster point of $\{y_n\}$. For $n \in \mathbb{N}$, let

$$U_{y,n} = \bigcup \{g(n,x) : x \in \partial f^{-1}(y)\}$$
 and $P_{y,n} = f(U_{y,n}).$

It is obvious that $\{P_{y,n} : n \in \mathbb{N}\}$ is a decreasing sequence in X. Furthermore, $P_{n,y}$ is a sequential neighborhood of y in Y for all $n \in \mathbb{N}$. If not, there exists $n \in \mathbb{N}$ such that $P_{y,n}$ is not a sequential neighborhood of y in Y. Thus, there exists a sequence L converges to y in Y such that $L \cap P_{y,n} = \emptyset$. Since f is sequentially-quotient, there exists a sequence S converges to $x \in \partial f^{-1}(y)$ such that f(S) is a subsequence of L. On the other hand, because g(n, x)is a sequential neighborhood of x in X, S is eventually in g(n, x). Thus, Sis eventually in $U_{y,n}$. Therefore, L is frequently in $P_{y,n}$. This contradicts to $L \cap P_{y,n} = \emptyset$.

Then for each $n \in \mathbb{N}$, there exists $i_n \in \mathbb{N}$ such that $y_i \in P_{y,n}$ for all $i \ge i_n$. So $f^{-1}(y_i) \cap U_{y,n} \ne \emptyset$. We can suppose that $1 < i_n < i_{n+1}$. For each $j \in \mathbb{N}$, we take

$$x_j \in \begin{cases} f^{-1}(y_j), & \text{if } j < i_1, \\ f^{-1}(y_j) \cap U_{y,n}, & \text{if } i_n \le j < i_{n+1}. \end{cases}$$

Let $K = \partial f^{-1}(y) \cup \{x_j : j \in \mathbb{N}\}$. Clearly, $f(K) = \{y\} \cup \{y_n : n \in \mathbb{N}\}$. Furthermore, K is a compact subset in X. In fact, let \mathcal{U} be an open cover for K in X. Since $\partial f^{-1}(y)$ is a compact subset in X, there exists a finite subfamily $\mathcal{H} \subset \mathcal{U}$ such that $\partial f^{-1}(y) \subset \bigcup \mathcal{H}$. Then there exists $m \in \mathbb{N}$ such that $U_{n,y} \subset \bigcup \mathcal{H}$ for all $n \geq m$. If not, for each $n \in \mathbb{N}$, there exists $v_n \in U_{y,n} - \bigcup \mathcal{H}$. It implies that $v_n \in g(n, u_n) - \bigcup \mathcal{H}$ for some $u_n \in \partial f^{-1}(y)$. Since $\{u_n\} \subset \partial f^{-1}(y)$ and each compact subset of X is metrizable, there exists a subsequence $\{u_{n_k}\}$ of $\{u_n\}$ such that $u_{n_k} \to x \in \partial f^{-1}(y)$. Now, for each $i \in \mathbb{N}$, we put

$$a_{i} = \begin{cases} u_{n_{1}}, & \text{if } i \leq n_{1} \\ u_{n_{k+1}}, & \text{if } n_{k} < i \leq n_{k+1}; \end{cases}$$
$$b_{i} = \begin{cases} v_{n_{1}}, & \text{if } i \leq n_{1} \\ v_{n_{k+1}}, & \text{if } n_{k} < i \leq n_{k+1}. \end{cases}$$

Then $a_i \to x$. Because $g(n+1,x) \subset g(n,x)$ for all $x \in X$ and $n \in \mathbb{N}$, it implies that $b_i \in g(i, a_i)$ for all $i \in \mathbb{N}$. By property of g, it implies that x is a cluster point of $\{b_i\}$. Thus, x is a cluster point of $\{v_{n_k}\}$. This contradicts to $\bigcup \mathcal{H}$ is a neighborhood of x and $v_{n_k} \notin \bigcup \mathcal{H}$ for all $k \in \mathbb{N}$.

Because $P_{y,i+1} \subset P_{y,i}$ for all $i \in \mathbb{N}$, it implies that $\partial f^{-1}(y) \cup \{x_i : i \geq m\} \subset \bigcup \mathcal{H}$. For each i < m, take $V_i \in \mathcal{U}$ such that $x_i \in V_i$. Put $\mathcal{V} = \mathcal{U} \cup \{V_i : i < m\}$. Then $\mathcal{V} \subset \mathcal{U}$ and $K \subset \bigcup \mathcal{V}$. Therefore, K is compact in X, and f is pseudo-sequence-covering.

Sufficiency. Suppose that f is a pseudo-sequence-covering map. If $\{y_n\}$ is a convergent sequence in Y, then there is a compact subset K in X such that $f(K) = cl(\{y_n\})$. For each $n \in \mathbb{N}$, take a point $x_n \in f^{-1}(y_n) \cap K$. Since K is compact and metrizable, $\{x_n\}$ has a convergent subsequence $\{x_{n_k}\}$, and $\{f(x_{n_k})\}$ is a subsequence of $\{y_n\}$. Therefore, f is sequentially-quotient.

By Theorem 2.6 [20] and Theorem 1, we have

Corollary 1. Let $f : X \longrightarrow Y$ be a boundary-compact map. If X is g-metrizable or strongly g-developable, then f is a sequentially-quotient map if and only if it is a pseudo-sequence-covering map.

Corollary 2. Let $f : X \longrightarrow Y$ be a compact map. If X is g-metrizable or strongly g-developable, then f is a sequentially-quotient map if and only if it is a pseudo-sequence-covering map.

Lemma 1. Let $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ be a point-countable sn-network for X, and K be a compact metrizable subset of X. If $x \in K$, then $x \in$ $Int_K(P \cap K)$ for all $P \in \mathcal{P}_x$.

Proof. Let $P \in \mathcal{P}_x$ and $\{V_n : n \in \mathbb{N}\}$ be a local base at the point x in K. Then $x \in V_n \subset P \cap K$ for some $n \in \mathbb{N}$. If not, for each $n \in \mathbb{N}$, there exists $x_n \in V_n - (P \cap K)$. It implies that the sequence $\{x_n\}$ converges to x in X. Since P is a sequential neighborhood of x in X, $\{x_n\}$ is eventually in P. This contradicts to $x_n \notin P$ for all $n \in \mathbb{N}$.

Therefore, $V_n \subset P \cap K$ for some $n \in \mathbb{N}$, and $x \in \text{Int}_K(P \cap K)$.

Lemma 2. Let $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ be a point-countable sn-network for X. If K is a compact metrizable subset of X, then $\bigcup \{\mathcal{P}_x : x \in K\}$ is countable.

Proof. Let $D \subset K$ be a countable subset of K such that $K = cl_K(D)$, and $P \in \bigcup \{\mathcal{P}_x : x \in K\}$. Then $P \in \mathcal{P}_x$ for some $x \in K$. By Lemma 1, $x \in Int_K(P \cap K)$. Therefore, $D \cap Int_K(P \cap K) \neq \emptyset$, it implies that $P \cap D \neq \emptyset$. This follows that

$$\bigcup \{\mathcal{P}_x : x \in K\} \subset \{P \in \mathcal{P} : P \cap D \neq \emptyset\}.$$

Finally, since \mathcal{P} is point-countable and D is countable, it implies that $\bigcup \{\mathcal{P}_x : x \in K\}$ is countable.

Theorem 2. Let $f : X \longrightarrow Y$ be a boundary-compact map and $X \in \Delta$. If X has a point-countable sn-network, then f is a sequence-covering map if and only if it is a 1-sequence-covering map.

Proof. Necessity. Let $f: X \longrightarrow Y$ be a sequence-covering boundarycompact map, and $X \in \Delta$. Firstly, we prove that Y is snf-countable. In fact, since $X \in \Delta$, there exists an *sn*-network g-function g on X such that if $x_n \to x$ and $y_n \in g(n, x_n)$ for all $n \in \mathbb{N}$, then x is a cluster point of $\{y_n\}$. For each $y \in Y$ and $n \in \mathbb{N}$, we put

$$P_{y,n} = f\left(\bigcup\{g(n,x) : x \in \partial f^{-1}(y)\}\right), \text{ and } \mathcal{P}_y = \{P_{y,n} : n \in \mathbb{N}\}.$$

Then each \mathcal{P}_y is countable and $P_{y,n+1} \subset P_{y,n}$ for all $y \in Y$ and $n \in \mathbb{N}$. Furthermore, we have

(1) \mathcal{P}_y is a network at y. Let $y \in U$ with U open in Y. Then there exists $n \in \mathbb{N}$ such that

$$\bigcup \{g(n,x) : x \in \partial f^{-1}(y)\} \subset f^{-1}(U).$$

If not, for each $n \in \mathbb{N}$, there exist $x_n \in \partial f^{-1}(y)$ and $z_n \in X$ such that $z_n \in g(n, x_n) - f^{-1}(U)$. Since $X \in \Delta$, it follows that each compact subset of X is metrizable. On the other hand, since $\{x_n\} \subset \partial f^{-1}(y)$ and f is a boundary-compact map, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $x_{n_k} \to x \in \partial f^{-1}(y)$. Now, for each $i \in \mathbb{N}$, we put

$$a_{i} = \begin{cases} x_{n_{1}}, & \text{if } i \leq n_{1} \\ x_{n_{k+1}}, & \text{if } n_{k} < i \leq n_{k+1}; \end{cases}$$
$$b_{i} = \begin{cases} z_{n_{1}}, & \text{if } i \leq n_{1} \\ z_{n_{k+1}}, & \text{if } n_{k} < i \leq n_{k+1}. \end{cases}$$

Then $a_i \to x$. Because $g(n+1,x) \subset g(n,x)$ for all $x \in X$ and $n \in \mathbb{N}$, it implies that $b_i \in g(i,a_i)$ for all $i \in \mathbb{N}$. By the property of g, it implies that xis a cluster point of $\{b_i\}$. Thus, x is a cluster point of $\{z_{n_k}\}$. This contradicts to $f^{-1}(U)$ is a neighborhood of x and $z_{n_k} \notin f^{-1}(U)$ for all $k \in \mathbb{N}$.

Therefore, $P_{y,n} \subset U$, and \mathcal{P}_y is a network at y.

(2) Let $P_{y,m}$, $P_{y,n} \in \mathcal{P}_y$. If we take $k = \max\{m, n\}$, then $P_{y,k} \subset P_{y,m} \cap P_{y,n}$.

(3) Each element of \mathcal{P}_y is a sequential neighborhood of y. Let $P_{y,n} \in \mathcal{P}_y$ and L be a sequence converging to y in Y. Since f is sequence-covering, L is an image of some sequence S converges to $x \in \partial f^{-1}(y)$. On the other hand, since g(n, x) is a sequential neighborhood of x, S is eventually in g(n, x). This implies that L is eventually in $P_{y,n}$. Therefore, $P_{y,n}$ is a sequential neighborhood of y.

Therefore, $\bigcup \{ \mathcal{P}_y : y \in Y \}$ is an *sn*-network for X, and Y is an *snf*-countable space.

Next, let $\mathcal{B} = \bigcup \{\mathcal{B}_x : x \in X\}$ be a point-countable *sn*-network for X. We prove that each non-isolated point $y \in Y$, there exists $x_y \in \partial f^{-1}(y)$ such that for each $B \in \mathcal{B}_{x_y}$, there exists $P \in \mathcal{P}_y$ satisfying $P \subset f(B)$. Otherwise, there exists a non-isolated point $y \in Y$ so that for each $x \in \partial f^{-1}(y)$, there exists $B_x \in \mathcal{B}_x$ such that $P \not\subset f(B_x)$ for all $P \in \mathcal{P}_y$. Since \mathcal{P}_y is an *sn*-network at y, we can choose a decreasing countable network $\{P_{y,n} : n \in \mathbb{N}\} \subset \mathcal{P}_y$ at y. Furthermore, since $X \in \Delta$, f is a boundary-compact map and \mathcal{B} is a point-countable *sn*-network for X, it follows from Lemma 2 that $\bigcup \{\mathcal{B}_x : x \in \partial f^{-1}(y)\}$ is countable. Thus, $\{B_x : x \in \partial f^{-1}(y)\}$ is countable. Assume that

$$\{B_x : x \in \partial f^{-1}(y)\} = \{B_m : m \in \mathbb{N}\}.$$

Hence, for each $m, n \in \mathbb{N}$, there exists $x_{n,m} \in P_{y,n} - f(B_m)$. For $n \geq m$, we denote $y_k = x_{n,m}$ with k = m + n(n-1)/2. Since $\{P_{y,n} : n \in \mathbb{N}\}$ is a decreasing network at y, $\{y_k\}$ is a sequence converging to y in Y. On the other hand, because f is a sequence-covering map, $\{y_k\}$ is an image of some sequence $\{x_n\}$ converging to $x \in \partial f^{-1}(y)$ in X. Furthermore, since $B_x \in \{B_m : m \in \mathbb{N}\}$, there exists $m_0 \in \mathbb{N}$ such that $B_x = B_{m_0}$. Because B_{m_0} is a sequential neighborhood of x, $\{x\} \cup \{x_k : k \geq k_0\} \subset B_{m_0}$ for some $k_0 \in \mathbb{N}$. Thus, $\{y\} \cup \{y_k : k \geq k_0\} \subset f(B_{m_0})$. But if we take $k \geq k_0$, then there exists $n \geq m_0$ such that $y_k = x_{n,m_0}$, and it implies that $x_{n,m_0} \in f(B_{m_0})$. This contradicts to $x_{n,m_0} \in P_{y,n} - f(B_{m_0})$.

We now prove that f is an 1-sequence-covering map. Suppose $y \in Y$, by the above proof there is $x_y \in \partial f^{-1}(y)$ such that whenever $B \in \mathcal{B}_{x_y}$, there exists $P \in \mathcal{P}_y$ satisfying $P \subset f(B)$. Let $\{y_n\}$ be an any sequence in Y, which converges to y. Since \mathcal{B}_{x_y} is an *sn*-network at x_y , we can choose a decreasing countable network $\{B_{y,n} : n \in \mathbb{N}\} \subset \mathcal{B}_{x_y}$ at x_y . We choose a sequence $\{z_n\}$ in X as follows.

Since $B_{y,n} \in \mathcal{B}_{xy}$, by the above argument, there exists $P_{y,k_n} \in \mathcal{P}_y$ satisfying $P_{y,k_n} \subset f(B_{y,n})$ for all $n \in \mathbb{N}$. On the other hand, since each element of \mathcal{P}_y is a sequential neighborhood of y, it follows that for each $n \in \mathbb{N}$, $f(B_{y,n})$ is a sequential neighborhood of y in Y. Hence, for each $n \in \mathbb{N}$, there exists $i_n \in \mathbb{N}$ such that $y_i \in f(B_{y,n})$ for every $i \geq i_n$. Assume that $1 < i_n < i_{n+1}$ for each $n \in \mathbb{N}$. Then for each $j \in \mathbb{N}$, we take

$$z_j = \begin{cases} z_j \in f^{-1}(y_j), & \text{if } j < i_1 \\ z_{j,n} \in f^{-1}(y_j) \cap B_{y,n}, & \text{if } i_n \le j < i_{n+1} \end{cases}$$

If we put $S = \{z_j : j \ge 1\}$, then S converges to x_y in X, and $f(S) = \{y_n\}$. Therefore, f is 1-sequence-covering.

Sufficiency. By Remark 2.

Corollary 3. Let $f : X \longrightarrow Y$ be a boundary-compact map and $X \in \Delta$. If X has a point-countable weak base, then f is a sequence-covering map if and only if it is a 1-sequence-covering map.

Corollary 4. Let $f : X \longrightarrow Y$ be a boundary-compact map. If X is g-metrizable or strongly g-developable, then f is a sequence-covering map if and only if it is a 1-sequence-covering map.

Corollary 5. Let $f : X \longrightarrow Y$ be a boundary-compact map. If X is g-metrizable or strongly g-developable, then f is a sequence-covering quotient map if and only if it is a weak-open map.

Example 1. Let Ω be the sets of all topological spaces such that, for each compact subset $K \subset X \in \Omega$, K is metrizable and also has a countably neighborhood base in X (see [11]). Put $X = \mathbb{N} \cup \{p\}$ with $p \in \beta \mathbb{N} - \mathbb{N}$. Then X is a subspace of $\beta \mathbb{N}$ and $X \in \Delta - \Omega$. In fact, by Remark 1.5 [13], each compact subset of X is metrizable but it is not sequential. Thus, $X \notin \Omega$. Furthermore, for each $n \in \mathbb{N}$ and $x \in X$, if we put $g(n, x) = \{x\}$, then $g : \mathbb{N} \times X \longrightarrow \mathcal{P}(X)$ is an *sn*-network *g*-function on X such that if $x_n \to x$ and $y_n \in g(n, x_n)$ for all $n \in \mathbb{N}$, then x is a cluster point of $\{y_n\}$. Therefore, $X \in \Delta - \Omega$.

References

- AN T.V., TUYEN L.Q., Further properties of 1-sequence-covering maps, Comment. Math. Univ. Carolin., 49(3)(2008), 477-484.
- [2] ARHANGEL'SKII A.V., Mappings and spaces, Russian Math. Surveys, 21(4)(1966), 115-162.
- [3] BOONE J.R., SIWIEC F., Sequentially quotient mappings, Czech. Math. J., 26(1976), 174-182.
- [4] ENGELKING R., General Topology (revised and completed edition), *Helder*mann Verlag, Berlin, 1989.
- [5] FRANKLIN S.P., Spaces in which sequences suffice, Fund. Math., 57(1965), 107-115.
- [6] GAO Z., Metrizability of spaces and weak base g-functions, Topology Appl., 146-147(2005), 279-288.
- [7] GE Y., Characterizations of sn-metrizable spaces, Publ. Inst. Math., Nouv. Ser., 74(88)(2003), 121-128.
- [8] IKEDA Y., LIU C., TANAKA Y., Quotient compact images of metric spaces, and related matters, *Topology Appl.*, 122(2002), 237-252.
- [9] LEE K.B., On certain g-first countable spaces, Pacific J. Math., 65(1)(1976), 113-118.
- [10] LIN F.C., LIN S., On sequence-covering boundary compact maps of metric spaces, Adv. Math. (China), 39(1)(2010), 71-78.
- [11] LIN F.C., LIN S., Sequence-covering maps on generalized metric spaces, in: arXiv: 1106.3806.
- [12] LIN S., On sequence-covering s-mappings, Adv. Math. (China), 25(6)(1996), 548-551.
- [13] LIN S., LIU C., On spaces with point-countable cs-networks, Topology Appl., 74(1996) 51-60.
- [14] LIN S., A note on sequence-covering mappings, Acta Math. Hungar., 107(2005), 193-197.
- [15] LIN S., YAN P., Sequence-covering maps of metric spaces, *Topology Appl.*, 109(2001) 301-314.
- [16] MOHAMAD A.M., Conditions which imply metrizability in some generalized metric spaces, *Topology Proc.*, 24(Spring)(1999), 215-232.
- [17] SIWIEC F., On defining a space by a weak base, Pacific J. Math., 52(1974), 233-245.

- [18] TANAKA Y., GE Y., Around quotient compact images of metric spaces, and symmetric spaces, *Houston J. Math.*, 32(1)(2006), 99-117.
- [19] YAN P., On strong sequence-covering compact mappings, Northeastern Math. J., 14(1998), 341-344.
- [20] YAN P., LIN S., CWC-mappings and metrization theorems, Adv. Math. (China), 36(2)(2007), 153-158.
- [21] XIA S., Characterizations of certain g-first countable spaces, Adv. Math., 29(2000), 61-64.

LUONG QUOC TUYEN DEPARTMENT OF MATHEMATICS DA NANG UNIVERSITY, VIETNAM *e-mail:* luongtuyench12@yahoo.com

Received on 13.11.2014 and, in revised form, on 29.10.2015.