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ABSTRACT. Let A be the sets of all topological spaces satisfying
the following conditions.

(1) Each compact subset of X is metrizable;

(2) There exists an sn-network g-function g on X such that if
xn, — x and y, € g(n,z,) for all n € N, then z is a cluster
point of {y,}.

In this paper, we prove that if X € A, then each sequentially-
quotient boundary-compact map on X is pseudo-sequence-cove-
ring; if X € A and X has a point-countable sn-network,
then each sequence-covering boundary-compact map on X is
1-sequence-covering. As the applications, we give that each
sequentially-quotient boundary-compact map on g-metrizable
spaces is pseudo-sequence-covering, and each sequence-covering
boundary-compact on g-metrizable spaces is 1-sequence-covering.
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1. Introduction and preliminaries

A study of images of topological spaces under certain sequence-covering
maps is an important question in general topology. In 2001, S. Lin and
P. Yan proved that each sequence-covering and compact map on metric
spaces is 1-sequence-covering ([15]). Furthermore, S. Lin proved that each
sequentially-quotient compact maps on metric spaces is pseudo-sequence-
covering, and there exists a sequentially-quotient m-map on metric spaces is
not pseudo-sequence-covering ([14]). In [1], T. V. An and L. Q. Tuyen proved
that each sequence-covering m and s-map on metric spaces is 1-sequence-cove-
ring. After that, F. C. Lin and S. Lin proved that each sequence-covering and
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boundary-compact map on metric spaces is 1-sequence-covering ([10]). Re-
cently, the authors proved that if X is an open image of metric spaces, then
each sequentially-quotient boundary-compact map on X is pseudo-sequence-
covering ([11]).

Let A be the sets of all topological spaces satisfying the following condi-
tions.
(1) Each compact subset of X is metrizable;
(2) There exists an sn-network g-function g on X such that if x,, — = and

Yn € g(n,xy,) for all n € N, then z is a cluster point of {y,}.
In this paper, we prove that if X € A, then each sequentially-quotient
boundary-compact map on X is pseudo-sequence-covering; if X € A and X
has a point-countable sn-network, then each sequence-covering boundary-
compact map on X is 1-sequence-covering. As the applications, we give that
each sequentially-quotient boundary-compact map on g-metrizable spaces
is pseudo-sequence-covering, and each sequence-covering boundary-compact
on g-metrizable spaces is 1-sequence-covering.

Throughout this paper, all spaces are assumed to be Hausdorff, all maps
are continuous and onto, N denotes the set of all natural numbers. Let P
be a collection of subsets of X, we denote P =J{P : P € P}.

Definition 1. Let X be a space, {zp} C X and P C X.

(1) {xn} is called eventually in P, if {x,,} converges to x, and there exists
m € N such that {x} U{x, : n >m} C P.

(2) {xn} is called frequently in P, if some subsequence of {x,} is even-
tually in P.

(3) P is called a sequential neighborhood of z in X [5], if whenever {x,}
is a sequence converging to x in X, then {x,} is eventually in P.

Definition 2. Let P be a collection of subsets of X.
(1) P is point-countable, if each point x € X belongs to only countably
many members of P.
(2) P is locally finite, if for each x € X, there exists a neighborhood V
of x such that V meets only finite many members of P.
(3) P is o-locally finite, if P = |J{Pn : n € N}, where each Py, is locally
finite.
(4) P is a network at = in X, if © € P for every P € P, and whenever
x € U with U open in X, then x € P C U for some P € P.
(5) P is a cs-cover [19], if every convergent sequence is eventually in some

PeP.

Definition 3. Let {P, : n € N} be a sequence of covers of a space X
such that Ppy1 refines P for every n € N.
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(1) U{Py : n € N} is a o-strong network for X [8], if {st(x,P,) : n € N}
1s a network at each point x € X.

(2) U{Pn : n € N} is a o-locally finite strong network consisting of
cs-covers for X, if it is a o-strong network and each Py, is a locally finite
cs-cover.

Definition 4. Let P = |J{P» : © € X} be a cover of a space X. Assume
that P satisfies the following (a) and (b) for every x € X.
(a) Py is a network at x.
(b) If Py, P> € Py, then there exists P € P, such that P C Py N P;.
(1) P is a weak base of X [2], if for G C X, G is open in X if and only
if for every x € G, there exists P € P, such that P C G; Py s said to
be a weak neighborhood base at x in X.
(2) P is an sn-network for X [12], if each element of Py is a sequential
neighborhood of x for all x € X; P, is said to be an sn-network at x
mn X.

Definition 5. Let X be a space. Then,
(1) X is gf-countable [2] (resp., snf-countable [7]), if X has a weak base
(resp., sn-network) P = J{Pz : z € X} such that each P, is countable.
(2) X is g-metrizable [17], if X is reqular and has a o-locally finite weak
base.
(3) X is sequential [5], if whenever A is a non closed subset of X, then
there is a sequence in A converging to a point not in A.
(4) X is strongly g-developable [18], if X is sequential has a o-locally
finite strong network consisting of cs-covers.

Remark 1. (1) Each strongly g-developable space is g-metrizable.
(2) A space X is g f-countable if and only if it is sequential and sn f-coun-
table.

Definition 6. Let f: X — Y be a map.

(1) f is a compact map [4], if each f~1(y) is compact in X.

(2) f is a boundary-compact map [4], if each df~1(y) is compact in X.

(3) f is a pseudo-sequence-covering map [8], if for each convergent se-
quence L in'Y', there is a compact subset K in X such that f(K) = cl(L).

(4) f is a sequentially-quotient map [3/, if whenever {yy} is a convergent
sequence in 'Y, there is a convergent sequence {x} in X with each xj, €
()

(5) f is a weak-open map [21], if there exists a weak base P = |J{Py :
y €Y} forY, and fory € Y, there exists x, € f~1(y) such that for each
open neighborhood U of x,, P, C f(U) for some P, € Py.

(6) f is an l-sequence-covering map [12], if for each y € Y, there is
zy € f71(y) such that whenever {y,} is a sequence converging to y in



202 Luonc Quoc TUYEN

Y, there is a sequence {x,} converging to , in X with x,, € f~(yn) for
every n € N.
(7) f is a sequence-covering map [17], if every convergent sequence of Y
is the image of some convergent sequence of X .

Remark 2. (1) Each compact map is a compact-boundary map.
(2) Each 1-sequence-covering map is a sequence-covering map.

Definition 7 ([6]). A function g : N x X — P(X) is called an weak
base g-function on X, if it satisfies the following conditions.

(1) z € g(n,x) for allz € X and n € N.

(2) g(n+1,z) C g(n,x) for alln € N.

(3) {g(n,x) : n € N} is a weak neighborhood base at x for all x € X.
Note that a weak base g-functions were called CWC-maps and CWBC-maps in
[9] and [16], respectively.

Definition 8. A function g : N x X — P(X) is called an sn-network
g-function on X, if it satisfies the following conditions.

(1) z € g(n,x) for allx € X and n € N.

(2) g(n+1,2) C g(n,z) for all n € N.

(3) {g(n,x) : n € N} is an sn-network at x for all v € X.

2. Main results

Let A be the sets of all topological spaces satisfying the following condi-
tions.
(1) Each compact subset of X is metrizable;
(2) There exists an sn-network g-function g on X such that if x,, — = and
Yn € g(n,xy,) for all n € N, then z is a cluster point of {y,}.

Theorem 1. Let f : X — Y be a boundary-compact map. If X € A,
then f is a sequentially-quotient map if and only if it is a pseudo-sequence-
covering map.

Proof. Necessity. Let f be a sequentially-quotient map and {y,} be a
non-trivial sequence converging to i in Y. Since X € A, there exists an
sn-network g-function g on X satisfying that if z,, - x and y,, € g(n,zy)
for all n € N, then x is a cluster point of {y,}. For n € N, let

Uyn = U{g(n,:l:) cx€df Y(y)} and Py, = f(Uyn).

It is obvious that { P, ,, : n € N} is a decreasing sequence in X. Furthermore,
P, , is a sequential neighborhood of  in Y for all n € N. If not, there exists
n € N such that P, , is not a sequential neighborhood of y in Y. Thus, there
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exists a sequence L converges to y in Y such that L N Py, = 0. Since f is
sequentially-quotient, there exists a sequence S converges to z € 0 f‘l(y)
such that f(S) is a subsequence of L. On the other hand, because g(n, z)
is a sequential neighborhood of = in X, S is eventually in g(n,z). Thus, S
is eventually in Uy ,. Therefore, L is frequently in P, ,. This contradicts to
LNP,,=0.

Then for each n € N, there exists 7,, € N such that y; € P, ,, for all i > i,,.
So f~1(y;) N U, # 0. We can suppose that 1 < i,, < in41. For each j € N,

we take
o S ), if j <,
T ) N Uy 3 i <5 <

Let K = 0f Yy)U{x; : j € N}. Clearly, f(K) = {y} U{y, : n € N}L
Furthermore, K is a compact subset in X. In fact, let &/ be an open cover
for K in X. Since 0f 1(y) is a compact subset in X, there exists a finite
subfamily H C U such that df~!(y) € |[JH. Then there exists m € N
such that U,, C UH for all n > m. If not, for each n € N, there exists
v € Uy —|JH. It implies that v, € g(n,u,)—|JH for some u, € f1(y).
Since {u,} C df !(y) and each compact subset of X is metrizable, there
exists a subsequence {u,, } of {u,} such that u,, — x € df1(y). Now, for
each 7 € N, we put

0 = U, s if i<m
1 T . .
Uy s if np <i < ngyr;

b Ung, if 1 <ny
1 . .
Ungyrs if ng <i<nggr.

Then a; — z. Because g(n + 1,x) C g(n,x) for all z € X and n € N, it
implies that b; € g(i,a;) for all i € N. By property of g, it implies that x is
a cluster point of {b;}. Thus,  is a cluster point of {vy, }. This contradicts
to [JH is a neighborhood of = and v, ¢ |JH for all k € N.

Because P,;y1 C Py, for all i € N, it implies that of Yy) U {xz; :
i > m} C UH. For each i < m, take V; € U such that z; € V;. Put
V=UU{V;:i<m}. ThenV CU and K C |JV. Therefore, K is compact
in X, and f is pseudo-sequence-covering.

Sufficiency. Suppose that f is a pseudo-sequence-covering map. If {y,}
is a convergent sequence in Y, then there is a compact subset K in X such
that f(K) = c1({y,}). For each n € N, take a point x,, € f~!(y,)NK. Since
K is compact and metrizable, {x,,} has a convergent subsequence {z,, }, and
{f(xn,)} is a subsequence of {y,}. Therefore, f is sequentially-quotient. W

By Theorem 2.6 [20] and Theorem 1, we have
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Corollary 1. Let f : X — Y be a boundary-compact map. If X is
g-metrizable or strongly g-developable, then f is a sequentially-quotient map
if and onlyif it is a pseudo-sequence-covering map.

Corollary 2. Let f: X — Y be a compact map. If X is g-metrizable
or strongly g-developable, then f is a sequentially-quotient map if and only
if it is a pseudo-sequence-covering map.

Lemma 1. Let P = |J{P, : © € X} be a point-countable sn-network
for X, and K be a compact metrizable subset of X. If x € K, then x© €
Intg(PNK) for all P € P,.

Proof. Let P € P, and {V,, : n € N} be a local base at the point z in
K. Then x € V,, C PN K for some n € N. If not, for each n € N, there
exists x, € V;, — (PN K). It implies that the sequence {x,} converges to x
in X. Since P is a sequential neighborhood of z in X, {x,} is eventually in
P. This contradicts to z,, ¢ P for all n € N.

Therefore, V,, C PN K for some n € N, and x € Intg (P N K). [

Lemma 2. Let P = |J{P, : © € X} be a point-countable sn-network
for X. If K is a compact metrizable subset of X, then \J{P, : ¢ € K} is
countable.

Proof. Let D C K be a countable subset of K such that K = c1x (D),
and P € |J{P; : © € K}. Then P € P, for some z € K. By Lemma
1, ¢ € Intg(P N K). Therefore, D N Intgx(P N K) # 0, it implies that
PN D #(. This follows that

{Po:zeK}c{PeP:PND#0}.

Finally, since P is point-countable and D is countable, it implies that [ J{P, :
x € K} is countable. [

Theorem 2. Let f: X — Y be a boundary-compact map and X € A.
If X has a point-countable sn-network, then f is a sequence-covering map
if and only if it is a 1-sequence-covering map.

Proof. Necessity. Let f : X — Y be a sequence-covering boundary-
compact map, and X € A. Firstly, we prove that Y is snf-countable. In
fact, since X € A, there exists an sn-network g-function g on X such that
if 2, » x and y,, € g(n,z,) for all n € N, then z is a cluster point of {y,}.
For each y € Y and n € N, we put

Py = f((Hg(n,2) 12 € 057 w)}), and Py = {Pynine N}
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Then each Py, is countable and P,,4+1 C Py, for all y € Y and n € N.
Furthermore, we have

(1) Py is a network at y. Let y € U with U open in Y. Then there exists
n € N such that

Ufg(n,2) e 0f " (m)} € £71(U).

If not, for each n € N, there exist z, € 9f !(y) and z, € X such that
zn € g(n,m,) — f71(U). Since X € A, it follows that each compact subset
of X is metrizable. On the other hand, since {z,} C df !(y) and f is a
boundary-compact map, there exists a subsequence {z,, } of {z,} such that
Ty, — = € Of 1(y). Now, for each i € N, we put

o — Ty s if i<my
1 T . .
Trgyrs it np <i < ngyr;

b Znys if 1<n;
1T . .
Znpers A mp <0< ngya.

Then a; — . Because g(n + 1,2) C g(n,z) for all z € X and n € N, it
implies that b; € g(i,a;) for all i € N. By the property of g, it implies that z
is a cluster point of {b;}. Thus, x is a cluster point of {z,, }. This contradicts
to f~1(U) is a neighborhood of z and z,, ¢ f~1(U) for all k € N.

Therefore, Py, C U, and P, is a network at y.

(2) Let Pym, Pyn € Py. If we take k = max{m,n}, then P, C Py, N
Py

(3) Each element of P, is a sequential neighborhood of y. Let P, ,, € P,
and L be a sequence converging to y in Y. Since f is sequence-covering, L is
an image of some sequence S converges to z € df~!(y). On the other hand,
since g(n,x) is a sequential neighborhood of z, S is eventually in g(n,z).
This implies that L is eventually in P,,. Therefore, P,, is a sequential
neighborhood of y.

Therefore, | J{Py, : y € Y} is an sn-network for X, and Y is an sn f-coun-
table space.

Next, let B = J{B, : * € X} be a point-countable sn-network for X. We
prove that each non-isolated point y € Y, there exists z, € Jf ~1(y) such
that for each B € B,,, there exists P € Py satisfying P C f(B). Otherwise,
there exists a non-isolated point y € Y so that for each € 9f~!(y), there
exists B, € B, such that P ¢ f(B,) for all P € P,. Since P, is an
sn-network at y, we can choose a decreasing countable network {P, ,, : n €
N} C Py, at y. Furthermore, since X € A, f is a boundary-compact map
and B is a point-countable sn-network for X, it follows from Lemma 2 that
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U{B, : © € 0f!(y)} is countable. Thus, {B, : = € df~!(y)} is countable.
Assume that
{By:2€df ' (y)} = {Bm : meN}.

Hence, for each m,n € N, there exists zp ., € Pypn — f(Bnm). For n > m,
we denote yr = Tpm with & = m 4+ n(n —1)/2. Since {P,,, : n € N} is
a decreasing network at y, {yx} is a sequence converging to y in Y. On
the other hand, because f is a sequence-covering map, {yx} is an image of
some sequence {z,} converging to x € df !(y) in X. Furthermore, since
B, € {By, : m € N}, there exists mo € N such that By = B,,,. Because By,
is a sequential neighborhood of z, {x}U{xy : k > ko} C By, for some kg € N.
Thus, {y} U{yr : k > ko} C f(Bm,). But if we take k > ko, then there
exists n > mg such that y, = xy m,, and it implies that @, m, € f(Bm,)-
This contradicts t0 p mg € Pyn — f(Bmy)-

We now prove that f is an 1-sequence-covering map. Suppose y € Y, by
the above proof there is 2, € df~!(y) such that whenever B € By, there
exists P € P, satisfying P C f(B). Let {y,} be an any sequence in Y,
which converges to y. Since By, is an sn-network at w,, we can choose a
decreasing countable network {B,, : n € N} C B, at x,. We choose a
sequence {z,} in X as follows.

Since By, € By, by the above argument, there exists P, € P, satisfy-
ing Py 1, C f(By) for all n € N. On the other hand, since each element of
P, is a sequential neighborhood of y, it follows that for each n € N, f(By )
is a sequential neighborhood of y in Y. Hence, for each n € N, there exists
in € N such that y; € f(By) for every ¢ > i,. Assume that 1 < i, < ipqq
for each n € N. Then for each j € N, we take

L JE e W), if j<iy
" zim € ) O By, i i < J <ipia
If we put S = {z; : j > 1}, then S converges to z, in X, and f(S) = {yn}.
Therefore, f is 1-sequence-covering.
Sufficiency. By Remark 2. |

Corollary 3. Let f : X — Y be a boundary-compact map and X € A.
If X has a point-countable weak base, then f is a sequence-covering map if
and only if it is a 1-sequence-covering map.

Corollary 4. Let f : X — Y be a boundary-compact map. If X is
g-metrizable or strongly g-developable, then f is a sequence-covering map if
and only if it is a 1-sequence-covering map.

Corollary 5. Let f : X — Y be a boundary-compact map. If X is
g-metrizable or strongly g-developable, then f is a sequence-covering quotient
map if and only if it is a weak-open map.
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Example 1. Let 2 be the sets of all topological spaces such that, for

each compact subset K C X € ), K is metrizable and also has a countably
neighborhood base in X (see [11]). Put X = NU{p} with p € SN—N. Then
X is a subspace of SN and X € A — Q. In fact, by Remark 1.5 [13], each
compact subset of X is metrizable but it is not sequential. Thus, X ¢ Q.
Furthermore, for each n € N and = € X, if we put g(n,z) = {z}, then
g:NxX — P(X) is an sn-network g-function on X such that if z,, - =
and y, € g(n,z,) for all n € N, then z is a cluster point of {y,,}. Therefore,
XeA-Q.
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