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1. Introduction

Throughout this paper A, B are positive invertible operators on a com-
plex Hilbert space (H, 〈·, ·〉). We use the following notations for operators

A∇νB := (1− ν)A+ νB,

the weighted operator arithmetic mean,

A]νB := A1/2
(
A−1/2BA−1/2

)ν
A1/2,

the weighted operator geometric mean and

A!νB :=
(
(1− ν)A−1 + νB−1

)−1
the weighted operator harmonic mean, where ν ∈ [0, 1] .

When ν = 1
2 , we write A∇B, A]B and A!B for brevity, respectively.

The following fundamental inequality between the weighted arithmetic,
geometric and harmonic operator means holds

(1) A!νB ≤ A]νB ≤ A∇νB
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for any ν ∈ [0, 1].
For various recent inequalities between these means we recommend the

recent papers [2]-[5], [7]-[10] and the references therein.
In this paper we establish some upper and lower bounds for the differ-

ence A∇νB − A!νB for ν ∈ [0, 1] under various assumption for the positive
invertible operators A, B. Some applications when A, B are bounded above
and below by positive constants are given as well.

2. Main results

We have the following result:

Theorem 1. Let A, B be positive invertible operators. Then for any
ν ∈ [0, 1] we have

rA (B −A)A−1 (B −A) (B +A)−1A(2)

≤ A∇νB −A!νB

≤ RA (B −A)A−1 (B −A) (B +A)−1A,

where r = min {ν, 1− ν} and R = max {ν, 1− ν}.

Proof. Recall the following result obtained by Dragomir in 2006 [6]
that provides a refinement and a reverse for the weighted Jensen’s discrete
inequality:

n min
j∈{1,2,...,n}

{pj}

 1

n

n∑
j=1

Φ (xj)− Φ

 1

n

n∑
j=1

xj

(3)

≤ 1

Pn

n∑
j=1

pjΦ (xj)− Φ

 1

Pn

n∑
j=1

pjxj


≤ n max

j∈{1,2,...,n}
{pj}

 1

n

n∑
j=1

Φ (xj)− Φ

 1

n

n∑
j=1

xj

 ,
where Φ : C → R is a convex function defined on convex subset C of
the linear space X, {xj}j∈{1,2,...,n} are vectors in C and {pj}j∈{1,2,...,n} are

nonnegative numbers with Pn =
∑n

j=1 pj > 0.
For n = 2, we deduce from (3) that

2 min {ν, 1− ν}
[

Φ(x) + Φ(y)

2
− Φ

(
x+ y

2

)]
(4)

≤ νΦ (x) + (1− ν) Φ (y)− Φ [νx+ (1− ν) y]

≤ 2 max {ν, 1− ν}
[

Φ(x) + Φ(y)

2
− Φ

(
x+ y

2

)]
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for any x, y ∈ C and ν ∈ [0, 1].
If we write the inequality (4) for the convex function Φ(x) = 1

x , x > 0,
then we have

2r

(
1
x + 1

y

2
− 2

x+ y

)
≤ ν

x
+

1− ν
y
− 1

νx+ (1− ν) y
(5)

≤ 2R

(
1
x + 1

y

2
− 2

x+ y

)

for any x, y > 0 where r = min {ν, 1− ν} and R = max {ν, 1− ν} .
If we take y = 1

a , x = 1
b in (5), then we have

2r

(
b+ a

2
− 2

1
b + 1

a

)
≤ νb+ (1− ν) a−

(
νb−1 + (1− ν) a−1

)−1
(6)

≤ 2R

(
b+ a

2
− 2

1
b + 1

a

)

for any a, b > 0 and ν ∈ [0, 1] where r = min {ν, 1− ν} andR = max {ν, 1− ν} .
Since

b+ a

2
− 2

1
b + 1

a

=
b+ a

2
− 2ab

b+ a
=

1

2

(b− a)2

a+ b

hence by (6) we have

(7) r
(b− a)2

a+ b
≤ νb+ (1− ν) a−

(
νb−1 + (1− ν) a−1

)−1 ≤ R (b− a)2

a+ b

for any a, b > 0 and ν ∈ [0, 1].
This is an inequality of interest in itself.
If we take a = 1 and b = t in (7), then we get

r (t− 1)2 (t+ 1)−1 ≤ νt+ 1− ν −
(
νt−1 + 1− ν

)−1
(8)

≤ R (t− 1)2 (t+ 1)−1

for any t > 0.
If we use the continuous functional calculus for the positive invertible

operator X we get

r (X − I)2 (X + I)−1 ≤ νX + (1− ν) I −
(
νX−1 + (1− ν) I

)−1
(9)

≤ R (X − I)2 (X + I)−1 .
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If we write the inequality (9) for X = A−1/2BA−1/2, then we get

r
(
A−1/2BA−1/2 − I

)2 (
A−1/2BA−1/2 + I

)−1
(10)

≤ νA−1/2BA−1/2 + (1− ν) I

−
(
ν
(
A−1/2BA−1/2

)−1
+ (1− ν) I

)−1
≤ R

(
A−1/2BA−1/2 − I

)2 (
A−1/2BA−1/2 + I

)−1
.

If we multiply the inequality (10) both sides with A1/2, then we get

rA1/2
(
A−1/2BA−1/2 − I

)2 (
A−1/2BA−1/2 + I

)−1
A1/2(11)

≤ νB + (1− ν)A

− A1/2

(
ν
(
A−1/2BA−1/2

)−1
+ (1− ν) I

)−1
A1/2

≤ RA1/2
(
A−1/2BA−1/2 − I

)2 (
A−1/2BA−1/2 + I

)−1
A1/2.

Since

A1/2

(
ν
(
A−1/2BA−1/2

)−1
+ (1− ν) I

)−1
A1/2

= A1/2
(
νA1/2B−1A1/2 + (1− ν) I

)−1
A1/2

= A1/2
(
A1/2

(
νB−1 + (1− ν)A−1

)
A1/2

)−1
A1/2

= A1/2
(
A1/2

(
νB−1 + (1− ν)A−1

)
A1/2

)−1
A1/2

= A1/2A−1/2
(
νB−1 + (1− ν)A−1

)−1
A−1/2A1/2 = A!νB

and

A1/2
(
A−1/2BA−1/2 − I

)2 (
A−1/2BA−1/2 + I

)−1
A1/2

= A1/2
(
A−1/2 (B −A)A−1/2

)2 (
A−1/2 (B +A)A−1/2

)−1
A1/2

= A1/2A−1/2 (B −A)A−1/2A−1/2 (B −A)

× A−1/2A1/2 (B +A)−1A1/2A1/2

= A (B −A)A−1 (B −A) (B +A)−1A,

then by (11) we get the desired result (2). �
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Remark 1. Since, as above,

2 (A∇B −A!B) = A (B −A)A−1 (B −A) (B +A)−1A

then (2) can be written as

(12) 2r (A∇B −A!B) ≤ A∇νB −A!νB ≤ 2R (A∇B −A!B)

The first inequality in (12) was obtained in [10].

We observe that, if ν = 1
2 , (2) becomes equality.

When some boundedness conditions are known, then we have the follow-
ing result as well.

Theorem 2. Let A, B be positive invertible operators and M > m > 0
such that

(13) MA ≥ B ≥ mA.

Then for any ν ∈ [0, 1] we have

(14) rk (m,M)A ≤ A∇νB −A!νB ≤ RK (m,M)A

where r = min {ν, 1− ν}, R = max {ν, 1− ν} and the bounds K (m,M) and
k (m,M) are given by

K (m,M) :=


(m− 1)2 (m+ 1)−1 if M < 1,

max
{

(m− 1)2 (m+ 1)−1 ,

(M − 1)2 (M + 1)−1
}

if m ≤ 1 ≤M,

(M − 1)2 (M + 1)−1 if 1 < m

(15)

and

k (m,M) :=


(M − 1)2 (M + 1)−1 if M < 1,

0 if m ≤ 1 ≤M,

(m− 1)2 (m+ 1)−1 if 1 < m.

(16)

In particular,

(17)
1

2
k (m,M)A ≤ A∇B −A!B ≤ 1

2
K (m,M)A.

Proof. As in the proof of Theorem 1 we have

(18) rϕ (t) ≤ νt+ 1− ν −
(
νt−1 + 1− ν

)−1 ≤ Rϕ (t)
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for any t > 0, where ϕ (t) = (t− 1)2 (t+ 1)−1.
If we take the derivative of ϕ, we have

ϕ′ (t) = 2 (t− 1) (t+ 1)−1 − (t+ 1)−2 (t− 1)2

= (t− 1) (t+ 1)−2 [2 (t+ 1)− (t− 1)]

= (t− 1) (t+ 1)−2 (2t+ 3)

for any t > 0.

We observe that the function ϕ is decreasing on (0, 1) and increasing on
(1,∞). We have ϕ (0) = 1, ϕ (1) = 0 and limt→∞ ϕ (t) =∞.

Using the properties of the function ϕ we have

max
t∈[m,M ]

ϕ (t) =


ϕ (m) if M < 1,
max {ϕ (m) , ϕ (M)} if m ≤ 1 ≤M,
ϕ (M) if 1 < m,

= K (m,M)

and

min
t∈[m,M ]

ϕ (t) =


ϕ (M) if M < 1,
0 if m ≤ 1 ≤M,
ϕ (m) if 1 < m,

= k (m,M) .

From (18) we have

(19) rk (m,M) ≤ νt+ 1− ν −
(
νt−1 + 1− ν

)−1 ≤ RK (m,M)

for all t ∈ [m,M ].
If we use the continuous functional calculus for the positive invertible

operator X with mI ≤ X ≤MI, then we have

rk (m,M) I ≤ νX + (1− ν) I −
(
νX−1 + (1− ν) I

)−1
(20)

≤ RK (m,M) I.

If we multiply (13) both sides by A−1/2 we get MI ≥ A−1/2BA−1/2 ≥ mI.
By writing the inequality (20) for X = A−1/2BA−1/2 we obtain

rk (m,M) I ≤ νA−1/2BA−1/2 + (1− ν) I(21)

−
(
ν
(
A−1/2BA−1/2

)−1
+ (1− ν) I

)−1
≤ RK (m,M) I.

Finally, if we multiply both sides of (21) by A1/2 we get the desired result
(14). �
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Remark 2. Since ϕ (t) ∈ [0, 1] for t ∈ [0, 1] , then B ≤ A implies that

(0 ≤)A∇νB −A!νB ≤ RA

for any ν ∈ [0, 1] . In particular,

(0 ≤)A∇B −A!B ≤ 1

2
A.

We also have:

Theorem 3. Let A, B be positive invertible operators. Then for any
ν ∈ [0, 1] we have

(0 ≤)A∇νB −A!νB(22)

≤ ν (1− ν) (B −A)A−1 (B −A)
(
B−1 +A−1

)
A

≤ 1

4
(B −A)A−1 (B −A)

(
B−1 +A−1

)
A.

Proof. In [1] we obtained the following reverse of Jensen’s inequality:

0 ≤ (1− ν) f (x) + νf (x)− f ((1− ν)x+ νx)(23)

≤ ν (1− ν) (y − x)
[
f ′ (y)− f ′ (x)

]
.

for any x, y ∈ I̊ and ν ∈ [0, 1] , provided the function f : I ⊂ R → R is a
differentiable convex function on I̊ , the interior of the interval I.

If we write the inequality (23) for the convex function Φ(x) = 1
x , x > 0,

then we have

(24)
ν

y
+

1− ν
x
− 1

νy + (1− ν)x
≤ ν (1− ν) (y − x)

(
1

x2
− 1

y2

)
for any x, y > 0.

If we take y = 1
b and x = 1

a with a, b > 0 in (24), then we get

νb+ (1− ν) a−
(
νb−1 + (1− ν) a−1

)−1 ≤ ν (1− ν)

(
1

b
− 1

a

)(
a2 − b2

)
namely,

(25) νb+ (1− ν) a−
(
νb−1 + (1− ν) a−1

)−1 ≤ ν (1− ν)
a+ b

ab
(b− a)2

for any a, b > 0 and ν ∈ [0, 1] .
This is an inequality of interest in itself.
If we take a = 1 and b = t in (25), then we get

νt+ 1− ν −
(
νt−1 + 1− ν

)−1 ≤ ν (1− ν) (t− 1)2
(
1 + t−1

)
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for any t > 0.
If we use the continuous functional calculus for the positive invertible

operator X we get

νX + (1− ν) I −
(
νX−1 + (1− ν) I

)−1
(26)

≤ ν (1− ν) (X − I)2
(
X−1 + I

)
.

If we write the inequality (9) for X = A−1/2BA−1/2, then we get

νA−1/2BA−1/2 + (1− ν) I −
(
ν
(
A−1/2BA−1/2

)−1
+ (1− ν) I

)−1
(27)

≤ ν (1− ν)
(
A−1/2BA−1/2 − I

)2((
A−1/2BA−1/2

)−1
+ I

)
,

and ν ∈ [0, 1].
If we multiply the inequality (10) both sides with A1/2, then we get

A∇νB −A!νB(28)

≤ ν (1− ν)A1/2
(
A−1/2BA−1/2 − I

)2
×
((

A−1/2BA−1/2
)−1

+ I

)
A1/2,

and since

A1/2
(
A−1/2BA−1/2 − I

)2((
A−1/2BA−1/2

)−1
+ I

)
A1/2

= A1/2A−1/2 (B −A)

× A−1/2A−1/2 (B −A)A−1/2A1/2
(
B−1 +A−1

)
A1/2A1/2

= (B −A)A−1 (B −A)
(
B−1 +A−1

)
A

hence from (28) we get the desired result (22).
The last part is obvious from the fact that ν (1− ν) ≤ 1

4 , ν ∈ [0, 1]. �

We also have:

Theorem 4. Let A, B be positive invertible operators and M > m > 0
such that the condition (13) is valid. Then for any ν ∈ [0, 1] we have

(29) (0 ≤)A∇νB −A!νB ≤ ν (1− ν)L (m,M)A

where

L (m,M) :=


(m− 1)2

(
1 +m−1

)
if M < 1,

max
{

(m− 1)2
(
1 +m−1

)
,

(M − 1)2
(
1 +M−1

)}
if m ≤ 1 ≤M,

(M − 1)2
(
1 +M−1

)
if 1 < m.

(30)
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In particular,

(31) (0 ≤)A∇B −A!B ≤ 1

4
L (m,M)A.

Proof. As in the proof of Theorem 3 we have

(32) νt+ 1− ν −
(
νt−1 + 1− ν

)−1 ≤ ν (1− ν)ψ (t)

for any t > 0 and ν ∈ [0, 1] , where ψ (t) = (t− 1)2
(
1 + t−1

)
.

If we take the derivative of ψ, we have

ψ′ (t) = 2 (t− 1)
(
1 + t−1

)
− (t− 1)2 t−2

= (t− 1)
(
2 + 2t−1 − t−1 + t−2

)
= (t− 1)

(
2 + t−1 + t−2

)
for any t > 0.

We observe that the function ψ is decreasing on (0, 1) and increasing on
(1,∞) . We have limt→0+ ψ (t) =∞, ϕ (1) = 0 and limt→∞ ϕ (t) =∞.

Using the properties of the function ψ we have

max
t∈[m,M ]

ψ (t) =


ψ (m) if M < 1,
max {ψ (m) , ψ (M)} if m ≤ 1 ≤M,
ψ (M) if 1 < m,

= L (m,M) .

Therefore, by (32) we have

νt+ 1− ν −
(
νt−1 + 1− ν

)−1 ≤ ν (1− ν)L (m,M)

for all t ∈ [m,M ] and ν ∈ [0, 1] .
By utilizing a similar argument to the one in the proof of Theorem 2 we

deduce the desired result (30). �

3. Applications

For two positive invertible operators A, B and positive real numbers m,
m′, M , M ′ assume that one of the following conditions (i) 0 < mI ≤ A ≤
m′I < M ′I ≤ B ≤ MI and (ii) 0 < mI ≤ B ≤ m′I < M ′I ≤ A ≤ MI,
holds. Put h := M

m and h′ := M ′

m′ . We observe that h, h′ > 1 and if either of
the condition (i) or (ii) holds, then h ≥ h′.

If (i) is valid, then we have

(33) A < h′A =
M ′

m′
A ≤ B ≤ M

m
A = hA,
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while, if (ii) is valid, then we have

(34)
1

h
A ≤ B ≤ 1

h′
A < A.

Proposition 1. Let A, B positive invertible operators and positive real
numbers m, m′, M, M ′ such that the condition (i) holds. Then for any
ν ∈ [0, 1] we have

r
(
h′ − 1

)2 (
h′ + 1

)−1
A ≤ A∇νB −A!νB(35)

≤ R (h− 1)2 (h+ 1)−1A,

where r = min {ν, 1− ν}, R = max {ν, 1− ν} and

(36) A∇νB −A!νB ≤ ν (1− ν) (h− 1)2
(
1 + h−1

)
A.

In particular, we have

1

2

(
h′ − 1

)2 (
h′ + 1

)−1
A ≤ A∇B −A!B(37)

≤ 1

2
(h− 1)2 (h+ 1)−1A,

and

(38) A∇B −A!B ≤ 1

4
(h− 1)2

(
1 + h−1

)
A.

The proof follows by utilizing the inequality (33), Theorem 2 and Theo-
rem 4.

Proposition 2. Let A, B positive invertible operators and positive real
numbers m, m′, M , M ′ such that the condition (ii) holds. Then for any
ν ∈ [0, 1] we have

r
(
h′ − 1

)2 (
h′ + 1

)−1 (
h′
)−1

A ≤ A∇νB −A!νB(39)

≤ R (h− 1)2 (h+ 1)−1 h−1A,

and

(40) A∇νB −A!νB ≤ ν (1− ν) (h− 1)2
(
1 + h−1

)
h−1A.

In particular, we have

1

2

(
h′ − 1

)2 (
h′ + 1

)−1 (
h′
)−1

A ≤ A∇B −A!B(41)

≤ 1

2
(h− 1)2 (h+ 1)−1 h−1A,

and

(42) A∇B −A!B ≤ 1

4
(h− 1)2

(
1 + h−1

)
h−1A.
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The proof follows by utilizing the inequality (34), Theorem 2 and Theo-
rem 4.

If we consider the function D (x, y) : [1, 10]× [0, 1]→ R,

D (x, y) = y (1− y)
(
1 + x−1

)
−max {y, 1− y} (x+ 1)−1

then the plot of this function in Figure 1 shows that it take both positive and
negative values, meaning that some time the upper bound for the quantity
A∇νB−A!νB provided by (35) is better and other time worse than the one
from (39).

Figure 1. Plot of the difference function D (x, y)
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