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MAPPING THEOREMS ON SPACES WITH

sn-NETWORK g-FUNCTIONS

Abstract. Let ∆ be the sets of all topological spaces satisfying
the following conditions.

(1) Each compact subset of X is metrizable;
(2) There exists an sn-network g-function g on X such that if
xn → x and yn ∈ g(n, xn) for all n ∈ N, then x is a cluster
point of {yn}.

In this paper, we prove that if X ∈ ∆, then each sequentially-
quotient boundary-compact map on X is pseudo-sequence-cove-
ring; if X ∈ ∆ and X has a point-countable sn-network,
then each sequence-covering boundary-compact map on X is
1-sequence-covering. As the applications, we give that each
sequentially-quotient boundary-compact map on g-metrizable
spaces is pseudo-sequence-covering, and each sequence-covering
boundary-compact on g-metrizable spaces is 1-sequence-covering.
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1. Introduction and preliminaries

A study of images of topological spaces under certain sequence-covering
maps is an important question in general topology. In 2001, S. Lin and
P. Yan proved that each sequence-covering and compact map on metric
spaces is 1-sequence-covering ([15]). Furthermore, S. Lin proved that each
sequentially-quotient compact maps on metric spaces is pseudo-sequence-
covering, and there exists a sequentially-quotient π-map on metric spaces is
not pseudo-sequence-covering ([14]). In [1], T. V. An and L. Q. Tuyen proved
that each sequence-covering π and s-map on metric spaces is 1-sequence-cove-
ring. After that, F. C. Lin and S. Lin proved that each sequence-covering and
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boundary-compact map on metric spaces is 1-sequence-covering ([10]). Re-
cently, the authors proved that if X is an open image of metric spaces, then
each sequentially-quotient boundary-compact map on X is pseudo-sequence-
covering ([11]).

Let ∆ be the sets of all topological spaces satisfying the following condi-
tions.
(1) Each compact subset of X is metrizable;
(2) There exists an sn-network g-function g on X such that if xn → x and

yn ∈ g(n, xn) for all n ∈ N, then x is a cluster point of {yn}.
In this paper, we prove that if X ∈ ∆, then each sequentially-quotient
boundary-compact map on X is pseudo-sequence-covering; if X ∈ ∆ and X
has a point-countable sn-network, then each sequence-covering boundary-
compact map on X is 1-sequence-covering. As the applications, we give that
each sequentially-quotient boundary-compact map on g-metrizable spaces
is pseudo-sequence-covering, and each sequence-covering boundary-compact
on g-metrizable spaces is 1-sequence-covering.

Throughout this paper, all spaces are assumed to be Hausdorff, all maps
are continuous and onto, N denotes the set of all natural numbers. Let P
be a collection of subsets of X, we denote

⋃
P =

⋃
{P : P ∈ P}.

Definition 1. Let X be a space, {xn} ⊂ X and P ⊂ X.
(1) {xn} is called eventually in P , if {xn} converges to x, and there exists
m ∈ N such that {x} ∪ {xn : n ≥ m} ⊂ P .

(2) {xn} is called frequently in P , if some subsequence of {xn} is even-
tually in P .

(3) P is called a sequential neighborhood of x in X [5], if whenever {xn}
is a sequence converging to x in X, then {xn} is eventually in P .

Definition 2. Let P be a collection of subsets of X.
(1) P is point-countable, if each point x ∈ X belongs to only countably
many members of P.

(2) P is locally finite, if for each x ∈ X, there exists a neighborhood V
of x such that V meets only finite many members of P.

(3) P is σ-locally finite, if P =
⋃
{Pn : n ∈ N}, where each Pn is locally

finite.
(4) P is a network at x in X, if x ∈ P for every P ∈ P, and whenever
x ∈ U with U open in X, then x ∈ P ⊂ U for some P ∈ P.

(5) P is a cs-cover [19], if every convergent sequence is eventually in some
P ∈ P.

Definition 3. Let {Pn : n ∈ N} be a sequence of covers of a space X
such that Pn+1 refines Pn for every n ∈ N.
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(1)
⋃
{Pn : n ∈ N} is a σ-strong network for X [8], if {st(x,Pn) : n ∈ N}

is a network at each point x ∈ X.
(2)

⋃
{Pn : n ∈ N} is a σ-locally finite strong network consisting of

cs-covers for X, if it is a σ-strong network and each Pn is a locally finite
cs-cover.

Definition 4. Let P =
⋃
{Px : x ∈ X} be a cover of a space X. Assume

that P satisfies the following (a) and (b) for every x ∈ X.
(a) Px is a network at x.
(b) If P1, P2 ∈ Px, then there exists P ∈ Px such that P ⊂ P1 ∩ P2.

(1) P is a weak base of X [2], if for G ⊂ X, G is open in X if and only
if for every x ∈ G, there exists P ∈ Px such that P ⊂ G; Px is said to
be a weak neighborhood base at x in X.

(2) P is an sn-network for X [12], if each element of Px is a sequential
neighborhood of x for all x ∈ X; Px is said to be an sn-network at x
in X.

Definition 5. Let X be a space. Then,
(1) X is gf -countable [2] (resp., snf -countable [7]), if X has a weak base
(resp., sn-network) P =

⋃
{Px : x ∈ X} such that each Px is countable.

(2) X is g-metrizable [17], if X is regular and has a σ-locally finite weak
base.

(3) X is sequential [5], if whenever A is a non closed subset of X, then
there is a sequence in A converging to a point not in A.

(4) X is strongly g-developable [18], if X is sequential has a σ-locally
finite strong network consisting of cs-covers.

Remark 1. (1) Each strongly g-developable space is g-metrizable.
(2) A space X is gf -countable if and only if it is sequential and snf -coun-
table.

Definition 6. Let f : X −→ Y be a map.
(1) f is a compact map [4], if each f−1(y) is compact in X.
(2) f is a boundary-compact map [4], if each ∂f−1(y) is compact in X.
(3) f is a pseudo-sequence-covering map [8], if for each convergent se-
quence L in Y , there is a compact subset K in X such that f(K) = cl(L).

(4) f is a sequentially-quotient map [3], if whenever {yn} is a convergent
sequence in Y , there is a convergent sequence {xk} in X with each xk ∈
f−1(ynk

).
(5) f is a weak-open map [21], if there exists a weak base P =

⋃
{Py :

y ∈ Y } for Y , and for y ∈ Y , there exists xy ∈ f−1(y) such that for each
open neighborhood U of xy, Py ⊂ f(U) for some Py ∈ Py.

(6) f is an 1-sequence-covering map [12], if for each y ∈ Y , there is
xy ∈ f−1(y) such that whenever {yn} is a sequence converging to y in
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Y , there is a sequence {xn} converging to xy in X with xn ∈ f−1(yn) for
every n ∈ N.

(7) f is a sequence-covering map [17], if every convergent sequence of Y
is the image of some convergent sequence of X.

Remark 2. (1) Each compact map is a compact-boundary map.
(2) Each 1-sequence-covering map is a sequence-covering map.

Definition 7 ([6]). A function g : N × X −→ P(X) is called an weak
base g-function on X, if it satisfies the following conditions.

(1) x ∈ g(n, x) for all x ∈ X and n ∈ N.
(2) g(n+ 1, x) ⊂ g(n, x) for all n ∈ N.
(3) {g(n, x) : n ∈ N} is a weak neighborhood base at x for all x ∈ X.

Note that a weak base g-functions were called CWC-maps and CWBC-maps in
[9] and [16], respectively.

Definition 8. A function g : N ×X −→ P(X) is called an sn-network
g-function on X, if it satisfies the following conditions.

(1) x ∈ g(n, x) for all x ∈ X and n ∈ N.
(2) g(n+ 1, x) ⊂ g(n, x) for all n ∈ N.
(3) {g(n, x) : n ∈ N} is an sn-network at x for all x ∈ X.

2. Main results

Let ∆ be the sets of all topological spaces satisfying the following condi-
tions.
(1) Each compact subset of X is metrizable;
(2) There exists an sn-network g-function g on X such that if xn → x and

yn ∈ g(n, xn) for all n ∈ N, then x is a cluster point of {yn}.

Theorem 1. Let f : X −→ Y be a boundary-compact map. If X ∈ ∆,
then f is a sequentially-quotient map if and only if it is a pseudo-sequence-
covering map.

Proof. Necessity. Let f be a sequentially-quotient map and {yn} be a
non-trivial sequence converging to y in Y . Since X ∈ ∆, there exists an
sn-network g-function g on X satisfying that if xn → x and yn ∈ g(n, xn)
for all n ∈ N, then x is a cluster point of {yn}. For n ∈ N, let

Uy,n =
⋃
{g(n, x) : x ∈ ∂f−1(y)} and Py,n = f(Uy,n).

It is obvious that {Py,n : n ∈ N} is a decreasing sequence in X. Furthermore,
Pn,y is a sequential neighborhood of y in Y for all n ∈ N. If not, there exists
n ∈ N such that Py,n is not a sequential neighborhood of y in Y . Thus, there
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exists a sequence L converges to y in Y such that L ∩ Py,n = ∅. Since f is
sequentially-quotient, there exists a sequence S converges to x ∈ ∂f−1(y)
such that f(S) is a subsequence of L. On the other hand, because g(n, x)
is a sequential neighborhood of x in X, S is eventually in g(n, x). Thus, S
is eventually in Uy,n. Therefore, L is frequently in Py,n. This contradicts to
L ∩ Py,n = ∅.

Then for each n ∈ N, there exists in ∈ N such that yi ∈ Py,n for all i ≥ in.
So f−1(yi) ∩ Uy,n 6= ∅. We can suppose that 1 < in < in+1. For each j ∈ N,
we take

xj ∈

{
f−1(yj), if j < i1,

f−1(yj) ∩ Uy,n, if in ≤ j < in+1.

Let K = ∂f−1(y) ∪ {xj : j ∈ N}. Clearly, f(K) = {y} ∪ {yn : n ∈ N}.
Furthermore, K is a compact subset in X. In fact, let U be an open cover
for K in X. Since ∂f−1(y) is a compact subset in X, there exists a finite
subfamily H ⊂ U such that ∂f−1(y) ⊂

⋃
H. Then there exists m ∈ N

such that Un,y ⊂
⋃
H for all n ≥ m. If not, for each n ∈ N, there exists

vn ∈ Uy,n−
⋃
H. It implies that vn ∈ g(n, un)−

⋃
H for some un ∈ ∂f−1(y).

Since {un} ⊂ ∂f−1(y) and each compact subset of X is metrizable, there
exists a subsequence {unk

} of {un} such that unk
→ x ∈ ∂f−1(y). Now, for

each i ∈ N, we put

ai =

{
un1 , if i ≤ n1
unk+1

, if nk < i ≤ nk+1;

bi =

{
vn1 , if i ≤ n1
vnk+1

, if nk < i ≤ nk+1.

Then ai → x. Because g(n + 1, x) ⊂ g(n, x) for all x ∈ X and n ∈ N, it
implies that bi ∈ g(i, ai) for all i ∈ N. By property of g, it implies that x is
a cluster point of {bi}. Thus, x is a cluster point of {vnk

}. This contradicts
to
⋃
H is a neighborhood of x and vnk

/∈
⋃
H for all k ∈ N.

Because Py,i+1 ⊂ Py,i for all i ∈ N, it implies that ∂f−1(y) ∪ {xi :
i ≥ m} ⊂

⋃
H. For each i < m, take Vi ∈ U such that xi ∈ Vi. Put

V = U ∪ {Vi : i < m}. Then V ⊂ U and K ⊂
⋃
V. Therefore, K is compact

in X, and f is pseudo-sequence-covering.

Sufficiency. Suppose that f is a pseudo-sequence-covering map. If {yn}
is a convergent sequence in Y , then there is a compact subset K in X such
that f(K) = cl({yn}). For each n ∈ N, take a point xn ∈ f−1(yn)∩K. Since
K is compact and metrizable, {xn} has a convergent subsequence {xnk

}, and
{f(xnk

)} is a subsequence of {yn}. Therefore, f is sequentially-quotient. �

By Theorem 2.6 [20] and Theorem 1, we have
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Corollary 1. Let f : X −→ Y be a boundary-compact map. If X is
g-metrizable or strongly g-developable, then f is a sequentially-quotient map
if and onlyif it is a pseudo-sequence-covering map.

Corollary 2. Let f : X −→ Y be a compact map. If X is g-metrizable
or strongly g-developable, then f is a sequentially-quotient map if and only
if it is a pseudo-sequence-covering map.

Lemma 1. Let P =
⋃
{Px : x ∈ X} be a point-countable sn-network

for X, and K be a compact metrizable subset of X. If x ∈ K, then x ∈
IntK(P ∩K) for all P ∈ Px.

Proof. Let P ∈ Px and {Vn : n ∈ N} be a local base at the point x in
K. Then x ∈ Vn ⊂ P ∩ K for some n ∈ N. If not, for each n ∈ N, there
exists xn ∈ Vn − (P ∩K). It implies that the sequence {xn} converges to x
in X. Since P is a sequential neighborhood of x in X, {xn} is eventually in
P . This contradicts to xn /∈ P for all n ∈ N.

Therefore, Vn ⊂ P ∩K for some n ∈ N, and x ∈ IntK(P ∩K). �

Lemma 2. Let P =
⋃
{Px : x ∈ X} be a point-countable sn-network

for X. If K is a compact metrizable subset of X, then
⋃
{Px : x ∈ K} is

countable.

Proof. Let D ⊂ K be a countable subset of K such that K = clK(D),
and P ∈

⋃
{Px : x ∈ K}. Then P ∈ Px for some x ∈ K. By Lemma

1, x ∈ IntK(P ∩ K). Therefore, D ∩ IntK(P ∩ K) 6= ∅, it implies that
P ∩D 6= ∅. This follows that⋃

{Px : x ∈ K} ⊂ {P ∈ P : P ∩D 6= ∅}.

Finally, since P is point-countable and D is countable, it implies that
⋃
{Px :

x ∈ K} is countable. �

Theorem 2. Let f : X −→ Y be a boundary-compact map and X ∈ ∆.
If X has a point-countable sn-network, then f is a sequence-covering map
if and only if it is a 1-sequence-covering map.

Proof. Necessity. Let f : X −→ Y be a sequence-covering boundary-
compact map, and X ∈ ∆. Firstly, we prove that Y is snf -countable. In
fact, since X ∈ ∆, there exists an sn-network g-function g on X such that
if xn → x and yn ∈ g(n, xn) for all n ∈ N, then x is a cluster point of {yn}.
For each y ∈ Y and n ∈ N, we put

Py,n = f
(⋃
{g(n, x) : x ∈ ∂f−1(y)}

)
, and Py = {Py,n : n ∈ N}.
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Then each Py is countable and Py,n+1 ⊂ Py,n for all y ∈ Y and n ∈ N.
Furthermore, we have

(1) Py is a network at y. Let y ∈ U with U open in Y . Then there exists
n ∈ N such that ⋃

{g(n, x) : x ∈ ∂f−1(y)} ⊂ f−1(U).

If not, for each n ∈ N, there exist xn ∈ ∂f−1(y) and zn ∈ X such that
zn ∈ g(n, xn) − f−1(U). Since X ∈ ∆, it follows that each compact subset
of X is metrizable. On the other hand, since {xn} ⊂ ∂f−1(y) and f is a
boundary-compact map, there exists a subsequence {xnk

} of {xn} such that
xnk
→ x ∈ ∂f−1(y). Now, for each i ∈ N, we put

ai =

{
xn1 , if i ≤ n1
xnk+1

, if nk < i ≤ nk+1;

bi =

{
zn1 , if i ≤ n1
znk+1

, if nk < i ≤ nk+1.

Then ai → x. Because g(n + 1, x) ⊂ g(n, x) for all x ∈ X and n ∈ N, it
implies that bi ∈ g(i, ai) for all i ∈ N. By the property of g, it implies that x
is a cluster point of {bi}. Thus, x is a cluster point of {znk

}. This contradicts
to f−1(U) is a neighborhood of x and znk

/∈ f−1(U) for all k ∈ N.
Therefore, Py,n ⊂ U , and Py is a network at y.
(2) Let Py,m, Py,n ∈ Py. If we take k = max{m,n}, then Py,k ⊂ Py,m ∩

Py,n.
(3) Each element of Py is a sequential neighborhood of y. Let Py,n ∈ Py

and L be a sequence converging to y in Y . Since f is sequence-covering, L is
an image of some sequence S converges to x ∈ ∂f−1(y). On the other hand,
since g(n, x) is a sequential neighborhood of x, S is eventually in g(n, x).
This implies that L is eventually in Py,n. Therefore, Py,n is a sequential
neighborhood of y.

Therefore,
⋃
{Py : y ∈ Y } is an sn-network for X, and Y is an snf -coun-

table space.
Next, let B =

⋃
{Bx : x ∈ X} be a point-countable sn-network for X. We

prove that each non-isolated point y ∈ Y , there exists xy ∈ ∂f−1(y) such
that for each B ∈ Bxy , there exists P ∈ Py satisfying P ⊂ f(B). Otherwise,
there exists a non-isolated point y ∈ Y so that for each x ∈ ∂f−1(y), there
exists Bx ∈ Bx such that P 6⊂ f(Bx) for all P ∈ Py. Since Py is an
sn-network at y, we can choose a decreasing countable network {Py,n : n ∈
N} ⊂ Py at y. Furthermore, since X ∈ ∆, f is a boundary-compact map
and B is a point-countable sn-network for X, it follows from Lemma 2 that
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{Bx : x ∈ ∂f−1(y)} is countable. Thus, {Bx : x ∈ ∂f−1(y)} is countable.

Assume that
{Bx : x ∈ ∂f−1(y)} = {Bm : m ∈ N}.

Hence, for each m,n ∈ N, there exists xn,m ∈ Py,n − f(Bm). For n ≥ m,
we denote yk = xn,m with k = m + n(n − 1)/2. Since {Py,n : n ∈ N} is
a decreasing network at y, {yk} is a sequence converging to y in Y . On
the other hand, because f is a sequence-covering map, {yk} is an image of
some sequence {xn} converging to x ∈ ∂f−1(y) in X. Furthermore, since
Bx ∈ {Bm : m ∈ N}, there exists m0 ∈ N such that Bx = Bm0 . Because Bm0

is a sequential neighborhood of x, {x}∪{xk : k ≥ k0} ⊂ Bm0 for some k0 ∈ N.
Thus, {y} ∪ {yk : k ≥ k0} ⊂ f(Bm0). But if we take k ≥ k0, then there
exists n ≥ m0 such that yk = xn,m0 , and it implies that xn,m0 ∈ f(Bm0).
This contradicts to xn,m0 ∈ Py,n − f(Bm0).

We now prove that f is an 1-sequence-covering map. Suppose y ∈ Y , by
the above proof there is xy ∈ ∂f−1(y) such that whenever B ∈ Bxy , there
exists P ∈ Py satisfying P ⊂ f(B). Let {yn} be an any sequence in Y ,
which converges to y. Since Bxy is an sn-network at xy, we can choose a
decreasing countable network {By,n : n ∈ N} ⊂ Bxy at xy. We choose a
sequence {zn} in X as follows.

Since By,n ∈ Bxy , by the above argument, there exists Py,kn ∈ Py satisfy-
ing Py,kn ⊂ f(By,n) for all n ∈ N. On the other hand, since each element of
Py is a sequential neighborhood of y, it follows that for each n ∈ N, f(By,n)
is a sequential neighborhood of y in Y . Hence, for each n ∈ N, there exists
in ∈ N such that yi ∈ f(By,n) for every i ≥ in. Assume that 1 < in < in+1

for each n ∈ N. Then for each j ∈ N, we take

zj =

{
zj ∈ f−1(yj), if j < i1

zj,n ∈ f−1(yj) ∩By,n, if in ≤ j < in+1.

If we put S = {zj : j ≥ 1}, then S converges to xy in X, and f(S) = {yn}.
Therefore, f is 1-sequence-covering.

Sufficiency. By Remark 2. �

Corollary 3. Let f : X −→ Y be a boundary-compact map and X ∈ ∆.
If X has a point-countable weak base, then f is a sequence-covering map if
and only if it is a 1-sequence-covering map.

Corollary 4. Let f : X −→ Y be a boundary-compact map. If X is
g-metrizable or strongly g-developable, then f is a sequence-covering map if
and only if it is a 1-sequence-covering map.

Corollary 5. Let f : X −→ Y be a boundary-compact map. If X is
g-metrizable or strongly g-developable, then f is a sequence-covering quotient
map if and only if it is a weak-open map.
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Example 1. Let Ω be the sets of all topological spaces such that, for
each compact subset K ⊂ X ∈ Ω, K is metrizable and also has a countably
neighborhood base in X (see [11]). Put X = N∪{p} with p ∈ βN−N. Then
X is a subspace of βN and X ∈ ∆ − Ω. In fact, by Remark 1.5 [13], each
compact subset of X is metrizable but it is not sequential. Thus, X /∈ Ω.
Furthermore, for each n ∈ N and x ∈ X, if we put g(n, x) = {x}, then
g : N×X −→ P(X) is an sn-network g-function on X such that if xn → x
and yn ∈ g(n, xn) for all n ∈ N, then x is a cluster point of {yn}. Therefore,
X ∈ ∆− Ω.
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