
Poznan University of Technology

Faculty of Electronics and Telecommunications

Chair of Wireless Communications

Doctor of Philosophy Dissertation

Reliable and Energy-E�cient

Spectrum Sensing in Cognitive Radio

Systems
Wiarygodne i energooszcz¦dne metody detekcji

zaj¦to±ci zasobów widmowych w systemach radia

kognitywnego

by

mgr in». Krzysztof Cicho«

Supervisor: prof. dr hab. in». Hanna Bogucka

Secondary supervisor: dr in». Adrian Kliks

Pozna«, 2016





To my wife,

children and parents,

sisters and brother,

and Friend





Table of Contents

Table of Contents i

List of Figures iv

List of Tables vii

List of Key Symbols ix

List of Abbreviations xi

Introduction 1

1 Spectrum Sensing 7

1.1 Non-Cooperative Spectrum Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Energy Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.2 Sequential Energy Detector . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.3 Feature-based Cyclostationary Detector . . . . . . . . . . . . . . . . . . . 12

1.2 Cooperative Spectrum Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Local Sensing Information Reporting . . . . . . . . . . . . . . . . . . . . . 13

1.2.2 Selection of the Sink Node . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.3 Decision Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.4 Global Decision Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Time Domain Relations between Sensing and Access . . . . . . . . . . . . . . . . 20

2 Autonomous Spectrum Sensing 23

2.1 Practical Implementations of Selected Spectrum Sensing Methods . . . . . . . . . 23

2.1.1 Sequential Energy Detection in practical context of real-acquired signal

samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.2 Experimental Sensing Measurements of Energy Detection and cyclostatio-

nary-based algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.3 Hybrid Approach for Spectrum Sensing Using USRP and GNU Radio . . 32

2.2 The Impact of Hardware Implementation on the Performance of Energy-based

Spectrum Sensing Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

i



ii TABLE OF CONTENTS

2.2.1 Hardware Implementation Details . . . . . . . . . . . . . . . . . . . . . . 37

2.2.2 Measurement Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 The Problem of Noise Power Estimation in practical Energy-Detector Implemen-

tation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.1 Noise Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.2 Noise Estimation Methods with Elimination of the Narrow-band Signals . 46

2.3.3 Experiments outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Cooperative Spectrum Sensing 51

3.1 Considerations about the Cooperative Spectrum Sensing regarding the Implemen-

tation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.1 Practical Implementation of the Cooperative Spectrum Sensing . . . . . . 51

3.1.2 Signal Analysis in Cooperative Spectrum Sensing . . . . . . . . . . . . . . 56

3.2 Mobility-Aware, Correlation-Based Node Grouping and Selection for Cooperative

Spectrum Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.1 Correlation-Based Node Selection . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.3 Mobility-Aware Correlation-Based Spectrum Sensing . . . . . . . . . . . . 64

3.2.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Energy-E�cient Cooperative Spectrum Sensing 75

4.1 Considerations on Energy E�ciency for Spectrum Sensing Algorithms . . . . . . 75

4.1.1 Identi�cation of the Figure of Merits . . . . . . . . . . . . . . . . . . . . . 75

4.1.2 Single Sensing-Node Power Optimisation . . . . . . . . . . . . . . . . . . . 76

4.1.3 Energy E�cient Optimisation From the Network Perspective . . . . . . . 77

4.2 Energy E�ciency in Cooperative Spectrum Sensing: Classi�cation . . . . . . . . . 78

4.3 Energy Savings in Local Spectrum Sensing . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Number of Cooperating Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4.1 Node Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4.2 Censoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.3 Voting Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5 Fusion Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.6 Energy-E�cient Network Organisation . . . . . . . . . . . . . . . . . . . . . . . . 88

4.7 Final Classi�cation of Energy-E�ciency Options . . . . . . . . . . . . . . . . . . 91

4.8 Fuzzy Logic in the Optimisation Process of the Energy-E�cient Cooperative Spec-

trum Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.8.1 Dependency Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.8.2 Rose Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.8.3 Exemplary Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.9 Energy-E�cient Cooperative Spectrum Sensing with Node Sleeping and Relaying 101

4.9.1 System Model and Problem Formulation . . . . . . . . . . . . . . . . . . . 101

4.9.2 Simulation Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.9.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



TABLE OF CONTENTS iii

4.10 Energy-E�cient Cooperative Spectrum Sensing with a Merged Clustering Measure 108

4.10.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.10.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5 Conclusions 115

Bibliography 117



List of Figures

1.1 Illustration of the primary and secondary user coexistence in the cognitive radio net-

work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Receiver Operating Curves for detection of the frequency modulated signal . . . . . 9

1.3 Energy-E�ciency trade-o� observed in a single node sensing phase . . . . . . . . . . 9

1.4 Decision regions in the energy detector . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Decibel value of the ratio between energy detector's thresholds and noise power esti-

mate for various values of the number of samples Ms and probability of false alarm

Pf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Decision regions in the sequential energy-based detector . . . . . . . . . . . . . . . . 12

1.7 Cooperative spectrum sensing procedure . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.8 Spectrum sensing possible types of reported decisions: hard-decision, soft-decision and

double-bit hard decision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.9 Trade-o� observed in local sensing information reporting . . . . . . . . . . . . . . . . 15

1.10 Classi�cation of cooperative sensing: centralised, cluster-based, decentralised and re-

layed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.11 Illustration of the sensing and data transmission period . . . . . . . . . . . . . . . . 21

1.12 Sensing period-data transmission period trade-o� observed in spectrum sensing . . . 22

2.1 Block diagram of a SED model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Results for Sequential Energy Detector proceeded in K phases: probability of proper

decision, medium sensing time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Sequential Energy Detector results in terms of SNR for symmetric cases: probability

of proper decision, medium sensing time . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Sequential Energy Detector results in terms of SNR for non-symmetric cases: proba-

bility of proper decision, medium sensing time . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Experimental setup diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Scheme of the Primary User OFDM transmitter realised in the GNU Radio . . . . . 29

2.7 Scheme of the Secondary User receiver realised in the GNU radio . . . . . . . . . . . 30

2.8 Probability of detection Pd vs SNR for Primary User FM signal . . . . . . . . . . . . 31

2.9 Probability of detection Pd vs SNR for Primary User OFDM signal . . . . . . . . . . 31

2.10 Scheme of the hybrid spectrum sensing detector . . . . . . . . . . . . . . . . . . . . . 33

iv



LIST OF FIGURES v

2.11 Experimental setup diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.12 Probability of detection Pd vs SNR for various PU signals: FM signal, GMSK signal

and 8PSK signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.13 Probability of `no decision' state in Sequential Energy Detection scheme after collec-

tion of Ms/K samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.14 Hardware employed in the practical implementation experiment: a) PMSE equipment

(PU signal) stored in anechoic chamber, b) USRP N210 device, c) WBX daughter-

board, d) Personal Computer where sample processing has been conducted . . . . . . 38

2.15 Noise power for di�erent frequency of tuning fw . . . . . . . . . . . . . . . . . . . . . 39

2.16 Spectrum mask of noise for exploited hardware as a function of the DC o�set shift . 40

2.17 In�uence of temperature on the noise power . . . . . . . . . . . . . . . . . . . . . . . 40

2.18 Noise �oor for measurements conducted in three various scenarios . . . . . . . . . . . 41

2.19 Non-linear e�ects that appear over time . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.20 Comparison of traditional and pragmatic approaches for high-power incoming signal 42

2.21 a) Probability of detection and b) probability of false alarm for traditional and prag-

matic approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.22 Measurements of internal noise with the use of a dedicated switch . . . . . . . . . . . 45

2.23 SNR wall vs noise uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.24 Noise power estimation for a) estimation ranges and median value, and b) Least

Median of Squares methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.25 Noise power estimates for selected spectrum portion for all analysed methods . . . . 49

2.26 Mean estimation error vs frequency for analysed noise estimation methods . . . . . . 50

3.1 Illustration of all three sensing devices equipped with the same set, containing USRP

with WBX daughter-board and transferring complex base-band signal samples to the

computers via Gigabit Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Position of receiving and transmitting entities in the premises of the Faculty of Elec-

tronics and Telecommunications in scenario I and scenario II . . . . . . . . . . . . . 53

3.3 Results of noise power measurements and noise estimations for three receiving entities

in scenario I and scenario II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Probability of detection Pd vs frequency for each receiving entity separately in scena-

rio I and scenario II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Global probability of detection Qd vs frequency for cooperative spectrum sensing

while three fusion rules are adopted in scenario I and scenario II . . . . . . . . . . . 55

3.6 Medium number of samples (medium sensing time) vs frequency for three receiving

entities in scenario I and scenario II . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Location of receiving entities and PMSE during measurements in Scenario III (PU

transmission disabled) and Scenario IV (two PU devices active) . . . . . . . . . . . . 57

3.8 Measured noise power for each receiving entity with corresponding noise estimation

results conducted with estimation ranges method in Scenario III and Scenario IV . . 57

3.9 Detection rate for theory-based thresholds . . . . . . . . . . . . . . . . . . . . . . . . 57

3.10 Measurements sensing results in Scenario III and Scenario IV . . . . . . . . . . . . . 59

3.11 Probability of detection vs frequency while three decision rules are adopted in Scena-

rio III and Scenario IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



vi LIST OF FIGURES

3.12 Signal analysis in scenario III and scenario IV . . . . . . . . . . . . . . . . . . . . . . 60

3.13 Behaviour of the term related to node velocity used in the Leader Suitability formula 66

3.14 Exemplary state of the system after node selection procedure . . . . . . . . . . . . . 68

3.15 Global probability of false alarm Qf in the function of the number of selected nodes . 68

3.16 Global probability of detection Qd vs time for a) maxPd strategy, n = 13 s, b) maxST

strategy, n = 13 s, c) mixed strategy, n = 18 s . . . . . . . . . . . . . . . . . . . . . . 70

3.17 Global probability of detection Qd for starting selection for terminal velocities in the

range of: a) 1− 5 m/s, b) 1− 20 m/s . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.18 Floor value of the global probability of detection Qd vs maximum node velocity for

three leader selection strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.19 Number of selected nodes and percentage of sleeping nodes versus maximum node

velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1 Classi�cation of energy-e�cient cooperative spectrum sensing . . . . . . . . . . . . . 79

4.2 Energy saving areas in a single node . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Model of centralised CSS system where node selection or censoring is applied . . . . 84

4.4 Rose-chart for energy consumption comparison . . . . . . . . . . . . . . . . . . . . . 97

4.5 Rose-chart for presented use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.6 Exemplary topology of the network of three sensing nodes and one Fusion Centre . . 104

4.7 Exemplary channel attenuation map for the simulated area 100× 100 m . . . . . . . 105

4.8 Simulation results for di�erent distances to Primary User . . . . . . . . . . . . . . . 105

4.9 Simulation results for various distances of Fusion Centre from central area point . . . 106

4.10 Simulation results vs various spread of nodes . . . . . . . . . . . . . . . . . . . . . . 106

4.11 Simulation results for various numbers of nodes . . . . . . . . . . . . . . . . . . . . . 106

4.12 Performance of the clustering scheme with a merged clustering measure for various

weighing coe�cient λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



List of Tables

1.1 Binary detector decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Pros and cons for selected topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Key parameters of simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2 Global probability of detection Qd values for ideal selection . . . . . . . . . . . . . . 69

4.1 Classi�cation of energy saving approaches . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Dependencies between the key CSS parameters . . . . . . . . . . . . . . . . . . . . . 95

4.3 Dependencies between the key CSS parameters in mobile dense network use case . . 99

4.4 Dependencies between the key CSS parameters in machine-to-machine use case . . . 99

vii





List of Key Symbols

α Correlation threshold

β Minimum correlation threshold in grouping/clustering procedure

ϵ Threshold in energy detector

ϵHI Higher threshold in double-threshold energy detector

ϵLO Lower threshold in double-threshold energy detector

η(i) Signal-to-noise ratio at the primary to secondary link acquired by the i-th node

Γ Matrix of size N ×N containing pair correlation metrics of network members

γ
(i,k)
merged Merged clustering measure between node i and k

γi,k Correlation metric between node i and k

σ̂2n Power of AWGN

τ̂s Medium sensing time

λ Weighing coe�cient of distance and SNR

⌊ ⌋ Floor function of the argument

Pd Probability of detection

Pf Probability of false alarm

ω Correlation coe�cient speci�c for the transmission environment

erfc( ) Complementary error function

ψ Lag parameter associated to the autocorrelation function

ρ Noise uncertainty in linear scale

∥x∥2 2-norm of vector x

ix



x LIST OF KEY SYMBOLS

ξ Cyclic frequency

dcorr Decorrelation distance

EEQd
Energy E�ciency metric related to the global probability of detection

F FFT size

fw Frequency of tunning

K Number of phases in sequential detector

Mn Number of samples acquired for noise power estimation

Ms Number of collected samples by detector

N Number of cooperating nodes

Ptot Total power consumed by the network in one sensing and data-transmission period

Q(·) Q-function which is the tail probability of standard normal distribution

Qd Global probability of detection

Qf Global probability of false alarm

Si(k) k-th sensing decision of i-th node

Tdt Total duration of data transmission period

Tse Total duration of sensing period

Ttot Total frame duration

x∗ Complex conjugate of x

H0 Hypothesis that the received signal is just noise, i.e., the frequency band is vacant and no

Primary User transmission is active

H1 Hypothesis that the received signal is the sum of noise and Primary User signal, i.e., the

frequency band is busy



List of Abbreviations

Abbreviation Description

5G Fifth Generation

ADC Analog-to-Digital Converter

BPSK Binary Phase Shift Keying

CAF Cyclic Autocorrelation Function

CDR Constant Detection Rate

CFAR Constant False Alarm Rate

CH Cluster Head

CLT Central Limit Theorem

CPE Consumer Premise Equipment

CR Cognitive Radio

CRT Cognitive Radio Terminal

CS Compressed Sensing

CSD Cyclic Spectrum Density

CSS Cooperative Spectrum Sensing

CR Cognitive Radio

DAC Digital-to-Analog Converter

DAF Decode and Forward

DSP Digital Signal Processor

DVB-T Digital Video Broadcasting�Terrestrial

DVB-H Digital Video Broadcasting�Handheld

ED Energy Detection

xi



xii LIST OF ABBREVIATIONS

EE Energy E�ciency

EESM Exponential E�ective SINR Mapping

FC Fusion Centre

FFT Fast Fourier Transform

FLOPS Floating Point Operations Per Second

FM Frequency Modulation

FPGA Field Programmable Gate Array

GMSK Gaussian Minimum Shift Keying

GPS Global Positioning System

GRC GNU Radio Companion

GSM Global System for Mobile Communications

IF Intermediate Frequency

LAA Licensed Assisted Access

LMS Least Median of Squares

LNA Low Noise Ampli�er

LO Local Oscillator

MAC Media Access Control

OFDM Orthogonal Frequency-Division Multiplexing

OMP Orthogonal Matching Pursuit

PMSE Programme Making and Special Events

PSD Power Spectral Density

PU Primary User

REM Radio Environment Map

RF Radio Frequency

RFID Radio Frequency Identi�cation

ROC Receiver Operating Curve

SDR Software De�ned Radio

SED Sequential Energy Detection

SNR Signal-to-Noise Ratio

SPCAF Symmetry Property of Cyclic Autocorrelation Function

SPEED Sequential Pragmatic EnErgy Detection

SU Secondary User

UHD USRP Hardware Driver

USRP Universal Software Radio Peripheral

WRAN Wireless Regional Area Network



Introduction

In recent years, an exponential growth of the mobile data-tra�c volume has been observed in radio

communication systems [47]. The ever-increasing demand for higher data rates in these systems

calls for new methods of handling and managing radio frequency resources. These resources

are scarce. On the one hand, there are few available frequency bands that could be assigned

to new radio communication systems, while on the other, a number of measurement campaigns

conducted in many places world-wide have shown that numerous frequency bands licensed to such

systems are signi�cantly underutilised [148, 23, 79, 127, 30, 90, 91]. This observation has inspired

researchers to come up with the idea of Cognitive Radio (CR), introduced in fundamental works

by J. Mitola III [116, 114, 115]. These publications have also stimulated investigation in the �eld

of e�cient spectrum sharing and dynamic spectrum access; new visions on the CR systems have

been also proposed, e.g., in [72, 161].

Consequently, CR technology has been proposed as a potential solution to increase the e�-

ciency of spectrum utilisation, as it enables opportunistic access of temporarily unused frequency

bands once the presence of so-called Primary Users (PUs), i.e., the users of licensed systems, is

excluded. The main point of this idea is to determine, with possibly the highest probability, whe-

ther the considered frequency band is available, i.e., not occupied by a PU. This may essentially

be achieved in two ways: i) based on the knowledge about scheduled primary activities (e.g.,

stored in a database), or ii) based on the real-time measurement of the PU's activity, known

as spectrum sensing. The latter solution was initially considered as the main one for future CR

systems, but due to long-standing open research issues in the implementation of reliable sensing

methods, the interest in databases grew signi�cantly [61, 126]. However, investigation on spec-

trum sensing is still highly encouraged as sensing can complement and extend the information

provided by databases.

This may be observed in recent standardisation activities. For example, the IEEE 1900.6

working group has started a new standardisation project on the topic of the usage of sensing

information to support spectrum databases assigned as IEEE 1900.6b [8]. This is the third part

of standardisation e�orts started by publishing the baseline standard IEEE 1900.6 in 2011 [6]

related to spectrum sensing interfaces, continued by the release of the �rst amendment (assigned

as 1900.6a) in June 2014, entitled: �Procedures, Protocols and Data Archive Enhanced Interfaces�

[7]. Moreover, spectrum sensing is a function of the cognitive plane in the IEEE 802.22 standard

of Wireless Regional Area Network (WRAN) in TV bands [9, 152]. In order to protect Primary

Users (e.g., television receivers and Programme Making and Special Events (PMSE) equipment),
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2 INTRODUCTION

apart from using the spectrum databases, spectrum sensing is compulsory for base stations and

Consumer Premise Equipment (CPE) using this standard. However, IEEE 802.22 does not re-

commend a speci�c sensing method, since it only de�nes the detection level, SNR, time and

detection quality requirements.

The next motivation for a continued research on spectrum sensing is the creation of the so-

called Radio Environment Maps (REMs), or other databases designed for storing and processing

of the reach available context information. The justi�cation for practical deployment of such

databases relies on the assumption that the more (true and veri�ed) information available in

the system, the better its e�ciency. The problem of accurate channel state information at the

transmitter and receiver in a classical example proves this somehow trivial observation. However,

the concept of utilising of the so-called context information can be easily extended to other aspects

of wireless communications. Information crumbles collected by the system at a certain time and

location can be smartly utilised in the future. In the context of Fifth Generation (5G), or in

the future, next-generation systems, the information about spectrum utilisation (including some

historical knowledge and past experience, etc.) will be the basis of �exible spectrum management

foreseen as one of the key technological enablers, even if the ideal cognitive radio concept is not

applied in practise. The deployment of REMs and their advanced management is a practical tool

for achieving this goal. Cooperative spectrum sensing, decision making and reporting will then

be used as an e�cient way of permanent spectrum monitoring and delivering periodic updates

of database entries. Thus, it is necessary to de�ne solutions for non-cooperative and cooperative

spectrum sensing.

Dissertation thesis and major aims

The thesis of the dissertation is the following:

There exist new methods for spectrum sensing, both autonomous and cooperative, with en-

hanced reliability and/or energy e�ciency compared to the existing solutions.

The main goal of the thesis is to propose such enhanced techniques and in particular:

� To implement selected spectrum sensing techniques and assess the impact of hardware and

noise estimation in these implementations (This goal is addressed in Chapter 2).

� To assess the gains which support the cooperation scheme in cooperative spectrum sensing

including correlation-based scheme and taking mobility of the sensing nodes into account (This

goal is addressed in Chapter 3).

� To identify possible directions in energy-e�cient cooperative spectrum sensing schemes and

to classify the main directions of optimisation. Then, to draw the dependencies between these

areas (This goal is addressed in Chapter 4).

� To develop the energy-e�cient techniques for cooperative spectrum sensing with the use of

node selection, node relaying and clustering (This goal is addressed in Chapter 4).
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Overview of the dissertation contributions

The �rst Chapter presents the essence of the spectrum sensing prepared by the author of the

thesis.

Chapter 2 is devoted to non-cooperative spectrum sensing. The main contributions are the

implementations of the spectrum sensing techniques in various con�gurations in USRP platform

and proceeded in GNU Radio environment. The sequential energy detector implementation has

shown that it is possible to shorten the mean sensing time, but the process is burdened with

limited reliability. This is overcome by the cyclostationary-based technique which guarantees

substantially higher reliability at the cost of complexity. The gains from these two techniques

are connected in the hybrid approach. The next contribution is the checking how the sensing

methods are impacted by the hardware. The measurements have shown that the energy detector

is highly sensitive to phenomena such as DC o�set, temperature and ambient noise. The author

of the thesis proposes then the pragmatic approach which is robust against close-high power

signals and minimise the negative in�uence of existing hardware. The in�uence of proper noise

estimation has been also analysed: three methods known from literature were compared for signal

samples taken from di�erent receiving entities.

In Chapter 3 the implementation considerations are broadened to cooperative approaches.

The author of the thesis has conducted the experiment with three sensing entities with identical

hardware and software con�guration and conducted simultaneous measurements. It has been

shown that the results should be veri�ed using, e.g., temporal analysis in order to limit the

insistent false alarm rate. The correlation-based cooperative solution taken from the literature

has been substantially improved. The mobility of nodes has been taken into account, the analysed

model has been changed into a more realistic and strict one. The new metric for election of the

leader from the selected groups has been proposed which allows to perform grouping procedures

more seldom.

In Chapter 4, the problem of energy-e�cient cooperative spectrum sensing is addressed.

First, energy e�ciency in Cooperative Spectrum Sensing (CSS) is described and a new metric for

energy e�ciency in CSS is proposed. Then, the author of this thesis has proposed a classi�cation

of main directions in energy-e�cient CSS solutions, i.e.: i) energy-e�cient local spectrum sensing,

ii) number of cooperating nodes, iii) fusion rule, iv) energy-e�cient network organisation. The

analysis of various solutions has shown that the existing works focus on one or at most two

aforementioned directions in energy e�ciency. However, the solution merging more directions is

not only complex, but also not so e�cient. The optimisation of one area of CSS may, however,

in�uence the other direction and as a result the energy e�ciency gain may be limited. Thus, the

dependencies between CSS directions have been drawn with the methods known from fuzzy logic

such as dependency matrix and rose chart. It has been shown that some optimisation solutions

highly impact the others while there exists a group of solutions independent from the energy

e�ciency point of view. Then, an analysis of promising energy-e�cient directions has been done,

for instance, by taking into account node relaying and node selection. The conducted simulations

have highlighted that node relaying is not always bene�cial from Energy E�ciency (EE) point

of view, while the node selection is more promising. Moreover, it is possible to improve energy

e�ciency of clustering by taking into account the distances between nodes with their experienced

SNRs.
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Finally, the conclusions of the considerations and results presented in this dissertation are

drawn in Chapter 5.
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Chapter 1

Spectrum Sensing

1.1 Non-Cooperative Spectrum Sensing

The main goal of spectrum sensing is to identify the presence or absence of a Primary User (PU)

at a certain location, at a given moment, and in a speci�ed frequency band (1.1). Spectrum

sensing in its simplest non-cooperative form is considered as single-device (or single-node) sensing

(Fig. 1.1), where each node makes an independent decision on the availability of a frequency band,

and acts accordingly (transmits in this band or not). From this perspective, numerous spectrum

sensing algorithms have been proposed, such as the ones described in [13, 19, 55, 133, 173].

The goal of spectrum sensing is for the cognitive-radio entities (Secondary Users (SU)) to

decide on the presence of a licensed-system signal (a PU signal). If a SU detects signal r(x), the

spectrum sensing decision D(x) can be treated as a double-hypothesis statistic test:

D(x) =

{
H0 if r(x) = n(x)

H1 if r(x) = s(x) + n(x),
(1.1)

where H0 is the hypothesis that the received signal is just noise n(x), i.e., the frequency band

is vacant, and H1 is the hypothesis that the r(x) is the sum of noise and PU signal s(x), i.e.,

spectrum is occupied. The sensing quality is described by the probability of detection Pd, i.e., the

probability that D(x) = H1 in the case when the PU is, in fact, active, and by the probability

of miss-detection Pmd, i.e., the probability that D(x) = H0 in the same case, when the PU is

active. Moreover, an important sensing-quality metric is the probability of false alarm Pf , i.e.,

the probability that D(x) = H1 in the case when the PU is actually not active. These metrics

are typical for binary detector which, in fact, is proper for spectrum sensing. In Table 1.1 the set

of decisions for binary detector with regarding probabilities is illustrated [80].
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Figure 1.1: Illustration of the primary and secondary user coexistence in the cognitive radio network

Table 1.1: Binary detector decisions

```````````````Detector decision

Reality
PU absent PU present

Hypothesis H0 Probability of acquisition

Pa

Probability of miss-detection

Pmd

Hypothesis H1 Probability of false alarm

Pf

Probability of detection

Pd

In general, it is bene�cial to maximise the detection probability and minimise the false

alarm probability. However, the optimisations of these two metrics are contradictory goals, i.e.,

an increase of the detection probability (by lowering the requirements for the decision threshold)

leads to a higher number of false alarms and consequently to an increase of the probability

of false alarm. Similarly, raising the detection threshold lowers both the detection probability

and the probability of false alarm. Thus, for every sensing method, a trade-o� has to be found

that aims at keeping a possibly low number false alarms while guaranteeing a high detection

rate. This constituted trade-o� is shown in Fig. 1.2, where a few so-called Receiver Operating

Curves (ROCs), presenting Pd vs Pf , have been illustrated for various signal-to-noise ratios. One

can observe that the higher the Signal-to-Noise Ratio (SNR), the better the receiver characteristic,

understood as a lower false alarm rate for a given detection rate or a higher detection rate for

the stated false alarm rate.

Identi�ed energy versus quality trade-o� in single-node sensing. It is easy to indicate

the following trade-o� between sensing accuracy and certainty on the one hand, and processing

time on the other. In a nutshell, the longer the sensing time or the more complex the sensing

procedure, the more accurate the decision made by a single node (the lower the probability of

interference that could be generated by a SU to a PU system and the better the frequency

band utilisation). However, a more accurate sensing procedure requires the shortening of the
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Figure 1.2: Receiver Operating Curves for detection of the frequency modulated signal

Figure 1.3: Energy-E�ciency trade-o� observed in a single node sensing phase

transmission phase and an increase of energy consumption in the sensing phase. This trade-o� is

graphically illustrated in Fig. 1.3.

Note that there exist a number of single-node sensing methods which may be blind or make

use of some a priori knowledge of the noise- and detected signal characteristic. Surveys of these

sensing techniques can be found in [73, 104, 123, 135, 173]. These methods may be classi�ed into

three categories [118]: a) techniques requiring both PU signal and noise variance information,

b) techniques requiring only noise variance information (known as semi-blind methods, c) techni-

ques not requiring any information about PU signal or noise variance (blind methods). Examples

of blind sensing methods would be eigenvalue based detection [174], wavelet based detection

[160], second order statistical based detection [31], and symmetry property of cyclic autocorre-

lation function based detection [86]. In the three following subsections a selected set of sensing

methods is presented in more detail.

1.1.1 Energy Detector

One of the simplest way for Primary User detection is to calculate the amount of received power

in the considered frequency subband and compare this value with the noise variance. If the

received power is higher than the previously approximated power of noise, the energy detector

will make a decision on the spectrum occupancy by the PU signal. In turn, the channel will

be assumed to be vacant if the computed noise power will be close to the noise variance at

the certain level of certainty. There are several parameters that in�uence the reliability of any

spectrum sensing algorithm. In the case of traditional energy detection, the crucial role is played
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Figure 1.4: Decision regions in the energy detector

by properly de�ned decision threshold, and in consequence, by the accuracy of noise variance

approximation, and the duration of sensing time (expressed in seconds or�for discrete signals�

in terms of number of gathered samples). For the given values of probability of false alarm, Pf ,

number of collected samples Ms, and the (equivalent-)noise variance σ̂2n, the decision threshold

can be de�ned as following:

ϵ = σ̂2n

(
Q−1 (Pf) ·

√
2Ms +Ms

)
, (1.2)

where Q(·) represents the Q-function which is de�ned as Q(x) = 1√
2π

∫ +∞
x e−

u2

2 du. Having in

mind that the total power ofMs collected samples in the given frequency band can be represented

as the random variable PMs =
∑Ms−1

k=0 r[k], then based on (1.1) the generic decision rule DMs

can be then modi�ed to the considered case:

DMs =

{
PMs ≤ ϵ −→ H0

PMs > ϵ −→ H1
(1.3)

It is worth noting that the reliability of energy-detectors strongly depends on the received

power and on the accuracy of approximated variance noise σ̂2n. The latter can be improved by

increasing the number of collected samples Ms. In practice, however, even if the number of

collected samples is in�nitive, the performance upgrade is limited due to inaccurate noise power

estimation. This phenomenon is known as SNRwall and is described in Section 2.3 [159].

In Fig 1.5, one may observe the relation between the decision threshold ϵ and the number of

collected samples, probability of false alarm and noise power approximate. First, the higher the

number of collected samples, the lower the decision threshold due to noise averaging. Besides,

it should be noted that the decision threshold and noise power estimate have relatively low

di�erence (for Pf = 0.02 and Ms = 500 it is about 0.4 dB, while for Ms = 100 it is about

0.8 dB).

1.1.2 Sequential Energy Detector

The behaviour of the traditional energy detector can be improved in various ways, e.g., by appli-

cation of the adaptively modi�ed threshold. The other possibility is to adopt the double-threshold

energy detection and sequential energy detector which possesses the same reliability as the tra-

ditional one but its application could reduce the sensing time. The main concept is based on
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Figure 1.5: Decibel value of the ratio between energy detector's thresholds and noise power estimate for
various values of the number of samples Ms and probability of false alarm Pf

the assumption that for very strong PU signal, or�contrarily�in the presence of noise only,

the number of samples that should be collected for reliable decision can be reduced. If this is

the case, the sensing time is minimised increasing the time devoted to data transmission and

reducing the energy consumption devoted for observation phase. In order to achieve this goal,

two decision thresholds have been applied, ϵHI and ϵLO. In brief, the procedure can be realised

in the following iterative way for K sequential phases. The Energy Detector collects the signal

samples in period Ms/K, which is K-times shorter than sensing period in traditionalEnergy

Detection (ED), and tries to make the decision. If the amount of power is greater than ϵHI, the

decision of the PU signal presence is made; if the received power is lower than ϵLO the considered

channel is decided as vacant. If the calculated value falls between these thresholds, the sequential

energy detector collects next block ofMs/K samples and repeats the procedure (Fig. 1.6). When

the total number of sequential phases K is reached (i.e., the maximum sensing time is reached),

and the sensing decision has not been reached in �nal phase, then the decision is made as for

traditional algorithms. The decision rule for the i-th iteration can be de�ned as follows:

D
M

(i)
s

=


P
M

(i)
s

≤ ϵ
(i)
LO −→ H0

P
M

(i)
s

∈
(
ϵ
(i)
LO, ϵ

(i)
HI

)
continue

P
M

(i)
s

≥ ϵ
(i)
HI −→ H1,

(1.4)

where P
M

(i)
s

denotes the average power after collecting M
(i)
s = i×Ms/K samples, i ∈ {1 . . .K}.

The ϵ
(i)
HI and ϵ

(i)
LO are de�ned in 1.5, where Pf,LO,i and Pf,HI,i denote the probability of a false

alarm assumed for low and high thresholds in the i-th iteration.
ϵ
(i)
LO = σ̂2n ·

(
Q−1 (Pf,HI,i) ·

√
2M

(i)
s +M

(i)
s

)
ϵ
(i)
HI = σ̂2n ·

(
Q−1 (Pf,LO,i) ·

√
2M

(i)
s +M

(i)
s

)
.

(1.5)
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Figure 1.6: Decision regions in the sequential energy-based detector

Using the fact that the noise uncertainty has a bounded model which can be included in

the no decision region, it is possible to evaluate the two thresholds in eq. (1.5) based on the

estimated noise variance [119]. The example of the application of the sequential procedure in an

integrated statistical-inference platform may be found in [51].

1.1.3 Feature-based Cyclostationary Detector

In wireless communications, the transmitted signals show very strong cyclostationary features

[62]. Therefore, identifying a unique set a features of a particular radio signal can be used to detect

its presence based on its cyclostationary features. In the context of spectrum sensing extensive

research has been conducted on using the cyclostationary features to detect the presence of PU

in the radio environment [104, 118]. In general, this method can guarantee a higher detection

rate than the energy detector. However, its main drawbacks are the complexity associated with

the detection technique and the need for some a priori knowledge of the PU signal (e.g., cyclic

frequency). The cyclostationary feature detector can be realised by analysing the Cyclic Auto-

correlation Function (CAF) of a received signal r(x). The CAF of a received signal r(x) at the

SU can be expressed as:

Rr(x, ψ) =
∑
ξ

Rξ
r(ψ) exp (2πjξx), (1.6)

where ψ is a lag associated to the autocorrelation function, ξ the cyclic frequency and Rξ
r(ψ) is

given by (1.7):

Rξ
r(ψ) = lim

Ms→∞

1

Ms

Ms−1∑
x=0

Rr(x, ψ) exp (−2πjξx). (1.7)

Classical Cyclostationary feature-based detector

The classical approach to realise the cyclostationary detector is based on the Cyclic Spectrum

Density (CSD) or the spectral correlation function of the received signal r(x).

Υξ
r(f) =

1

Ms

Ms−1∑
x=0

Rξ
r(ψ) exp (−2jπfψ). (1.8)
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The CSD function presented in (1.8) exhibits peaks when the cyclic frequency ξ equals the fun-

damental frequencies of s(x) the transmitted signal. Under the H0 hypothesis, the CSD function

does not have peaks since the noise is generally non-cyclostationary. Using this technique, it is

possible to distinguish even weak PU signals from the noise at a very low SNR, where the energy

detector is not applicable.

Symmetry Property of Cyclic Autocorrelation Function (SPCAF) detector

The discrete-time consistent and unbiased estimation of the CAF of a random process is given

as:

R̃ξ
rr∗(ψ) =

1

F

F−1∑
x=0

r(x)r∗(x+ ψ) exp (−2jπξx). (1.9)

For a given lag parameter ψ ∈ {1, 2, . . . , L}, the cyclic autocorrelation function (CAF) can be

seen as a Fourier transform of [r(0)r∗(0+ψ), r(1)r∗(1+ψ), . . . , r(F − 1)r∗(F − 1+ψ)], where F

is Fast Fourier Transform (FFT) size. As shown in the work of Khalaf et al. [86], the CAF is an

F -dimensional sparse vector in cyclic frequency domain for a �xed lag parameter ψ. Moreover,

it presents a symmetry property as illustrated in (1.10).

||R̃ξ
rr∗(ψ)||2 = ||R̃−ξ

rr∗(ψ)||2. (1.10)

Using a Compressed Sensing (CS) recovery technique like the Orthogonal Matching Pursuit

(OMP) algorithm, it is possible to accurately estimate the CAF using a limited and small number

of received samples Ms << F . If the obtained CAF veri�es the property (1.10), then H1 is true;

otherwise, H0 is true. It is important to note that even under H0 the obtained CAF veri�es the

symmetry property. However, when using a small number of samples, the probability to obtain

a symmetrical CAF under H0 is very small [86]. This SPCAF technique can perform with a

limited number of samples and consequently with lower complexity and shorter observation time

compared to the classical approach.

1.2 Cooperative Spectrum Sensing

Several investigations pointed out that sensing carried out locally by single devices is not accurate

enough for the safe coexistence of primary and secondary users [26, 63, 113]. Thus, it is generally

agreed that one of the ways to increase the reliability of spectrum sensing is to apply cooperation

between nodes. In cooperative spectrum sensing every node in a cognitive network senses the

spectrum, and reports local sensing results which are then used for acquiring a global decision

characterised by the global probability of detection (see Fig. 1.7). These phases will be discussed

in detail in the following subsections. In the end of each subsection one may �nd the identi�ed

trade-o�s highlighting the most relevant relations in cooperative spectrum sensing, e.g., the

quality versus energy-e�ciency trade-o�.

1.2.1 Local Sensing Information Reporting

One of the simplest techniques for sharing the sensing information is based on the nodes' local

decisions on the PU presence in a given band and on delivering local binary decisions to selec-
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Spectrum sensing
- single node operation
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- sensing time vs.
sensing accuracy

Local Decision
Reporting
- soft vs hard decision
- reporting accuracy
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- selection of reporting way
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- fusion rule selection
- global decision making

Local actions

Global actions

Figure 1.7: Cooperative spectrum sensing procedure

Figure 1.8: Spectrum sensing possible types of reported decisions: a) hard-decision, b) soft-decision,
c) double-bit hard decision

ted node(s) determined by a Media Access Control (MAC) layer. This procedure is known as

hard-decision combining and requires just one bit for the local decision representation (e.g., 1

can represent spectrum occupancy, whereas 0�vacancy). It is very concise and easy-to-decode,

therefore, decision fusion may be easily adopted here (see Section 1.2.3). However, such a concise

quantisation of sensing information may be imprecise, and the quality of the decision made by

the node is not re�ected in its binary representation. In Fig. 1.8a, one may observe that sensing

information is binarized, i.e., only presence/absence messages are generated. If the value of the

decision variable (such as the received power, the presence of periodicity in the received signal,

etc.) is above a speci�ed threshold (denoted here arbitrarily as ϵ), the node will decide on the

hypothesis H1 and the message will be d = [1], otherwise it will be H0 with d = [0].

In the soft-decision reporting scheme, soft sensing-information with an assumed level of accu-

racy is encoded and shared. In this scheme, the reported message may be extended by additional

useful information, such as sensing-channel quality information, sensing decision quality, a dedi-

cated metric characterising the node's previous decisions etc. Thus, soft-decision reporting may

be very precise and neatly used in order to increase global detection quality; for example, one

may �nd an optimum soft-decision scheme based on the Neyman-Pearson criterion in [105]. Ho-

wever, soft-metric reporting is burdened with large data overhead and computational complexity

due to the large size of reporting messages. Additionally, large reporting messages introduce

additional delay in transmission. From the perspective of energy e�ciency, the size of reported
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Figure 1.9: Trade-o� observed in local sensing information reporting

messages should be limited: on the one hand precise soft reporting information leads to a high

detection quality but also a large size of messages; on the other hand, limited precision provides

a lower detection rate but also reduces the overhead signi�cantly. Such a situation is illustrated

in Fig. 1.8b, where no decision threshold ϵ is identi�ed. Message d shared by the node can be

used to somehow re�ect the degree of uncertainty of the node's decision, e.g., the vector of ones

d = [111 . . . 1] will correspond to the certainty of the correctness of hypothesis H1. The higher

the number of bits in vector d, the higher the accuracy of the decision. A comparison between

hard-decision and soft-decision reporting is provided, e.g., in [156], where in the latter scheme,

all nodes transmit information on the observed signal energy to the fusion centre.

However, in practical applications, the soft decisions have to be quantised with an assumed

and rather low number of bits. This leads to solutions known as quantised-soft reporting which

merge soft and hard reporting. As an example, the so-called quantised soft-bit schemes were

proposed and discussed in [21, 22]. In particular, in double-bit reporting, two bits are used in

reporting messages, which gives four cases in reporting [105], as shown in Fig. 1.8c. A detailed

analysis of the aforementioned schemes is presented in [164, 117, 28], whereas in [134], various

quantisation schemes applied to reported message are analysed. Moreover, some discussion on

the energy e�ciency of various reporting and fusion rules is presented in [15].

Identi�ed trade-o� in sensing information reporting. Again, it is easy to indicate

the following trade-o� between the accuracy and granularity of transmitted information and the

energy and time needed for this action. The higher the granularity of the transferred information,

the higher the generated tra�c in the network and energy consumption in that particular phase,

but at the same time, the more detailed and accurate the message delivered to the fusion centre.

This trade-o� is graphically illustrated in Fig. 1.9.

1.2.2 Selection of the Sink Node

The preparation of sensing information that will be put into the reporting message is followed

by the process of sharing (spreading to selected nodes) the local observations. There are several

possible con�gurations for spreading these local observations to other nodes. This essentially

relies on local conditions such as: the presence of a Fusion Centre (FC), the qualities of sensing

channels or the availability of a reporting channel [28].

One of the simplest possibilities is to select the central entity, namely the FC, and send

(report) the local sensing information to this entity. The FC collects sensing-decisions from the

nodes, generates a global decision, and broadcasts it back to nodes. In Fig. 1.10a, such a centra-

lised topology is presented. The black node which is the fusion centre is surrounded by several

cognitive nodes reporting the sensing observations.
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Figure 1.10: Classi�cation of cooperative sensing: a) centralised, b) cluster-based, c) decentralised and
d) relayed

The centralised topology is highly dependent on the proper FC selection: if the FC location

is shadowed (in the sense of radio signal shadowing) the gain of such a centralised cooperative

scheme is limited. Moreover, if the security aspects are crucial, the network sensing-performance

should not be solely dependent on one node (the FC). Finally, the centralised scheme may have

to deal with relatively large distances of some of the reporting channels, which may be ine�cient

energy-wise.

In the cluster-based scheme, the reporting channels distances are smaller. Geographically

neighbouring nodes cooperate with each other, forming a closed group (called a cluster) with a

selected cluster-head. All nodes report their local decisions to the local cluster head (instead of

reporting them to the global FC), and it is the role of these cluster heads to either forward the

collected decisions to the FC, or to make a decision at the cluster level, and report it to the FC.

Such a case is illustrated in Fig. 1.10b, where the black node is the FC and the grey nodes are

the cluster heads. The cluster-based scheme introduces a delay in sensing message sharing, and

involves a speci�c procedure for organising nodes into clusters and the selection of cluster heads.

Unlike the centralised and cluster-based schemes, in the distributed topology, there is no

selected single node that manages the sensing process in the network. Nodes interchange their

observations in a somehow determined order, and make global decisions by combining their own

observations with the ones acquired from messages sent by other nodes. The adopted distributed

algorithm is determined by the applied distributed-network protocol. Distributed cooperative

sensing is illustrated in Fig. 1.10c. There, every node takes a global decision on its own after
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collecting the sensing information from sensing entities. Note that the distributed sensing scheme

may be slowed down by a large number of signalling messages exchanged in the network.

Cooperation in a network may be implemented not only in the centralised, cluster-based or

distributed manner. Relaying topology may also be adopted. Here, local sensing information is

directed according to channel qualities experienced by a node. If its sensing or reporting channel

is weak, the node may decide to cooperate with its neighbours in order to increase the detection

probability. This cooperation may include relaying the reported sensing messages by another node

to the FC or a selected node (if the direct reporting channel has poor quality). This is illustrated

in Fig. 1.10d, where some channels between nodes are active, while others are not used. Note

that the relaying procedure introduces the problem of delays in the network where the message

is relayed by a number of nodes. Moreover, a high complexity of network management may be

observed here.

Detailed discussions on sensing network topologies, e�cient data exchange, clusters and

cluster head management can be found in the rich literature on wireless sensor networks, such

as [14, 84, 93, 96].

Identi�ed trade-o� in the sink node selection. The trade-o� that exists in the FC

(also called sink-node) selection phase can be characterised as follows. The more links between

the nodes involved in exchanging of sensing information, the longer the duration of this phase

and the more energy is consumed for this purpose. However, each topology should be analysed

separately, since the topology selection highly a�ects this trade-o�. A simple comparison of pros

and cons for each proposed topology is presented in Table 1.2 below.

Table 1.2: Pros and cons for selected topology

Topology Pros Cons Reference

Centra-

lised

� Detailed information acquired by the

sink node, thus a more reliable deci-

sion made.

� For N nodes, N − 1 messages have to

be transmitted (fewer than in the de-

centralised case).

� Assuming that sensing messages are

transmitted via a dedicated control

channel, the need for delivery of N −
1 messages results in high quality-

requirements for this channel.

� The higher the number of nodes, the

longer the phase of single-node deci-

sion collection.

� The more nodes, the longer the ave-

rage distance between the sink node

and the i-th node, thus, the more

energy used for the transmission of

sensing information.

[63, 108,

129]

Continued on next page
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Table 1.2 � continued from previous page

Topology Pros Cons Reference

Cluster-

based

� The number of links is the same as for

the centralised topology.

� The time required for message deli-

very can be reduced by a factor close

to the number of cluster heads, i.e.,

message delivery from individual no-

des to cluster heads can be realised in

parallel.

� The average distance over which the

message has to be sent is smaller com-

pared to the centralised topology, thus

lower transmit power can be used.

� Data processing in each cluster head

may consume a considerable amount

of energy.

� In mobile networks, the frequency

of invoking the cluster-head selection

procedure may increase compared to

the centralised-topology case, where

the procedure of centralised node se-

lection may be less frequent.

[54, 98,

156, 178]

Decen-

tralised

� The number of links can be highly re-

duced, as each node makes a decision

on its own.

� If relaying is not allowed, each node

collects sensing messages only from

the surrounding nodes.

� If each node gathers information from

all other nodes, the number of sensing-

messages transmissions grows signi�-

cantly.

� The energy required for data proces-

sing in each node may be high (the

scheme may be ine�cient in terms of

energy consumption).

[27, 57]

With

relays

� The number of links is similar as in

the centralised-topology case.

� Distances between neighbouring no-

des are shorter than the average di-

stance in the centralised scheme.

� The time required for message

exchange depends on the longest

route in the sensing network, but

is shorter than in the centralised-

topology case.

� As in the cluster-based scheme, the

energy required for data processing in

each relay increases the energy con-

sumption in a network.

� There is a need for fast and accurate

route selection, which also consumes

energy and time.

[94, 169,

180]

1.2.3 Decision Fusion

After collecting the local sensing results, an e�ective fusion has to be performed by a selected

sink-node (e.g., fusion centre). This is actually done by adopting the fusion rule [69, 105, 137, 142]

and making the �nal decision [74, 107, 162, 176]. Various rules are possible, and their comparison

is possible after the adoption of relevant global metrics. These are associated with cooperative

decisions based on local decisions acquired from N secondary (sensing) nodes. Assuming the

general k-out-of-N rule (where a positive decision is made only if the number of positive answers

is not lower than k), the global probability of false alarmQf and the global probability of detection

Qd can be obtained as follows [177]:

Qf =

N∑
i=k

(
N

i

)
Pi
f(1− Pf)

N−i, (1.11)
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Qd =
N∑
i=k

(
N

i

)
Pi
d(1− Pd)

N−i, (1.12)

where Pf and Pd are averaged over the statistics of N nodes, so for instance, Pf is equal to:

Pf =
1

N

N∑
i=1

Pf,i, (1.13)

and Pf,i represents the probability of a false alarm of the i-th node. General formulas (1.11) and

(1.12) may be modi�ed in order to express three widely used fusion rules: the OR, the AND

and the majority rule. Moreover, for any speci�c rule, the global probabilities of false alarm

and detection are obtained in an analogous way, therefore only formulas related to detection

quality are presented. In the case of the AND-rule (N -out-of-N rule) and the OR-rule (known

as 1-out-of-N rule) the above formula for Qd is simpli�ed to:

QAND
d =

N∏
i=1

Pd = PN
d , (1.14)

QOR
d = 1−

N∏
i=1

(1− Pd) = 1− (1− Pd)
N , (1.15)

respectively. Furthermore, Qd for the majority-rule, when at least half of the nodes have to detect

the PU activity, is given by:

QMAJ
d =

N∑
i=⌈N/2⌉

(
N

i

)
Pi
d(1− Pd)

N−i. (1.16)

The Constant False Alarm Rate (CFAR) scheme assumes that in the network the global

probability of false alarm Qf remains constant, i.e., is set for the whole secondary network. Thus,

the corresponding value of Pf,i is assumed to be identical for every node and can be obtained for

the OR rule as:

Pf,i = 1− N
√
1−Qf for i = 1, ..., N . (1.17)

Thus, the aim of the CFAR scheme is to maximise the received probability of detection. On the

other hand, under the Constant Detection Rate (CDR) requirement, the value of Qd is set for

the network, while the false alarm probability is minimised. The network starts in this case with

assumed local probabilities of detection for each node (which are stated in an analogous way as

for CFAR).

Identi�ed quality versus energy-e�ciency trade-o� in the decision fusion. The

analysis of the quality versus energy-e�ciency trade-o�, in the case of decision fusion, is not

straight-forward. The application of OR rule approach results in a high probability of detection

and a high probability of a false alarm, thus also in a low probability of a potential collision with

a PU. However, this also means that the probability of data transmission by a SU is reduced

as well. Moreover, including the in�uence of the transmission channel, one can observe that the

OR rule can result in the lack of identi�cation of transmission opportunities. In such a case, the

spectral e�ciency (and thus also the energy e�ciency) is very poor. On the other hand, the AND
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rule can be described in a reversed way. Thus, one can generally say that there is a trade-o�

between the certainty of the decision made by a fusion centre and the energy e�ciency. However,

this observation is not valid in all cases. If the probability of detection is low, the number of

potential collisions with a PU increases leading to an increase of retransmissions for both the

PU and the SU, and in consequence, to a lower energy e�ciency. Finally, as mentioned above,

typically, the assumed level of uncertainty (either in terms of Qd or Qf) must be assumed as

constant in the network. Thus, the selection of the rule will depend highly on the topology.

1.2.4 Global Decision Reporting

The last step in the CSS scheme is sharing (spreading) the global information and the global

decision on the spectrum vacancy. In the centralised topology, until this step, every node is

aware of the local decision. However, it is the awareness of the global decision that can create

the expected gain in the cooperative network. To this end, the central entity spreads the global

decision usually by sending a broadcast message. Then, based on this received information, the

nodes plan future actions.

Unlike in the centralised scheme, in the distributed scheme, there is actually no need for

sending the global decision. Here, the nodes acquire the information about their neighbours'

observations during the local-decision reporting stage. Although this involves additional reporting

messages, the decision fusion is performed by each node separately, and no broadcast message

with a global decision is needed.

Finally, in the clustered scheme, the global decisions are sent back to the cluster-heads, and

these nodes are in charge of the further distribution of this message within the controlled group

of nodes.

Identi�ed quality versus energy-e�ciency trade-o� in the global decision repor-

ting. Global decision reporting phase of CSS is rather short and requires the delivery of the �nal

decision to all nodes. However, one of the questions that can be posed here is the following: is it

more energy-e�cient to broadcast the information to all nodes or to reduce the transmit power

and deliver this decision to the cluster heads, and allow them to further redistribute this message

to more distant nodes?

Trade-o�s' impact on energy e�ciency. The identi�cation of the existing trade-o�s in

each phase of CSS shows that there is a high number of degrees of freedom in the optimisation

of the energy e�ciency of cooperative sensing networks. Moreover, some of these trade-o�s are

mutually dependent, and overlap, making this problem even more challenging. This issue is

further analysed in Chapter 4, where one may �nd how selected key aspects of CSS are structured.

1.3 Time Domain Relations between Spectrum Sensing and Spec-

trum Access

In general, SU needs to periodically sense the availability of the considered frequency band

(either in a cooperative or non-cooperative manner), and if the band is vacant, it can start or

continue its transmission in this band (can access the spectrum). Such an exemplary situation

is illustrated in Fig. 1.11, where one sensing and data-transmission period is shown. One can
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Figure 1.11: Illustration of the sensing and data transmission period

observe that the sensing phase consists of four sub-phases, i.e., the time needed for single-node

spectrum sensing (including the collection of samples and their processing), the time required for

decision delivery to the so-called fusion centre (in the centralised case) or its exchange among

neighbouring nodes (in the distributed case), and �nally, the time needed for data processing

in the fusion centre and decision circulation among interested nodes. The total duration of this

phase can be denoted as Tse. If the decision for a given SU is not positive, i.e., the considered

frequency band is occupied, the spectrum sensing phase has to be repeated until the spectrum

is free. Once it is available, the SU can transmit its data over period Tdt. Assuming the total

number of spectrum sensing phases equals n, the duration of the sensing and data transmission

period can be calculated as Ttot = n · Tse + Tdt. This observation is true if the sensing node

performs the sensing procedure asynchronously until it determines that the frequency band is

vacant, i.e., the next portion of samples is collected either continuously or after a short period.

The formula is di�erent if the synchronous approach is applied, in which each sensing period Tse
is succeeded by a transmission period Tdt, i.e., when the sensing node detects that the wanted

spectrum is occupied, it waits over time Tdt until the next sensing period begins. Thus, for n

tries, the total time equals Ttot = n · Tse + n · Tdt.
The above considerations lead to the conclusion that in order to maximise the spectral and

energy e�ciency of the sensing-based opportunistic spectrum access, the sensing period should

be optimised to allow for reliable detection of spectrum opportunities, and at the same time,

leave enough time for actual information-data transmission. This sensing-throughput trade-o�

has gained signi�cant attention recently that resulted in a number of works treating the subject

of sensing time optimisation (the most relevant ideas are described in Section 4.3), as well as

regarding the spectrum access. The exemplary paper may be [76], where SU access is maximised

through the penalties policy regarding interference with a PU, and [29], where an adaptive random

access protocol is described.

One of the key trade-o�s in spectrum sensing is to adjust the sensing time and the spectrum-

access time. The �rst one impacts sensing reliability (and thus, the PU protection and their

throughput), the latter�the SU spectral e�ciency. Both impact the energy e�ciency of a sys-

tem: the longer the sensing time, the more energy is spent on sensing, the less time is left for
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Figure 1.12: Sensing period-data transmission period trade-o� observed in spectrum sensing

actual SU transmission, the lower the throughput, and the lower the energy e�ciency of the

SU transmission. On the other hand, a longer sensing time increases the sensing reliability and

decreases the interference level experienced by both the PUs and SUs, which results in higher PU

links throughput and higher energy e�ciency of their transmission. Therefore, the sensing period

has to be carefully adjusted in order to guarantee a given level of sensing reliability (and PU

protection), which is meant as a su�ciently low false alarm rate and an instantly high detection

rate. A shorter sensing time and a longer data transmission period usually result in a higher

spectral e�ciency, due to higher throughput and increased capacity. This trade-o� is illustrated

in Fig. 1.12.

As discussed above, optimisation of the sensing- and access-time alone might be contradictory

goals, therefore, it has been proposed to analyse these two jointly. For instance, in [165], the

authors suggest a joint optimisation of the spectrum sensing period and the transmission stage

(spectrum access). They prove that there exists a suitable proportion between the sensing period

and the access period guaranteeing the highest channel e�ciency, i.e., a suitably low false alarm

rate for a minimised sensing period. Similarly, in [99], under detection and energy-based detector

constraints, an optimal sensing period is delivered that maximises the throughput. Secondly,

cooperative detection is applied where the optimal sensing period is shortened, when compared

to a non-cooperative scheme. This conclusion is reinforced in [147]. The cooperation adopted in

[147], by forming coalitions, allows the improvement of sensing times and node link capacities.

To this end, each SU may make an independent decision on joining or leaving the coalition based

on a calculated utility, which jointly optimises the average sensing time and the average acquired

capacity. Another joint optimisation of the sensing-and-throughput period is performed in [81].

There, SUs adopt a distributed learning algorithm in order to converge to an evolutionarily

stable strategy, where some nodes sense the spectrum, while others may access it. The work puts

emphasis on dealing with sel�sh users who want to access the spectrum without a contribution

to sensing. By embedding rewards to the sensing contributors, in the learning algorithm, every

node is inclined to apply the required sensing strategy. Finally, in [122], the authors prove that

the maximum throughput is gathered for a low number of reported bits and a moderate number

of samples.



Chapter 2

Autonomous Spectrum Sensing

2.1 Practical Implementations of Selected Spectrum Sensing Me-

thods

In the following section the author of the thesis presents his work on implementation of some

autonomous sensing algorithms. In Section 2.1.1, the outcomes of the practical experiment at

Sequential Energy Detection (SED) are presented. The method has been analysed in Matlab envi-

ronment where real-samples of signal acquired by Universal Software Radio Peripheral (USRP)

have been processed. Then, in Section 2.1.2, the implementation of SED and cyclostationary-

based algorithms is presented. Both methods are implemented in USRP platforms and GNU

Radio environment. The comparison of these techniques puts forward the proposal of the so-

called hybrid solution described in Section 2.1.3.

2.1.1 Sequential Energy Detection in practical context of real-acquired signal

samples

Sequential Energy Detection has gained considerable attention recently. The rationale behind this

algorithm is as follows: it stops working at the latest phase after the collection of Ms samples as

the traditional ED algorithm. However, if the decision on the presence or absence of the signal

could be made earlier with accepted certainty, the algorithm will stop before gathering all Ms

samples [43]. The goal is to reduce the sensing time in the case where the signal is strong enough

(or there is not signal at all) to be detected before collecting the assumed maximum number of

samples Ms. In other words, by decreasing the observation time, uncertainty about the received

power value is increased, thus, proper estimation of noise variance becomes a signi�cant problem.

More details about sequential energy detection may be found in Section 1.1.2, where one may

�nd, e.g., the de�nition of thresholds ϵ, ϵLO, ϵHI.

The presented implementation has been conducted with a USRP N210 device (one may

�nd more information in Section 2.1.2) which has been used to acquire signal samples. The

real-acquired-samples were then analysed and processed in Matlab software environment.

23
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Figure 2.1: Block diagram of a SED model

Simulation Model

The e�ectiveness of SED algorithm has been analysed for various number of phases K =

{1, 2, . . . , 5}. Detector decision about PU presence/absence is done for the whole observed spec-

trum portion. The values of thresholds are constantly set as: ϵLO and ϵHI equal to 0.05 and

0.75, respectively, ϵ = 0.4. The number of repetitions for one set of parameters is equal to 250

thousands.

In the �rst preliminary stage a reliable noise estimation is conducted (Fig. 2.1). By taking

Mn noise samples, noise power estimate σ̂2n is derived. Then, in the main stage, Ms/K samples

from observed spectrum bandwidth is acquired being the base for calculation of received signal

power P
(i)
s , where i is the index of current phase. Then, the Vi metric is found:

Vi = P (i)
s − σ̂2n. (2.1)

Then, the calculated value is compared with detection thresholds (see eq. 1.5). If the calcu-

lated Vi goes in the (ϵLO, ϵHI) range, the reliable decision cannot be taken and another portion

of Ms/K samples has to be acquired. Thus, in the second phase of the algorithm, the decision is

taken on the basis of samples from the two phases, i.e., on the basis of i ·Ms/K samples.
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Figure 2.2: Results for Sequential Energy Detector proceeded in K phases: a) probability of proper
decision, b) medium sensing time

As it is stated in classical detection theory, the detection quality may be improved by in-

creasing detection time [159], equivalent to the increased number of samples. However, it has

been also proved that sensing time increased to in�nity does not provide the in�nite sensing

performance improvement (for clari�cation see Section 2.3). Thus, the total number of sequential

phases is �nite. If, after reaching the maximum number of phases and acquiring the maximum

number of samples, value VK ∈ (ϵLO, ϵHI), then as in the classical ED, one-threshold decision is

found, i.e., by comparing Vi with threshold ϵ.

Simulations outcome

The e�ectiveness of the SED has been assessed in terms of the probability of proper decision for

a given SNR:

Ppd = Pp (1− Pf) + Pa (1− Pmd) , (2.2)

where Pp is the probability of PU presence and Pa is the probability of PU absence, and it is

known that:

Pp + Pa = 1. (2.3)

However, the proper detection has to be undertaken in reasonable time, thus, the second

parameter�medium sensing time τ̂s�has been introduced. In order to make the results indepen-

dent from sampling frequency, this parameter has been expressed as medium number of samples

and on the plot axes the unit of τ̂s is the sample. The experiments have been conducted for SNR

in the range of (−5 dB, 5 dB).

In Fig. 2.2, the comparison of SED performance for various number of phases K is presented.

For each parameter set the number of noise-estimation samples Mn is 240. One may observe

that when K is increasing, the medium sensing time is lowered but vulnerable to lower sensing

performance. Relevant gain in terms of medium sensing time is observed for three-phases case,

where 47% time may be saved in comparison to one-phase variant. The greatest time reduction

(62%) is possible for the greatest number of phases (K = 5), however, this case is burdened

with signi�cant reduction of proper decision probability. Thus, the conclusion is that in low-SNR
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Figure 2.3: Sequential Energy Detector results in terms of SNR for symmetric cases: a) probability of
proper decision, b) medium sensing time

Figure 2.4: Sequential Energy Detector results in terms of SNR for non-symmetric cases: a) probability
of proper decision, b) medium sensing time

region it is possible to lower medium sensing time yet at the cost of performance degradation.

However, for SNR higher than 1 dB, when the probability of proper decision is close to 1, the

adoption of SED algorithm brings visible and safe gain�it is possible to shorten the sensing time

without performance degradation. This conclusion lays the foundation for the so-called hybrid

approach, described in detail in Section 2.1.3.

Apart from the di�erent number of phases, the in�uence of proper noise estimation has

been also analysed. In Figs. 2.3 and 2.4, the results for two following cases have been speci�ed:

symmetric one (Fig. 2.3), where the number of collected samples during noise estimation phase

and detection phase are equal Ms = Mn, and non-symmetric (Fig. 2.4), where the number of

samples collected during noise estimation phase is limited Ms > Mn.

Detailed analysis of �gures may indicate that there exist variants from distinct groups with

the similar medium sensing time. For instance, in Fig. 2.3b this phenomenon may be observed

twice (1. Ms = Mn = 120,K = 2 and Ms = Mn = 240,K = 4; 2. Ms = Mn = 240,K = 2

and Ms = Mn = 480,K = 4). Although, the medium time is similar in these cases, the proper

decision probability is di�erent: it is higher for cases where more sequential steps are considered
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at all. Moreover, one should note that the single portion of acquired samples is equal for both

cases. Therefore, the following observation may be posed: the higher number of possible phases

does not increase the medium sensing time but it may enhance the so-called quality of sensing.

Two reasons for this situation may be stated. First, higher K value induces greater number

of degrees of freedom. If the sensing observations are reliable, then the decision will be taken

very soon, however, if it is not possible, then the additional number of samples will be loaded,

thus increasing the probability of proper decision. The second reason is the in�uence of the

noise samples number. Precise noise estimation results in higher detection performance. This

vulnerability of ED is deeply analysed in Section 2.3.

Regarding the proper noise estimation, one may �nd the results for non-symmetric cases

which are presented in Fig. 2.4 interesting. In these variants the number of noise estimation

samples is two times lower than the number of signal-power-estimation samples. In general, the

results for non-symmetric cases are signi�cantly worse than for symmetric ones. For instance, in

the case described as Ms = 480,Mn = 240,K = 5 similar medium sensing time is observed as

in Ms = Mn = 480,K = 4 (Fig. 2.3b), however, it is corrupted by lower probability of proper

detection.

Conclusion

The analysis of the Sequential Energy Detector has shown that it is possible to shorten the time

of spectrum sensing for a moderate SNR region without detection performance degradation. Mo-

reover, it is bene�cial to increase the number of sequential phases, while keeping the medium

detection time unchanged, resulting in increasing the probability of detection. Thus, these obse-

rvations are the basis for the hybrid approach described in Section 2.1.3. During experiments it

has been shown that proper noise estimation plays a key role in the ED-based spectrum sensing.

This aspect is analysed further in Sections 2.2 and 2.3.

2.1.2 Experimental Sensing Measurements of Energy Detection and cyclosta-

tionary-based algorithms

In the practical implementation, the simplest spectrum sensing method capable of detecting the

presence of a PU signal is the one based on energy detection which is a semi-blind method [118].

However, as stated in Section 2.1.1, ED is vulnerable from low detection reliability when compared

to other sensing techniques. Experimental results shown above and taken from literature of the

energy detector outlined impact of noise uncertainty on the performance of detection [17].

In this section, the main aim of the conducted experiment is to sense the spectrum at a given

frequency range and makes the decision as reliable as possible on the potential presence of the PU

signal in the observed spectrum fragment. Thus, in the following section two sensing methods are

implemented and compared: SED, and Symmetry Property of Cyclic Autocorrelation Function

(SPCAF) which is a kind of a blind method, described in detail in Section 1.1.3. Both methods

were implemented in hardware and software.
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Figure 2.5: Experimental setup diagram

Hardware/Software overview

The performance of the selected spectrum sensing algorithms has been veri�ed in conducted

experiments realised by means of USRP boards by Ettus Research being a part of the Natio-

nal Instruments Company. USRP platforms, as the low-cost and high-quality realisation of the

Software De�ned Radio (SDR) concept, deliver various functionality allowing e�cient, real-time

realisation of even very complicated wireless systems that operate in the Radio Frequency (RF)

band. The main role of the USRP platform is to convert the digital base-band signal delivered

from the computer to analogue signal in the RF band and vice versa. This process is carried

out in two steps. In the �rst step, the digital signal is converted to the digital Intermediate

Frequency (IF) domain; this phase is realised in the so-called mother-board, being the basis

of the USRP platform. After that the signal is converted from digital to analog in the 16-bit

Digital-to-Analog Converter (DAC) working with the speed of 400 MS/s. Then, the analogue IF

signal is processed in the dedicated daughter-board, where it is transformed to its analogue form

in RF band. Finally, the signal is radiated by means of the mounted RF aerial. The variety of

available daughter-boards creates imposing opportunities to the user, since these are designed

to convert the IF signal to di�erent part of the RF spectrum. Being the realisation of the SDR

concept, USRP is steered from the software level, i.e., the whole data processing in the base-band

is realised on the computer side. Various software platforms can be applied for that purposes,

including commercial and open-source solutions.

In the presented experiments, two USRP boards have been utilised: the PU signal has been

generated by means of the �rst board, whereas the second one has been used for spectrum sensing

purposes and acted as the Secondary User. The whole software processing has been realised in

the open-source GNU Radio environment [138]. It is based on combination of C++ and Python

programming languages; the former possesses the functionalities of given blocks (e.g., responsible

for samples reception or FFT), the latter�is used for blocks connection (e.g., classifying interfaces

and input/output types).

In the experiment, two sensing scenarios were considered: �rst, with the PU narrow-band

Frequency Modulation (FM) signal, and second, where the PU transmits Orthogonal Frequency-

Division Multiplexing (OFDM) signal. During the measurements, the PU and SU were located

in one room and separated by a distance of 2 m.
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Figure 2.6: Scheme of the Primary User OFDM transmitter realised in the GNU Radio

Transmitter side

At the transmitter side, two types of signals were generated, the narrowband FM signal, and

wideband mutlicarrier signal based on OFDM. In the former case, the composite radio signal was

created and frequency modulated before sending to the USRP board via Ethernet cable. It means

that assumed frequency deviation (±75 kHz deviation from the assisted centre frequency) in the

bandwidth of the spectrum occupied by the FM signal is narrow (144 kHz). On the contrary,

the spectrum of the multicarrier signal is assumed to be wider�the OFDM symbol with 512

subcarriers of the width 1.2 MHz is used.

As it has already been mentioned, the base-band processing was realised on the PC in the

GNU Radio environment, and in particular in the graphical tool called GNU Radio Compa-

nion (GRC), where the whole system was built from blocks. The example of the program is

presented in Fig. 2.6, where the illustration of the OFDM transmitter implementation is shown.

The Random Source is the signal source block that generates repeatedly random data, which is

mapped to Binary Phase Shift Keying (BPSK) symbols and then is the subject of OFDM modu-

lation (realised in an OFDM Mod block). 300 subcarriers out of 512 available are occupied, while

the applied cyclic pre�x is 1/4. The signal samples are then sent to the local spectrum analyser

(FFT plot) and to the USRP (USRP Sink), responsible for sending data to the USRP platform.

Note that due to the complex sampling frequency equal to 1 MS/s, the observed bandwidth is

1 MHz while the centre frequency is 560 MHz. This TV band frequency is one of the most `pure'

bandwidths, where the level of interference from distant digital-television stations is su�ciently

low in the location where the experiment was conducted.

Receiver side

In the receiver, as indicated in Fig. 2.5, two spectrum sensing algorithms are implemented: the

one based on energy detection, and the second�on the cyclostationary features analysis. As in
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Figure 2.7: Scheme of the Secondary User receiver realised in the GNU radio

the transmitter chain, the whole base-band processing in the receiver that is performed in the

SU was realised in the computer side with the GNU Radio environment. The schematic diagram

of blocks being the receiver is shown in Fig. 2.7.

The USRP Source block realises signal samples delivery from USRP to the computer via

USRP Hardware Driver (UHD). The signal is then summed with arti�cial noise generated in Noise

Source block. After adder, it is split into two parallel chains: i) cyclostationary-based algorithm

chain (upper chain), ii) Sequential Energy Detection (SED) algorithm chain (lower one). Both

sensing techniques operate on the same set of received samples making the comparison fair. In

the SED detector chain, the signal is transformed to the frequency domain in FFT block. Then,

the key functionalities of SED are implemented in SeqED_sup block, where the sensing decision

on the occupancy of each frequency bin is done separately. The decisions are �nally transferred

to the graphical sink. In the upper processing chain, devoted to the SPCAF algorithm, the signal

is converted from complex to real type, and such modi�ed signals are subject to processing in the

SPCAF_v1 block, realising the functionality of the SPCAF algorithm described in Section 1.1.3.

Please note that these two key blocks (SPCAF_v1 and SeqED_sup) have been written in C++

from scratch and added to the GNU Radio block list.

Experimental results

During the measurements, he performance of the sensing algorithms was compared in two scena-

rios: narrow-band and wide-band PU signal.
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Figure 2.8: Probability of detection Pd vs SNR for Primary User FM signal (Pf = 0.08)

Figure 2.9: Probability of detection Pd vs SNR for Primary User OFDM signal (Pf = 0.085)

In the �rst scenario, a Frequency Modulated signal is used as Primary User's signal. In the

experiments, the central carrier frequency is set to fc = 560 MHz. Under Constant False Alarm

Rate (CFAR) with probability of false alarm equal to Pf = 0.08, the detection probability (Pd)

vs SNR has been analysed (Fig. 2.8). Proper SNR estimation is based on the noise power σ̂2n
estimation conducted at the receiver a priori with no transmitted signal. Then, the transmitter

power is appropriately tuned in order to obtain a desirable SNR. The parameters of the SPCAF

detector are as follows: the maximum value of the lag parameter is L = 5 and the FFT size is

F = 2048. In Fig. 2.8 the detection probability of the SPCAF is higher at about 0.1 than for

SED in the range of the SNR from −13 to −3 dB. The number of samples processed by the

SPCAF is equal to Ms = 256, while in the SED the minimum number of samples is Ms.

In the second scenario, the Primary User signal is an OFDM signal. Fig. 2.9 shows the

detection probability achieved by the Secondary User for SPCAF and SED, while maintaining

the false alarm probability below 0.08. Based on the Fig. 2.9, it can be concluded that the Pd

for SPCAF is signi�cantly higher than for SED, about 0.1− 0.3 for SNR = (−12,−2).
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These results may lead to the conclusion that cyclostationary-based sensing guarantee higher

detection rate than ED-based techniques. This is true for the low SNR region, which is a key

area in signal detection. However, for substantially high signal-to-noise ratios, which are also

the case in detection, it is not worth adopting feature-based detection. Energy-detection based

solution guarantee su�cient detection level. The key question is how to distinguish the case

where there is a low SNR, and an advanced but costly technique is desirable from high-SNR case

where energy and time-e�cient ED-based technique may be applied. The answer is the concept

of a hybrid structure of the spectrum sensing algorithm introduced in Section 2.1.3. In such a

case, the low-complex double-threshold algorithm should be applied in the �rst phase, followed

by the cyclostationarity-based one. When the PU signal is strong enough or the observed signal

variance is close to the noise variance, the sequential energy detection algorithm is going to make

a reliable and time-e�cient decision. On the other hand, if the energy-detection procedure is not

able to produce a reliable decision after collectingMs signal samples, the feature-based algorithm

shall be applied for �nal decision. It is also, however, important to check other parameters which

classify the aforementioned algorithms apart from detection quality. The �rst is to calculate the

e�ciency of sensing method understood as, e.g., a number of operations needed for producing

sensing decision. It is directly connected with energy e�ciency and medium sensing time.

Conclusion

Above, in this section, details and results of practical implementation of the energy and cyclo-

stationary-based sensing techniques have been presented, conducted by the author of the thesis

in cooperation with partners from Supelec, France [118]. Two sensing techniques have been im-

plemented using the USRP platforms and GNU Radio software. The processed results show that

the cyclostationary-based solution guarantees a higher detection rate than the energy-based one

but is characterised with higher computational complexity. However, if SNR is su�ciently high,

there is no reason to apply cyclostationary feature detection, thus, it is bene�cial to adopt the

hybrid approach presented in the following subsection.

2.1.3 Hybrid Approach for Spectrum Sensing Using USRP and GNU Radio

As ED imposes very low complexity burden to the CRT, other noise-independent methods that are

based on, e.g., cyclostationarity property or angles-of-arrival are characterised by high complexity,

which is the price of enhanced reliability. This existing trade-o� between the reliability and

complexity leads to creation of the hybrid approach. When the detected signal is strong, the SED

method could be used, while for low SNR region, cyclostationary-based sensing is conducted.

This connection allows one to sustain advantages of the two methods, overcome their draw-

backs and, with the use of the latter scheme, guarantee total reliability at substantial level

while minimising energy consumption and sensing time. Thus, in the proposed hybrid approach

(Fig. 2.10), the detection is conducted by the SED algorithm �rst and for a very weak or very

strong PU signal (see eq. 1.4), it guarantees reliable and fast sensing decision. However, if the re-

liable decision cannot be taken after reaching maximum of K sequential phases, the SPCAF algo-

rithm is applied to proceed with the already collected signal samples. Intuitively, the performance
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Figure 2.10: Scheme of the hybrid spectrum sensing detector

Figure 2.11: Experimental setup diagram

of the proposed solution should be close to the results obtained by the cyclostationarity-based

algorithms; however, the sensing time shall be reduced.

Brief Hardware/Software Overview

The applied experimental setup used for hybrid approach veri�cation is based on the one descri-

bed in Section 2.1.2. The experiments were conducted by means of USRP boards connected with

Personal Computers via a Gigabit Ethernet cable. The PU signal was generated in the �rst board,

as distinct from the previous set, in three cases: the Gaussian Minimum Shift Keying (GMSK)

signal, the FM signal, and 8PSK signal. In the second board, a SU receiver was working in three

modes (Fig. 2.11). The whole software processing was realised in the open-source GNU-Radio

environment. More details about the USRP board, its parameters and implementation details

may be found in Section 2.2, while the explanation of GRC blocks with illustrations of exemplar

programs is drawn in Section 2.1.2.

Transmitter/Receiver Chain

The transmitter part of the experimental setup is implemented in the GNU-Radio Companion

(GRC) environment. This transmitter has three processing chains, where the random sources are

connected to FM, GMSK and 8PSK modulators, respectively. The modulated signals are selected

by means of the selector block, ampli�ed and sent to the USRP board. In all cases, the centre

radio frequency was set to 560 MHz, the complex sampling frequency was de�ned to be equal to

1 MS/s. The bandwidth of the generated signals are as follows: FM signal � 144 kHz, GMSK �

600 kHz, and 8PSK � 800 kHz. The receiver side is also implemented in the GRC environment.

Four parallel processing chains indicate the simultaneous processing of the same samples by

di�erent algorithms. For comparison purposes, stand-alone SED and SPCAF algorithms were
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used together with the hybrid solution. In the hybrid algorithm, both the sequential energy

detector and SPCAF solutions were merged. In the �rst sensing phase, a decision can be made

by the sequential algorithm every time the next Ms/K = 128 signal samples are collected. If

the total number of samples Ms = 512 is collected and a reliable decision cannot be made, the

SPCAF processes the same set of samples.

Simulation Results

The simulations have been conducted with the use of the setup described above. The sensing

decisions were made within dedicated GNU-Radio blocks, designed for the purpose of this rese-

arch. In Fig. 2.12 the probability of detection (Pd) as a function of signal-to-noise ratio (SNR)

for various PU signals is shown.

In every plot, the curve representing the detection e�ciency of the proposed hybrid approach

is located between the curves of the SED and the SPCAF. This phenomenon can be explained as

follows: for certain prede�ned values of probability of a false alarm, two decision thresholds are

calculated and used in the sequential energy detector part (see eq. 1.4). Too restrictive thresholds

(i.e., when in most cases the average power of collected samples lies between thresholds ϵLO and

ϵHI) may lead to the case where all decisions are shifted to the second and next phases of the

proposed hybrid algorithm. In such a case, the �nal achieved e�ciency is identical as for the

cyclostationarity-based algorithm. Such a situation may provide precarious time reduction, thus,

the decision thresholds have to be properly matched to guarantee time reduction and possibly

low performance degradation. Moreover, it can be observed that the performance of the SPCAF

algorithm is persistent, irrespective of the bandwidth of the PU signal. However, in other cases,

one may observe that the wider the PU signal bandwidth, the better performance of energy-based

algorithms.

Apart from detection quality comparison, it is important to evaluate and compare the sensing

time results. While in correlation-based solution time duration is substantial, for SED it may

be signi�cantly reduced. In Fig. 2.13, the probability of reaching `no decision' after collection

of Ms samples is presented. The decision thresholds used in the sequential energy detection

algorithm were calculated according to a �xed value of Pf,LO = 0.001 and various values of Pf,HI

as highlighted in Fig. 2.13. For very low and very strong signals, the decisions are made mainly

during the �rst phase, thus, the probability of `no decision' is small. In the mid-SNR region,

where the reliable decision cannot be easily made, the probability increases.

Concerning the proposed hybrid spectrum sensing architecture, substantial time reduction is

achieved compared to the classical SPCAF architecture. A shorter sensing time is preferable in

order to improve the throughput of the cognitive radio network. This phenomenon is the sensing

time vs spectrum access trade-o� and is highlighted in Section 1.3. Let tH, tSED, and tSPCAF

denote the sensing time of the hybrid, the SED and the SPCAF detectors, respectively. Then,

the sensing time of the proposed architecture, which in�uences the overall throughput of SU is:

tH(SNR) ≈

{
tSED if f(SNR) << 1

tSED + f(SNR) [tSPCAF − tSED] otherwise,
(2.4)

where f(SNR) is the theoretical probability of `no decision' after SED processing as given in

Fig. 2.13 and de�ned in (2.5):
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Figure 2.12: Probability of detection Pd vs SNR for various PU signals: a) FM signal, b) GMSK signal,
c) 8PSK signal. Ms = 512, Pf,LO = 0.001, Pf,HI = 0.1

Figure 2.13: Probability of `no decision' state in Sequential Energy Detection scheme after collection of
Ms/K samples. Pf,LO = 0.001, Ms = 512, FM PU signal
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f(SNR) =
P(PMs > ϵLO)− P(PMs > ϵHI)

K
. (2.5)

Fig. 2.13 shows the theoretical and the simulated probability that, after the �rst phase, no

sensing decision is made by the SED detector. The tiny di�erence between the theoretical result

and experimental result might be caused by the real experimental environment which di�ers from

the considered theoretical Rayleigh fading channel. Moreover, it can be observed that if just one

phase (K = 1) is considered in SED, then the probability of no decision increases dramatically in

mid-SNR range. In that case the SPCAF detector is often applied, thus, the sensing time tH(SNR)

is increased. On the other hand, if K phases is considered, and each contains Ms/K samples,

then the probability of no decision decreases and consequently the sensing time diminishes.

Conclusion

The idea and performance of the hybrid spectrum sensing algorithm has been presented above,

focusing on the quality of detection and sensing time as major factors of reliability and energy

e�ciency of spectrum sensing. The presented results were achieved in practical experiment imple-

mentation conducted with USRP platforms and GNU Radio environment, where the dedicated

block for the hybrid sensing scheme was modelled. The presented results show that the hybrid

approach merges the assets of the energy and cyclostationary-based schemes. Therefore, it is re-

liable enough even in low-SNR conditions, and additionally fast for a high-SNR region resulting

from applied SED scheme.

2.2 The Impact of Hardware Implementation on the Performance

of Energy-based Spectrum Sensing Algorithms

Various results of the energy-based methods have been presented in the previous sections, after

which ED and SED seem to be solutions with the mediocre complexity and short detection time,

but also with high sensitivity to noise power �uctuations [34]. As every noise-variance dependent

technique, the ED requires detailed knowledge of the exact value of noise power, which is then

used for the determination of the decision threshold. The performance of the energy-based method

can be improved by increasing the data collection time (thus number of samples), however, for

a given SNR value, an upper bound for the value of Ms exists, above which no improvement in

certainty level can be made (the problem of the so-called SNR-wall [159]). Moreover, the longer

the sensing time, the shorter the data transmission period and the lower the achievable data

rate, as well as lower energy e�ciency. Thus, the spectrum sensing phase should be as short

as possible to guarantee the assumed decision reliability. Clearly, there are many other ways of

increasing the robustness of spectrum sensing algorithms, e.g., through the implementation of

more sophisticated solutions (for the price of higher computation complexity) or the application

of more processing chains (such as more receive antennas, cooperative sensing, etc.).

However, proper noise power approximation is not a trivial issue, since beside the thermal

noise �oor, various unwanted e�ects can also be observed (such as spurious emission, harmonics,

I/Q mismatch, leakage of local oscillator, etc.) that in�uence the behaviour of the implemented

algorithms. In this section a detailed analysis of the impact of various observed phenomena on
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the performance of ED algorithms is presented. The research is intentionally limited to the ED

case; in particular, its sequential version (SED) is analysed and its pragmatic version is proposed.

In order to get the estimated yet accurate value of noise power observed in the given frequency

band, the Cognitive Radio Terminal (CRT) should have a possibility of its detailed approximation.

The detailed description of noise power estimation problem is presented in Section 2.3. Regardless

of the agreed noise estimation method, the problem of other unwanted phenomena also has to

be taken into account � the aforementioned ambient noise does not cover all disturbances that

can appear in the observed frequency segment. For example, relatively high spikes (a couple of

decibels higher than the noise) in the frequency domain can be the product of intermodulation.

Moreover, the imperfection of hardware modules used by CRT manufacturers can result in local-

oscillator leakage or I/Q mismatch.

The subsequent subsections analyse the in�uence of the observed e�ects on the e�ciency of

the sequential energy detection method.

2.2.1 Hardware Implementation Details

The foundation of proper spectrum sensing utilising ED algorithms is a good estimation of the

power of noise σ̂2n. The detection thresholds used in the considered sequential sensing algorithm

(but also in other energy-based solutions) are usually slightly higher than the noise power (about

0.7− 1.5 dB�see Fig. 1.5). Therefore, the inaccuracy of noise power approximation even at the

level of 0.25 dB may cause a high number of false alarms or misdetections. It had been decided

to analyse the impact of various unwanted phenomena in a possible practical scenario, where

the secondary user would like to perform a transmission in a vacant TV-band. In consequence,

in the conducted experiments, the CRT, implemented by means of an USRP N210 board [1],

needs to detect the Primary User signal generated by a wireless microphone (being an example

of a PMSE device that can operate legally in the TV band). The signal originating from the

microphone is frequency-modulated with the deviation set to 75 kHz resulting in the PU signal

bandwidth of around 150 kHz. However, with fully charged batteries, the microphone was able

to generate signals of the power up to 10 mW. Thus, due to undoubtedly too high generated

power, the microphone was kept in an anechoic chamber in order to lower the transmitted power

(Fig. 2.14a). The centre frequency of the generated FM signal was set to 540 MHz.

The presented Sequential Pragmatic EnErgy Detection (SPEED) algorithm was implemented

by the author of the thesis with an USRP N210 platform (Fig. 2.14b) with a WBX daughterboard

and GNU Radio environment. According to the manufacturer [2], the WBX (2.14c) is a wide

bandwidth transceiver (50 MHz to 2.2 GHz) equipped with a reception �lter of the 40 MHz

bandwidth. The noise �gure is equal to around 5 dB, while third-order intercept point�to 0 dBm.

The phase noise of the WBX board measured at 1.8 GHz is set to −80 dBc/Hz for the o�set of

10 kHz. After processing in the WBX board, the analogue I/Q samples are shifted from radio to

intermediate frequency and�after analogue-to-digital sampling�processed in the digital domain.

The 14-bit Analog-to-Digital Converters (ADCs) work with the speed of 100 MS/s. Next, the

signal samples are processed in the Field Programmable Gate Array (FPGA) module (Xilinx

Spartan 3A-DSP 3400), where they are digitally down-converted, decimated and managed by

the provided network drivers. The decimation coe�cient can assume values between 4 and 512.

In this work, 8 was applied, which produces a sampling frequency of 12.5 MHz. It should be noted
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Figure 2.14: Hardware employed in the practical implementation experiment: a) PMSE equipment (PU
signal) stored in anechoic chamber, b) USRP N210 device, c) WBX daughter-board, d) Per-
sonal Computer where sample processing has been conducted

that the band of interest is equal to the e�ective sampling rate, since the complex sampling is

applied. Finally, data is sent via the Gigabit Ethernet cable (o�ering a maximum bandwidth

of 25 MHz) for further software processing. The samples received by the USRP platform are

transferred to PC to allow fast software processing (Fig. 2.14d). The 12.5 MHz-wide frequency

band with the centre frequency of 541 MHz is considered. At the PC side, the received IQ

samples are managed by the USRP Hardware Driver (UHD) [3] and can be processed in GNU

Radio. In the application, a 256-point FFT of IQ samples is computed, resulting in the subcarrier

bandwidth of ∼ 48.8 kHz. Then the counted power for each FFT carrier is collated with lower

(ϵLO) and higher (ϵHI) thresholds used in the sequential energy detection algorithm. Please note

that all collected samples, as well as other important results and parameters achieved by software

means (such as samples' distribution etc.), are saved in output �les and processed afterwards.

In order to get the most accurate results, the WBX daughter-board was self-calibrated by

exploiting built-in procedures provided by Ettus Research LLC. This enabled the correction of IQ

imbalance and DC o�set at the receiver side. Furthermore, the receiving device was calibrated by

application of the following procedure. The USRP was connected to the signal generator which

emits a sine (single tone) signal of a known power in dBm. Taking into account all of the losses

in the connectors and front-ends, it was possible to compare the original signal power with the

one observed in GNU Radio. This way, the values observed in GNU Radio can be translated to

dBm.

Moreover, there is a possibility in the USRP to move the DC o�set out of the observed band

since the power of the Local Oscillator (LO) leakage is relatively high. It is done by adding a

frequency o�set to the LO in the daughter-board and thus changing the intermediate frequency

[4]. The maximum value of the DC-o�set shift is 40 MHz.

2.2.2 Measurement Analysis

In this section, the measurement results are analysed from the perspective of spectrum sensing

methods. First, the problem of DC o�set existence is discussed, followed by the analysis of
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Figure 2.15: Noise power for di�erent frequency of tuning fw

temperature and ambient noise in�uence on algorithm reliability. Finally, the impact of unwanted

e�ects that appear and change over time is presented.

DC o�set

First, the e�ects related to the LO leakage are analysed. The presence of high spikes in the middle

of the observed band can lead to a higher false alarm probability, thus increasing virtual spectrum

occupancy (i.e., when the CRT decides that the spectrum is not free due to the presence of high-

power unwanted signals, such as harmonics). In Fig. 2.15, the noise power within the observed

12.5 MHz-width band is presented when the frequency is tuned by fw equal to 0, 5, 7 and 40 MHz.

For the case of no tuning (fw= 0 MHz), one can observe a 10 dB peak of the DC o�set at the

centre frequency. Tuning at the level of 5 MHz results in a DC bias at the frequency of 546 MHz,

i.e., 5 MHz away from centre frequency (thus as expected). 7 MHz tuning guarantees no DC

o�set in the observed band (the DC o�set falls just behind the observed frequency segment)

but results in some spurs, among which the most signi�cant may be observed at 536 MHz. The

selection of an accurate tuning level is not simple, because using nearly every tuning frequency

results in some spurs in the observed noise mask.

However, one can observe an unexpected phenomenon related to the measured noise power.

In particular, the power level for a strongly-tuned DC o�set is much higher than for a small or no

shift (see Fig. 2.15). For a 40 MHz shift, the noise is tuned, as well as input signals. As a result,

the Power Spectral Density (PSD) of tuned signals is at the level of −75 to −80 dBm. Moreover,

the noise characteristic is slightly increasing with frequency. This is caused by a band-pass �lter

characteristic used at the daughter-board. In Fig. 2.16, one can observe the spectrum mask of

noise for the exploited hardware as the function of the DC o�set shift. The plot was created by

merging a series of measurements with shift values of the DC-o�set from −40 to 40 MHz. As a

result, one can observe a 100 MHz band where the power is presented in Normalised PSD which

is the power of the samples observed in the PC. In the centre of the band, one can see 40 MHz of

relatively �at bandwidth, which is guaranteed for the daughter-board by the designing company

[5]. However, one can see many undesirable frequency bins in the bandwidth which are created
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Figure 2.16: Spectrum mask of noise for exploited hardware as a function of the DC o�set shift

Figure 2.17: In�uence of temperature on the noise power

in the analogue part of the receiving chain (in the daughter-board) where amplifying, �ltration

and IF conversion are realised. Due to these impairments, it is decided to use the DC o�set shift

of 40 MHz.

Temperature

One of the reasons of noise variability is the changing of hardware temperature. In Fig. 2.17,

these are two curves of the measured noise power. Please note that the presented temperatures

were measured in a laboratory, not inside the platform, but according to carried theoretical

calculations, the temperature inside the platform could even exceed 70◦C. The di�erence of

0.7 dB between the curves leads to the conclusion that noise approximation should be performed

not only at the beginning but also during the sensing procedure in order to detect noise variability

caused by hardware heating.

Ambient noise

Other aspects that have to be taken into account are: �rst, the in�uence of the reception antenna,

and second, the addition of the so-called ambient noise. The measurements of a noise mask

presented in Fig. 2.15 were conducted for the USRP with terminators plugged at antenna ports.

Identical conditions were guaranteed while obtaining the results illustrated by the bottom line in
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Figure 2.18: Noise �oor for measurements conducted in three various scenarios

Fig. 2.18. Here, the stable noise power at the level of −108 dBm has been obtained. However, the

measured noise power is signi�cantly higher when the terminators are replaced with antennas.

The di�erence is at the level of 8 dB for the measurement where the antenna was kept in an

anechoic chamber, and 11 dB for the measurement in open space. One can observe that these

two curves are unstable and have a few signi�cant spikes. The biggest one is at the frequency

of 537.5 MHz and probably is an interference from the PC signal bus. The spikes seen on other

frequencies could also have come from outside radio environment or could have been generated

in the hardware due to inaccurate mixing and �ltering of signals in the analogue part. Thus, the

CRT should somehow approximate the real level of noise in the radio environment. This cannot

be done by simply taking the measured power because there is no guarantee that there is no

Primary User in the observed band. In this work, spectrum sensing was performed with 40 MHz

tuning. For this value, the noise power for measurements with terminators or with an antenna

is comparable. In practice, however, one of the approaches presented in the introduction of the

Section has to be applied.

E�ects that appear over time

The next Figure illustrates the presence of other unwanted signals that change their features

during the sensing time�Fig. 2.19. Here, one can see four curves, each created for the range

of 200 thousand consecutive detected samples. All samples were received in one measurement:

case P considers the �rst 200 thousand samples, then Q, R and S represent the next 200 tho-

usand samples, respectively. In Fig. 2.19, one can observe nonlinear e�ects around the frequen-

cies 544− 545.5 MHz. The measurement was conducted with connected terminators, which may

suggest an internal cause of the distortions, but outside interference cannot be excluded�it is

possible that the signal has penetrated through casing. The presence of such e�ects results in the

degradation of algorithm performance.
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Figure 2.19: Non-linear e�ects that appear over time

Figure 2.20: Comparison of traditional and pragmatic approaches for high-power incoming signal

The e�ect of a close high-power signal

During the measurements, the impact of a high-power incoming signal was checked (Fig. 2.20).

A frequency-modulated signal of a wireless microphone was located 3 metres from the receiver,

which gave an SNR at the level of over 34 decibels. The real signal of the microphone occurred

at exactly 540 MHz and had a bandwidth of about 150 kHz. However, due to the nonlinear

behaviour of the Low Noise Ampli�er, signi�cant power growth was observed at a wide part of

the spectrum, leading to many decisions about signal presence. It is worth mentioning that the

presence of nearby signals (not only high-power ones) can result in the presence of numerous

peaks, being the n-th harmonics, but also in the increase of the noise �oor observed in the

observed subband. These aspects have already been discussed in this section.

Sequential algorithm performance discussion

The analysis of the presented �gures leads to the conclusion that unwanted e�ects have to be

taken into account, or otherwise, simple ED or sequential ED algorithms will result in a much

higher number of false-alarm decisions. The conducted measurements have revealed a high vul-

nerability of the sequential ED algorithm to the aforementioned phenomena, since the real noise

variance in a practical scenario will be much di�erent from the internal noise power. Thus, the
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Figure 2.21: a) Probability of detection and b) probability of false alarm for traditional and pragmatic
approaches

so-called pragmatic approach has been proposed by the author of this thesis. In order to mini-

mise inaccurate noise power estimation, it is proposed that ϵLO and ϵHI thresholds should be

placed 2 and 3 decibels above the noise power, respectively. This guarantees the independence of

thresholds from the probability of false alarm and the number of collected samples.

In Fig. 2.21a, one can observe the probability of detection in the function of a signal-to-noise

ratio per one FFT subcarrier. One point in the plot is the mean value of 100 thousand measu-

rements for one subcarrier with guaranteed PU presence in the observed frequency bandwidth.

The traditional solution (i.e., pure energy detection) outperforms the pragmatic one in terms of

detection. However, the pragmatic solution guarantees much lower probability of a false alarm

(see Fig. 2.21b). In the traditional algorithm, the probability of a false alarm is between 0.015

and 0.075, which corresponds to the value of Pf taken for sequential thresholds. On the other

hand, the pragmatic approach guarantees the probability of a false alarm not higher than 0.01.

The traditional algorithm has many more false alarms, which is connected with much better

detection. Besides, in the traditional algorithm, the false alarm ratio depends on the subcarrier

index. The number of false alarms rises with the subcarrier index (excluding the beginning of

the spectrum). The unstable level of false alarms is caused by nonlinearities in the USRP. The

pragmatic approach lowers the number of false alarms and provides its stable value in the domain

of frequency.

The pragmatic (SPEED) and traditional (SED) approaches have been also compared in the

high incoming power case. In the results presented in Fig. 2.20, one can see the probability of

detection for two SNR cases. As it is shown, for the traditional approach curves, the decision

about PU presence is determined for all carriers, while in the pragmatic approach, it is positive

only for carriers 60-153 and 6. The real high-power PU signal is at frequency of 540 MHz.

Conclusion

An analysis of the impact of hardware implementation parameters and conditions on the perfor-

mance of noise-dependant algorithms has been presented above. It has been stated that there is a

considerable problem with accurate estimation of the real value of the noise power, since ambient
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noise should also be included. Moreover, based on the conducted experiments, during which a

few unwanted e�ects were observed, it can be stated that the performance of the solutions, that

are based on noise power only, can be signi�cantly reduced. Although the pragmatic approach

was proposed, in which the decision thresholds were arbitrarily increased in order to cope with

unwanted e�ects, the performance degradation was signi�cant. The impact of the spurious emis-

sion or ambient temperature was compensated by changing the decision threshold values, but

the presence of spikes and in�uence of digital algorithms (DC o�set shift) cannot be mitigated.

Such an observation, however, leads to the conclusion that the impact of various deterministic

phenomena (such as intermodulations) on the noise-independent algorithm should also be veri-

�ed. Moreover, the number of such unwanted e�ects grow with the width of observed frequency

band. Thus, a cognitive radio terminal equipped with spectrum sensing modules should be aware

of such phenomena. Finally, if the reliability of spectrum sensing algorithms depends so strongly

on the quality of the electronic elements used for the manufacture of a CRT device, the question

of accuracy and real performance of collaborative sensing solutions has to be addressed, and the

degradation of reliability in such approach, due to hardware implementation issues, should be

analysed.

2.3 The Problem of Noise Power Estimation in practical Energy-

Detector Implementation

In order to get the estimated yet accurate value of the noise power observed in the given frequency

band, CRT should have a possibility of its detailed approximation [40]. In this context, various

approaches are possible.

First, the value of the power of internal noise power existing inside the device can be prefabri-

cated and stored inside the device; such values will consist of, e.g., the thermal noise, phase noise

at given frequencies, and in general noise �gure, etc.; in that case, however, the device should

adjust the stored values to current circumstances, such as ambient temperature, carrier frequen-

cies of the input signal, etc.; moreover, such values are device-speci�c, and dedicated calibration

algorithms should be delivered by the manufacturer.

Second, taking into account the drawbacks of noise power prefabrication in each CRT, another

solution would allow the device to measure the noise power exclusively. In that case, the device

should be able to switch from the transmission/reception mode to the dedicated calibration

mode where no RF signal is observed. In the laboratory conditions, such values can be measured

with the use of a matched RF terminator; in everyday practice, however, such a goal can be

reached with the application of, e.g., an isolated switch, as illustrated in Fig. 2.22. Due to the

application of an internal switch, the device will be able to assess the current value of the noise

power in a given temperature and ambient conditions. Unfortunately, the power measured by a

CRT equipped with such a module will be a�ected by the possible strong signals penetrating the

chassis. Moreover, the impact of the antenna system installed in a particular device will not be

included, and neither will the ambient noise apparent in a given location, at a given frequency

band. Such an ambient noise could originate from, e.g., nearby high-power transmitters causing

high out-of-band emissions.
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Figure 2.22: Measurements of internal noise with the use of a dedicated switch

Finally, the approximated noise power level can be assessed while observing a frequency

spectrum that is certainly vacant. However, the CRT has no knowledge about the spectrum

occupancy. Thus, the approximate solution could be applied, as presented in [90]. Assuming that

the CRT knows the range of the sensed spectrum, it can possess the knowledge on the types of

possible signals that could be observed. The CRT can de�ne the analysis window that will be

wider than the highest bandwidth of the possible signal spectrum and perform a detailed analysis

of the observed data. Taking, for example, �ve percent of the lowest observed values, it can be

stated with high certainty that the measured value is close to the real noise observed by the

device in its location, including thermal noise, impact of the antenna and the whole front-end,

as well as ambient noise.

2.3.1 Noise Uncertainty

In energy detector, the noise power estimate σ̂2n is found in the receiver by the averaging of a

number of noise samples. However, for a given noise uncertainty there exists a boundary SNR,

below which a robust sensing decision would not be taken even if the number of collected samples

could be in�nitive. This phenomenon is known as SNR wall and is given by the formula:

SNRwall =
(
ρ2 − 1

)
/ρ, (2.6)

where ρ is noise uncertainty in linear scale. If x would be the noise uncertainty in decibel scale,

then ρ = 10x/10. In Fig. 2.23, the plot of SNR wall versus noise uncertainty ρ is shown.

According to [88], noise uncertainty depends on four factors: calibration error, thermal va-

riation, changes in Low Noise Ampli�er (LNA) gain, and interference. If every of these factors is

treated individually, as an independent noise source, then the signal acquired by the receiver is

not a `pure' noise but the noise with interferences. Applying the Central Limit Theorem (CLT)

it can be assumed that the noise measured in the receiver is a Gaussian one. It is known that the

error in CLT is as close to zero as 1√
ν
, where ν is the number of summed independent random

variables. In reality, the ν is not su�ciently large, and the error in Central Limit Theorem should

not be ignored [158].

However, even if in the above considerations the error of too low number of summed random

variables is considered, then it is assumed that the received noise is white and has (after averaging)

�at spectral density. Nevertheless, in [159] it is underlined that in practice this assumption is
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Figure 2.23: SNR wall vs noise uncertainty

unrealistic. In reality, noise uncertainty is caused by unknown interference signals generated

by sources in various locations. Thus, the received interference power depends on the distance

from the source of interference and the wireless conditions such as multipath fading, fast fading,

shadowing in�uencing the radio channel between the source of interference and CRT. Thereupon

the received noise should be treated as a coloured noise rather than white [159].

2.3.2 Noise Estimation Methods with Elimination of the Narrow-band Si-

gnals

The above observation that the received noise has a coloured nature in comparison with the fact

that the noise estimation should be done just before or even during the sensing procedure, is the

basis for noise estimation methods with elimination of narrow-band signals. As it is underlined

in Section 2.2.2, the estimation has to be conducted neither with terminators, nor in laboratory

conditions. However, the reliable noise estimation should take into account coloured character of

the noise and, thus, possible interferences and spurs. As a result, three di�erent noise estimation

techniques with spurs elimination are presented below and tested.

Estimation ranges

In [45], the noise estimation method has been applied which is based on the division of the

observed spectrum portion B on the subbands of width B/m, where m is the total number of

subbands. For each subband consisting ofM samples, the estimated value of noise has been found

by taking the k-th sample, counting from the lowest.

The above approximation method is insusceptible of taking the narrow-band signal as noise

for small k/M (k/M < 1/2). However, its relevant drawback is the signi�cant approximation

error, especially at the ends of approximation subbands, which is increasing with the value of

B/m [45].
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Median value

In order to cope with the approximation errors at the end of subbands, it is proposed not to

divide the bandwidth into subbands. Instead, the approximation can be conducted for the subsets

of M samples from the observed bandwidth. The value of estimated noise sample for i-th sample

is calculated as a median from the set of M samples surrounding i-th value, as in eq. (2.7). The

drawback of this method is inaccurate estimation for M/2 samples on the ends of the whole

bandwidth.

x̂i =

x(M+1
2 ) for odd M

1
2

(
x(M

2 )
+ x(M

2
+1)

)
for even M.

(2.7)

Least Median of Squares (LMS) Estimator

The basis of the third estimation method is the observation that unwanted narrow-band signals

are the values quite di�erent from the rest (the so-called outliers). It was observed that the

outlier detection is possible with use of estimator. For the purpose of the analysis, the regression

analysis has been applied where the classical linear model assumes the relation of the type:

yi = xi1θ1 + · · ·+ xipθp + ei for i = 1, . . . ,M, (2.8)

whereM is the sample size, ei is the regression error. The real values of θi are unknown, however,

θ̂i as a result of the linear regression allow to have:

ŷi = xi1θ̂1 + · · ·+ xipθ̂p, (2.9)

where ŷi is the estimated value of yi. The ri is the residual between what is actually observed

and what is estimated:

ri = yi − ŷi. (2.10)

The most popular regression estimator found by Gauss and Legendre∗ is the least squares esti-

mator:

min
θ̂

M∑
i=1

r2i . (2.11)

The reason of its popularity is fast computation speed and the fact that it �ts data very well,

however, it is vulnerable to the values that are not the part of the estimated set (are outliers),

e.g., are the transmission errors. The least squares estimator is susceptible to even one outlier in

a sample set. In other words, its lowest outliers percentage which does not in�uence the result

of the estimation (thus its breakdown point) is 0. However, there exist estimators that can deal

with data containing a certain percentage of outliers. It was proved that the highest possible

∗The dispute about the discovery of least squares method is one of the most famous in the history of statistics.
Gauss probably possessed the method before Legendre, but the French was the �rst who crystalized the idea and
gained public attention [153].
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breakdown point is 50% [143]. The Least Median Squares estimator can guarantee this border

value:

min
θ̂

med
i

r2i . (2.12)

However, the median estimator is highly computationally complex, and the �nding of the

regression coe�cients is not obvious at all. In [144], the e�cient method for calculation of the

regression coe�cients for median estimator has been proposed. Assuming su�ciently low number

of samples M , the regression coe�cients in the algorithm are calculated per each pair of samples.

Then, the line connecting these points is taken and the median of residuals ri is calculated. After

processing all cases, the approximation with the lowest median of residuals is selected.

Following this way, for each set ofM points the regression coe�cients with the lowest median

error have been proposed. Then, for these coe�cients the approximation error is found per each

point. As a result, error value for each analysed sample is generated.

The calculated errors are then compared with an assumed threshold. In the case when cal-

culated error for a given sample is lower than the threshold, the sample is considered as a noise

sample; in other cases it is recognised as outlier which should be eliminated and not included in

noise mask. For such values the noise power is calculated as a mean of �rst neighbouring trusted

values. After such estimation, most of samples remain unchanged, while the outliers are changed

by estimated values.

2.3.3 Experiments outcome

Brief setup overview

The noise estimation methods were validated on real devices in operating frequency. As it is

underlined in Section 2.2.2, the noise estimation should be conducted in operating conditions,

neither with terminators, nor by producer in an anechoic chamber. The implementation details

are as follows: USRP platform with dedicated WBX daughterboard operating at the centre

frequency of 550 MHz, the analysed bandwidth is 25 MHz. Due to the input �lter slope, the

analysis covered central 20 MHz of observed bandwidth. Thus, the samples from 540 to 560 MHz

were analysed. The adopted 256-point FFT gives 256 subbands, for which the sensing decision is

considered and noise estimate should be provided. For more details regarding the USRP, WBX

and applied GNU Radio please be referred to Section 2.2.1.

Experiments Outcomes

As it is highlighted above, the observed 20 MHz is divided into 200 subbands where per each

subband 100 thousand samples have been collected. In the �rst analysed estimation method,

called estimation ranges, one may �nd that the following parameters have been assumed: m = 10

which is the number of subbands in the whole bandwidth (each of 2 MHz). The sample set size

is M = 10 and the selected estimate is k = 5 sample.

The key parameter in noise estimation is the quality of estimation measured by the error

of estimation. However, one may pose the question how to �nd the reference value of noise, the

`real' noise estimate. In this work the reference value of noise has been found by averaging a

huge number of samples equal to one million per subband. On this basis, the estimation error is
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Figure 2.24: Noise power estimation for a) estimation ranges and median value, and b) Least Median
of Squares methods

Figure 2.25: Noise power estimates for selected spectrum portion for all analysed methods

the di�erence between the reference value and the result of estimation. The estimation error for

each proposed method is illustrated in Fig. 2.26, while the results of estimation for all analysed

methods are presented in Figs. 2.24 and 2.25.

None of the methods is drawback free. However, the most promising is the Least Median

Square method, which has quite low estimation error in most of the observed spectrum with the

exceptionally high error in the ends of range. On the other hand, median is not good enough at

the places where narrow-band signal is observed but apart from this, it has good overall results

with di�erence to range estimation which is the most primitive method. It has the highest error

rate and is vulnerable to non-equal slope of noise mask.

Conclusion

Noise power estimation is the crucial issue in energy-based spectrum sensing. The conducted

measurements have con�rmed that the noise distribution is not �at within observed bandwidth,

thus, it cannot be modelled as white Gaussian noise. It has been also proven that in order to

guarantee reliable results of energy-based spectrum sensing, the noise should be estimated on
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Figure 2.26: Mean estimation error vs frequency for analysed noise estimation methods

the basis of the measurement conducted by the device just before or even during the experiment.

However, such a condition creates the possibility of having narrow-band signals and interferences

in the observed spectrum portion. Thus, the e�cient estimation should be aware of such phe-

nomena. As a result, three methods have been analysed and proposed for the purpose of noise

power estimation with narrow-band signal elimination. It was proven that Least Median Square

and Median criteria guarantee lower estimation error than the range estimation.



Chapter 3

Cooperative Spectrum Sensing

Spectrum sensing can only be adopted if reliable information can be gathered. Several investi-

gations have pointed out that sensing carried out locally by autonomous devices is not accurate

enough for safe coexistence between primary and secondary users [63]. Thus, reliable spectrum

sensing requires cooperation between nodes. In a widely adopted scenario, every node in a co-

gnitive network senses the spectrum, and spreads the observation to the other nodes or fusion

centre where the global decision is made. Thus, the nodes need to cooperate to increase the

sensing reliability. It was shown that the greater the number of cooperating nodes, the higher

the global probability of detection.

The need of exchanging the data between nodes in order to guarantee the quality of detec-

tion at acceptable level is, however, burdened with great overhead. A great number of exchanged

messages between a signi�cant number of nodes consume much energy. Therefore, intensive re-

search about the energy-e�cient cooperative spectrum sensing has been conducted recently. In

this thesis, chapter 4 is devoted to the issue of EE in Cooperative Spectrum Sensing.

In this chapter, devoted to Cooperative Spectrum Sensing, the emphasis is put on imple-

mentation issues in cooperation and maximisation of detection rate and minimisation of false

alarm rate. First, in Section 3.1 some remarks about the practical implementation of Coopera-

tive Spectrum Sensing are put. Then, in Section 3.2 the correlation-based grouping scheme is

described with the mobility-aware leader selection method proposed by the author of the thesis

is presented.

3.1 Considerations about the Cooperative Spectrum Sensing re-

garding the Implementation Issues

3.1.1 Practical Implementation of the Cooperative Spectrum Sensing

In Section 2.2 one may �nd the description of various phenomena which may signi�cantly limit

the performance of spectrum sensing conducted by single device. It is highly possible that the

observed e�ects may degrade the performance of the cooperative sensing. Thus, the motivation

51
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Figure 3.1: Illustration of all three sensing devices equipped with the same set, containing USRP with
WBX daughter-board and transferring complex base-band signal samples to the computers
via Gigabit Ethernet

behind the research presented in this section is to verify the detection performance in the practical

implementation experiments of CSS.

Implementation Setup Details

Similarly to the non-cooperative setup described in Section 2.1, the cooperative scheme was

veri�ed using sequential energy detector. Its e�ectiveness was veri�ed during measurement cam-

paign conducted in the building of the Faculty of Electronics and Telecommunications [45]. The

measurement setup consisted of three identical device setups (all three are shown in Fig. 3.1).

The signal samples were received in each set by USRP N210 device and transferred via Gigabit

Ethernet to the computer (PC or notebook) with applied GNU Radio program.

The measurements were conducted in two scenarios (Fig. 3.2). In the �rst, three receiving

entities were located in two rooms while the transmitter (PU) located in the corridor, all in the

second, the highest, �oor of the building. In the second scenario, two Primary Users were active

and located in di�erent parts of the building, while from three receivers two stayed at the same

locations when compared to previous scenario and one was moved to a di�erent room, at the

opposite side of the corridor.

The con�guration of each receiving entity was identical, i.e., each receiver was equipped

with USRP N210 device with WBX daughter-board and had the same transmission parameters.

Signal samples received by antenna and ampli�ed in analogue part of the daughter-board were

transferred to the base-band frequency and then converted to digital form in fast ADC. There they

were processed to a computer and there full software processing was conducted. In the applied

open-source environment GNU Radio, the dedicated cooperative sensing block was created. Thus,

it was possible to process all data in real-time for applied sampling frequency 25 MS/s and make

all sensing decisions in real-time.

The observed portion of bandwidth is 25 MHz which is equal to the sampling frequency (the

Nyquist bound is hold due to complex sampling applied in USRP). However, the central 20 MHz
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Figure 3.2: Position of receiving and transmitting entities on the premises of the Faculty of Electronics
and Telecommunications in a) scenario I, b) scenario II

Figure 3.3: The results of noise power measurements and noise estimations for three receiving entities
in a) scenario I and b) scenario II

out of 25 MHz was used due to the slopes of the input �lter characteristic in analogue part of

receiving chain. As a result, the analysed range of frequencies was from 540 to 560 MHz. The

applied 256-point FFT divided the observed bandwidth to subbands of the width 97.7 kHz each.

The sensing decision resolution was equal to the width of one subband.

Accurate energy detection is possible since the accurate noise estimation is properly provi-

ded. In Section 2.2.2 it has been shown that noise power estimation should be done in open

space conditions, i.e., the typical conditions in which sensing device operates. Thus, noise power

estimation cannot be conducted with plugged terminators or inside the anechoic chamber. Howe-

ver, the noise samples taken from the open space have to be properly processed since they may

include narrow-band signals. According to the former classi�cation presented in Section 2.3.2,

the applied noise estimation method is the estimation ranges one with the following parameters:

m = 10, subband width B/m = 2 MHz, k = 5.

In Fig. 3.3, the results of noise power measurements and applied estimation for three receivers

have been presented. The values of noise power for each receiver are di�erent despite the fact

that identical hardware and software con�guration has been applied in each receiving entity. The
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Figure 3.4: Probability of detection Pd vs frequency for each receiving entity separately in a) scenario I
and b) scenario II

di�erence may be caused by di�erent locations and therefore various wireless vicinity and due to

possible di�erence in analogue components in applied entities.

The key topic in implementation is the synchronous operation of all devices. The synchronisa-

tion issue was solved as follows: �rst, in all computers the system time was normalised according

to Network Time Protocol (NTP), second, by the use of option possible in Python language, the

beginning of measurements was set in each device in advance. The results showed in next �gures

have been averaged over 100 thousand measurements conducted in 10 series. A measurement is

understood as one sequential procedure for one subband which �nishes with sensing decision.

Measurements results

In Fig 3.4, the results of spectrum sensing for all nodes have been shown. In scenario I (Fig. 3.4a)

wireless microphone operated at frequency of 546.775 MHz and was detected by two sensing

devices located in the same room (Rx 1 and Rx 2). Moreover, these nodes detected the signals

at the frequencies of 543.75 and 558.5 MHz, although the PU transmission at di�erent frequency.

Thus, the sensed signals may be: i) the outside narrow-band signals, ii) the local interference,

produced, e.g., by the computer or �uorescent lamp, iii) the e�ect produced in receiving chain,

i.e., in USRP or in WBX daughter-board.

In Scenario II (Fig. 3.4b), two PUs were transmitting narrow-band signals at frequencies

546.775 and 557.5 MHz and were located in two separate parts of the building. Sensing nodes

detected the presence of both PU signals and also the extra signals mentioned in Scenario I.

However, the sensing nodes detected additionally other signals despite the fact that measurements

in Scenario II were conducted a few hours after the measurements of scenario I. Thus, it is possible

that these signals appeared in wireless vicinity during this short period or, more probably, were

the products of non-linear e�ects observed in receiving chain [44].

Let, however, check the detection parameters in the case when sensing nodes cooperate and,

instead of local decisions, produce joint global decision. The result of the cooperative operation of

three sensing entities is shown in Fig. 3.5. Three most common decision rules have been applied:

OR, AND, MAJORITY. As it is explained in Section 1.2.3, decision rules OR and AND are the
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Figure 3.5: Global probability of detection Qd vs frequency for cooperative spectrum sensing while three
fusion rules are adopted in a) scenario I and b) scenario II

border cases, i.e., OR is aimed on guaranteeing the highest detection probability, while AND

minimises the false alarm rate. Thus, as it is observed in Fig. 3.5, OR rule curve guarantees

the highest global probability of detection�the PU is detected if at least one node noti�es its

presence. In the opposite case, while AND rule is employed, the PU is detected since all nodes

decided so. The MAJORITY rule is a kind of trade-o� looking as most reasonable solution when

the voice of the most nodes is de�nitive.

In theory and simulations it is straightforward to apply a given decision rule, and predict

the detection and false alarm metrics, yet in a real measurements scenario it becomes di�cult. In

the presented experiment the OR detection rule has allowed to detect many signals including the

most uncertain ones, being the product of hardware impairment, as stated in previous paragraph.

Thus, the false alarm rate has been signi�cantly increased and as a result there are not so many

spectrum portions where cognitive entities could transmit data. The AND rule is the opposite

case, where very few signals have been detected and there exist a risk of miss-detection. The key

issue is the great uncertainty about the signal character: whether they are the licensed signals

which should be carefully protected by the cognitive entities or they are the outcomes of the

non-ideality in the applied receivers. The answer to this question may be the reasonable results

of the MAJORITY rule, which marked the signals as present in case of being detected by two

nodes out of three.

In Fig. 3.6, the medium number of samples needed in the sequential process of making the

decision is presented. The de�nition and initial results of the medium sensing number of samples

(time) may be found in Section 2.1.1. The presented results are the extension of the single-node-

case results. One may observe that the greatest number of samples is needed at the slopes of

signal where the detection uncertainty is the highest.

Conclusion

In the section above, the results of the CSS implementation conducted by the author of the thesis

have been shown. Conducted experiments have proved that in wireless environment the coope-

rative spectrum sensing results may be actually unreliable. First, a proper and accurate noise
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Figure 3.6: Medium number of samples (medium sensing time) vs frequency for three receiving entities
in a) scenario I and b) scenario II

estimation is needed; second, sensing thresholds should be carefully and properly set in order

to make reliable sensing decisions. Even then, the acquired spectrum decisions may be distorted

by hardware imperfections. As a result, the cooperative spectrum sensing is susceptible to these

phenomena and does not bring the e�ect, as in the theoretical considerations. However, the obse-

rvation of the spectrum by a few nodes is still more desirable than single-node spectrum sensing.

In this case, however, some post-processing of the observed data is needed. This observation has

motivated experimental research described in the following section.

3.1.2 Signal Analysis in Cooperative Spectrum Sensing

Although the cooperative approach has gained signi�cant approval from telecommunications

community recently, it was shown in the previous section that after implementation its gain

may be signi�cantly reduced. Thus, it is proposed to employ signal analysis as a post-processing

method in order to overcome performance degradation.

Brief setup overview

The experiments have been conducted with similar devices settings, as it is stated in previous

section, i.e., in each receiver the signal is received by USRP equipped with WBX daughter-board

and processed to computer where full software processing is done. The selected measurement

parameters are as follows: observed bandwidth: B = 25 MHz (centre 20 MHz is utilised), FFT

size: F = 256, subband width: 97.7 kHz.

The experiment scenarios were, however, modi�ed. In Scenario III, three receivers were loca-

ted in two rooms on the premises of the Faculty of Electronics and Telecommunications (Fig. 3.7a).

No PU transmission was active. In Scenario IV, the receivers were put at the same places, but

the transmission of two PU devices (PMSE) was active (Fig. 3.7b). Two wireless microphones

were transmitting narrow-band signals at frequencies 546.775 and 557.5 MHz.

The �rst part of the proper sensing procedure is an approximation of noise. In Fig. 3.8 one

can see the noise power and the estimated noise thresholds. The applied method is estimation
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Figure 3.7: Location of receiving entities and PMSE during measurements in a) Scenario III (PU trans-
mission disabled) and b) Scenario IV (two PU devices active)

Figure 3.8: Measured noise power for each receiving entity with corresponding noise estimation results
conducted with estimation ranges method in a) Scenario III and b) Scenario IV

Figure 3.9: Detection rate for theory-based thresholds

ranges with subband width of B/m = 2 MHz. It should be noted that the level of measured noise

power in every receiving device is di�erent, since it may be time-variant and location-dependent

due to various radio environment and di�erences in receiver's internal hardware [34].
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The key issue in the sequential algorithm is the determination of the decision thresholds.

Based on noise estimates, as in eq. (1.5), thresholds ϵLO and ϵHI are determined for Pf,LO and

Pf,HI equal to 0.1 and 0.001, respectively. Then, the mean power of collected samples is compared

with these thresholds. The example of the results of the sequential detection is shown in Fig. 3.9.

Many signals are decided as busy although just two PMSE devices are active. Thus, the detection

in real devices on the basis of the theory-based thresholds provides a high false alarm rate, and

it is impossible to make a reliable false alarm-free cooperative decision. Two main reasons of this

phenomenon should be pointed out: i) simple and inaccurate noise estimation method, ii) the

impact of hardware limitations such as too large input power causing improper work or distortions

in the RF chain [34]. Thus, in the measurements presented below, SPEED method has been

applied (introduced in Section 2.2). The sequential thresholds have been increased. Although

this may lower the detection rate, allow, however, to overcome the practical implementation

impairments and allow to make sensing at all.

Measurements results

In the typical cooperative spectrum sensing, global decision is determined by adoption of a selec-

ted fusion rule in a blind way. However, due to inaccurate noise estimation and signal distortions,

which was proven by the real-environment measurements, a high number of false alarms is ob-

served [35]. In Figure 3.10a, the probability of detection for Scenario III is presented, where

no PMSE transmission is active. In this case only receiver 3 sensed the signal at the frequency

of 543.75 MHz. Contrarily, in Figure 3.10b the results of measurements are shown which were

conducted while two PMSE devices were active (i.e., 546.775, 557.5 MHz). Measurements for

both presented scenarios were conducted on the same day, one after another. Interestingly, in

Figure 3.10b, one can observe two peaks of PMSE signals observed in Scenario III and surpri-

singly a few other signals which probably were generated inside the receiving entity. Note that

in Scenario IV (Figure 3.10b) very low amount of the observed bandwidth could be adopted for

cognitive transmission. This e�ect could be enhanced if guard bandwidth of every sensed trans-

mission was applied. A guard band is the portion of bandwidth adjacent to every detected signal

in a sensing procedure in order to increase protection of PU. Adopting an exemplary guard band

of 1 MHz may result in a high number of busy subcarriers and a lack of bandwidth devoted for

cognitive-radio secondary transmission.

In Fig. 3.11, the result of decision fusion is presented. Similarly to the results shown in

Fig. 3.5, the results where fusion rules are adopted are shown. As stated before, OR and AND

rules are the extreme cases where one or all nodes are needed to �nalise the decision that the

spectrum is utilised. While OR rule is adopted, a great part of spectrum is decided as detected

due to many detections provided by single devices. The most reasonable is the majority rule (in

the applied case 2-out-of-3 rule), which guarantees the detection if two nodes detected the PU

signal. It also enables to exclude some signal images in hardware and is not as restrictive as AND

rule.
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Figure 3.10: Measurements sensing results in a) Scenario III and b) Scenario IV

Figure 3.11: Probability of detection vs frequency while three decision rules are adopted in a) Scena-
rio III and b) Scenario IV

Signal Analysis

The detailed analysis involving hardware impairments and radio environment in�uence should

be adopted [36]. Employment of knowledge about radio environment and the so-called context

awareness information should increase the reliability of conducted spectrum sensing.

First, it would be useful to have knowledge about the types of possible licensed signals in the

observed frequency bandwidth. In the analysed scenario, two types of signals may be sensed. First,

8 MHz-wide Digital Video Broadcasting�Terrestrial (DVB-T) signal, second, narrow-band signals

occasionally generated by PMSE devices such as microphones and cameras with an impulse shape

width not greater than 250 kHz. This knowledge employed in noise estimation process may result

in adjustment of noise estimation subbands and guaranteeing more accurate noise estimation.

Another possibility is to make the analysis of decision in a frequency manner. For example, if

many adjacent subcarriers are decided as busy but a few among them are decided as vacant, then

it is possible to use context awareness knowledge. In this example it may be the information that

the expected portion of bandwidth is 8 MHz block devoted for digital television transmission.

As a result, contiguous 8 MHz portion of bandwidth should be decided as busy, thus reversing
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Figure 3.12: Signal analysis in a) scenario III and b) scenario IV

decisions for a few free subcarriers. Similar rules are possible for narrow-band signals, e.g., if

two busy subcarriers are disjointed by one free, then all three subcarriers should be decided as

occupied.

Large amount of knowledge is possible with the use of temporal correlation. Observation

in the period of 24, 48 or 72 hours may give great knowledge about sensed signals and radio

environment. It would be useful to use the knowledge that wireless microphones cannot transmit

signals continuously longer than 8-12 hours due to limited battery lifetime. Temporal analysis

and temporal correlation may highly discredit narrow-band signals which are observed in the

bandwidth continuously for several days. With a great probability they may be assumed as local

interferences from, e.g., computers or �uorescent lamps. Information of such detected interference

may be kept in the memory of the device and used in the learning process. In the future, the

overall detection quality could be improved by using such context awareness information. For

example, the information kept in memory which could be useful is the frequencies of detected

signals in the past: both the signals classi�ed as interferences or licensed transmissions.

In distributed systems, it is often bene�cial to know positions of sensors. For example, if

fusion centre possesses information that two nodes are positioned close to each other, and if one

senses strong signal and the other does not, then it may assess it is node's internal hardware

distortion and decide the spectrum portion at this speci�c frequency is vacant. The position

awareness may help in the global decision process. If the nodes are far apart, then their decisions

may be not correlated. Contrarily, the nodes which are close are correlated and the correlation

may be used for distortion exclusions.
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In the measurement experiment provided for this work, it was possible to turn on and o� the

signal of Primary User. Thus, it is possible to analyse the observed signals where no PMSE was

transmitting and compare it with the situation where devices were transmitting. In Figure 3.12,

one can see a possible analysis of the received signals. The only signal observed in both scenarios

is classi�ed as licensed transmission or local interference. It should be noted that a signal sensed

at 543.75 MHz has another probability of detection in both scenarios: in Scenario III it is 0.57

while in Scenario IV it is 0.7. The di�erence can be induced by �uctuations of signal power or

slightly di�erent noise estimations. The other signals were decided as licensed transmission if at

least two from three nodes detected signals with probability of detection greater than 0.2.

In signal analysis it would be bene�cial to adopt a learning phase. In the learning phase,

a simple procedure of transmission training signals in the following order. A node selected by

fusion centre transmits the training signal while other nodes sense the spectrum implying the

training signal. The procedure is repeated for selected nodes. After that it is possible to assess if

distortions are produced in receiving entities and in which frequencies. The analysis could involve

generation of training signals of di�erent power levels. However, the receiving entities should be

isolated e�ciently in order not to interrupt the licensed transmission outside the observation

area.

Conclusion

In this section it has been shown that hardware limitations observed in real time measurements

result in a large number of false alarms, decreasing the performance of sequential energy detector.

The proposed signal analysis may improve the detection performance in cooperative spectrum

network and lower the number of false alarms. However, appropriate signal analysis involves

context awareness information, which has to be provided to cognitive devices. Moreover, it requ-

ires additional computational complexity as well as additional sensing time, e.g., for executing a

learning phase.

3.2 Mobility-Aware, Correlation-Based Node Grouping and Se-

lection for Cooperative Spectrum Sensing

Cooperative spectrum sensing requires explicit information exchanges between nodes. Minimising

the overhead introduced by such exchanges, so to guarantee energy e�ciency and low complexity,

is an important aspect to be considered in the design of a cooperative spectrum sensing algorithm.

Therefore, the solution presented below could be classi�ed as an energy-e�cient solution and

included in Chapter 4, which is devoted for EE in Cooperative Spectrum Sensing. However,

the author of the thesis classi�es the solution in cooperative spectrum sensing-devoted chapter

due to the emphasis put on the reliability in the solution and the lack of detailed analysis in

energy-e�ciency area like the lack of EE metric. Thus, in this section the solution concerning

the correlation-based node grouping with introduced mobility of nodes is described although it

is somehow related with energy-e�cient algorithms of node selection. Following this way, one

may �nd in Section 4.4 solutions regarding the energy-e�cient node grouping with the following

classi�cation: node selection, node censoring and voting schemes, and deep analysis.
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An aspect that is seldom considered in the de�nition and performance evaluation of coope-

rative sensing schemes is mobility. There are in fact only a few papers tackling the role and

impact of mobility in cooperative spectrum sensing. In [112], the authors present a theoretical

analysis con�rming that node mobility increases spatial diversity and as a consequence improves

the sensing performance. The results presented in that work show the trade-o� between the num-

ber of sensors and the number of measurements taken by each sensor. The authors in [18] base

their work on [112] but introduce more accurate assumptions and provide more detailed results.

Moreover, the expression for the number of measurement required for a given velocity, probabi-

lity of detection and probability of false alarm is derived. The research in [53] compares results

obtained on the basis of the aforementioned works and presents results obtained by simulation

under more realistic conditions, showing that relaxation or removal of some of the assumptions

taken in previous research has a signi�cant in�uence on performance.

In the above context, here below, a cooperative sensing scheme is proposed based on the

measure of correlation in sensing decisions for node grouping and on a mobility and sensing aware

metric for the selection of group leaders [33]. The concept of node grouping based on correlation

is leveraged from [157], and combined with a novel metric for group leader selection�proposed by

the author of the thesis�that takes into account mobility and sensing performance to guarantee

adequate sensing performance for extended periods of times. The proposed approach is then

compared with previous solutions by means of computer simulations, implementing accurate

models for the mobile radio channel, taking into account spatial and temporal correlation for

both fading and shadowing components.

3.2.1 Correlation-Based Node Selection

Correlation-based node selection has been introduced in [150] where a network of nodes is con-

sidered. All nodes are grouped in an active set at the beginning of the algorithm, while after

selection a subset of nodes may remain in the active set while the rest is moved to the passive

set which includes all nodes that are not allowed to vote. In order to make a proper selection,

the correlation measure is computed for pairs of nodes in the network. Then, the node with

the highest summed correlation with the remaining sensors is removed from the active set and

moved to the passive set. The correlation measure used in [150] is based on the positions of nodes

and associated positioning uncertainty. The following correlation function (3.1) is an example of

correlation measure:

R(d) = e−ad, (3.1)

where a is a decay constant related to the environment and d is the distance between sensors.

An example of the correlation-based approach is described in the paper written by Yanzan

Sun et al. [157]. In this approach the correlation measure is computed based on the node decisions

only. Thus, no additional information, such as position of nodes, is needed. Correlation-based

node selection presented in [157] is based on similarity in decision making.

The performance evaluation that supports the approach in [157] is however quite preliminary,

as it relies on several simplifying assumptions. For example, authors state that sensing informa-

tion was "generated randomly according to the probability of correct detection between 70 and

90%"[157], implying that the radio channel model was not taken into account in the results. The
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authors also assume that by putting the value of correlation threshold α to 0.96 the nodes can

be divided into 10 groups. This assumption would not hold in general in the real world, as the

selected number of nodes resulting from the approach in [157] constantly changes and depends on

several parameters, e.g., on actual propagation conditions or nodes positions. Finally, the simu-

lation results in [157] were obtained in a low-correlation scenario for an average signal-to-noise

ratio equal to 10 dB, while one would reasonably expect a CSS scheme to be tested in a low SNR

regime, where its improvement over local sensing is expected to be most relevant.

Despite the lack of thorough experimental veri�cation, the approach proposed in [157] is

appealing, since it inherently takes into account the role of spatial positions of nodes and channel

conditions in determining the best set of nodes. A solution inspired by this approach, but also

taking into account the role of mobility, is introduced in Section 3.2.3, and its performance is

evaluated in Section 3.2.4.

3.2.2 System Model

The adopted model foresees N nodes randomly distributed in a square area of side equal to R

meters. Every node is assumed to have the same desired probability of false alarm (under CFAR

requirement) and therefore the same sensing threshold computed according to equation 1.2.

The generic node moves with a randomly selected direction of movement ϕi and velocity vi.

Angles of movement and velocities are uniformly distributed, with ϕ taking values between 0 and

2π radians, and velocities v between vmin and vmax meters per second. Whenever a node hits the

border of the square area, it bounces back from it according to a total re�ection model, while

keeping the same velocity.

The following power attenuation model is assumed for the mobile radio channel between a

mobile node and the Primary User:

channel|dB = pathloss|dB + fading|dB + shadowing|dB. (3.2)

The path loss depends on carrier frequency fc and on the distance d between the node and the

PU according to the well-known Friis' formula. The carrier frequency is assumed to be constant

for all nodes, while the distance changes in time proportionally to the node velocity. However, it

is assumed that during the single sensing phase the path loss does not change due to relatively

small possible variation of nodes' locations.

Fading coe�cients are modelled according to Rayleigh fading channel. Doppler shift is pro-

portional to the node velocity, and in the presented model it varies according to the following

equation:

∆f = 3 · vi. (3.3)

In the model, every node experiences an independent fading channel (as suggested in [124]),

resulting in uncorrelated fading between di�erent nodes, but correlated channel coe�cients in

time for a given node.

Regarding shadowing modelling, the decorrelation distance dcorr was set according to Gud-

mundson model [67] and Min and Shin work [112]. Hence, the square area of side R meters was

divided into q smaller (pixel) squares containing di�erent values for shadowing. The values are

constant in time for a given location according to [149], so during the observation time the sha-

dowing value for every shadowing centre does not change. The values are randomised with the
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normal distribution N ∼ (0, σs). However, one can �nd more sophisticated shadowing models.

Kasiri and Cai in the work [85] applied NeSh (Network Shadowing) model taken from [128]. The

model allows one to determine correlation values between links of di�erent users, while in Gud-

mundson case it is possible only for links coming from one node. Since the scenario considered in

this paper focuses on correlation between measurements involving the same primary transmitter,

the Gudmundson model is deemed su�cient to the purpose of this work.

In the considered system, every node takesMs sensing decisions and sends them to the fusion

centre, under the assumption that radio coverage between the nodes and fusion centre is always

guaranteed. One can reasonably expect that mobility will also signi�cantly impact the topology

of the secondary network and thus the radio coverage between nodes and fusion centre; for the

sake of simplicity the analysis of such impact is left for future research, while in the present paper

the impact of mobility is restricted to the results of sensing.

Nodes in the network share a common time reference, and time is organised in frames of

duration Ttot. Sensing information is gathered and exchanged during the sensing phase of duration

Tse that takes place at the beginning of each frame. The remaining time in the frame Tdt, equal

to Ttot − Tse is dedicated to data transmission if the presence of PU is excluded (see Fig. 1.11).

The frame duration Ttot is also used as the reference period for updating the positions of

nodes and determining the new values for shadowing. Note that a smaller update period could

easily be adopted, but this would have no impact on sensing performance, as sensing is also

performed with period Ttot and network wide synchronisation is assumed.

3.2.3 Mobility-Aware Correlation-Based Spectrum Sensing

The proposed sensing scheme organises network operation in two states: a training state, used for

node grouping and selection, and an activity state, during which nodes selected in the training

state perform sensing, and all nodes transmit data packets whenever the network sensing decision

excludes the presence of the PU.

While in the training state, each node takesMs signal samples during the sensing phase, with

a sampling period ts = Tse/Ms seconds. The samples are compared with the sensing threshold,

with Ms decisions taken at each sensing node (one decision per one sample). Each node sends

the Ms decisions to a FC that uses them to compute the correlation measure. The number of

decisions Ms should be thus large enough to allow for a reliable estimation of the correlation

between di�erent nodes. As a result of the selection procedure (detailed below), a set of active

nodes is determined, and the network switches to the activity state, during which the active

nodes perform sensing and report their decisions to the fusion centre, where a network decision

on the presence of the PU is taken.

The selection procedure used during the training phase is the following one. Let be Si(k) the

k-th decision out of Ms taken by the i-th node, and de�ne it as follows:

Si(k) =

{
1, when H1 is declared

−1, when H0 is declared
. (3.4)
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Given the decisions taken by two SUs, i and j, the γi,j correlation measure for the two nodes

is de�ned as [157]:

γi,j = 1−
∑Ms

k=1 |Si(k)− Sj(k)|
2Ms

, (3.5)

where γi,j ∈ ⟨0, 1⟩. If all decisions for the i-th and j-th nodes are identical γi,j is equal to 1; in

general, the higher the number of common decisions, the greater the value of correlation measure.

After computing correlation measures between all pairs of nodes, the Γ matrix of size N ×N
is built:

Γ =


γ1,1 γ1,2 . . . γ1,N
γ2,1 γ2,2 . . . γ2,N
...

...
. . .

...

γN,1 γN,2 . . . γN,N

 . (3.6)

It is assumed that correlation coe�cients are reciprocal, so Γ is a symmetric matrix. The diagonal

elements of matrix are the auto-correlation coe�cients. Therefore, Γ can be represented as upper

triangular matrix Γ̃ [39]:

Γ̃ =


0 γ1,2 . . . γ1,N
0 0 . . . γ2,N
...

...
. . .

...

0 0 . . . 0

 . (3.7)

After evaluating the correlation measures for all possible pairs of nodes, the grouping procedure

is executed. First, the value of a correlation threshold α is de�ned. Next, γi,j coe�cients above

α threshold are determined. If more than one γ coe�cient is higher than α, then two cases may

occur:

� the pairs of correlated nodes are disjoint. In this case nodes are grouped by correlated pairs,

� one node is correlated with more than one node. In this case three or more nodes are grouped

together only if all mutual correlation measures are larger than α. Nodes that do not meet this

condition are not included in the group.

The procedure is performed repeatedly until there are no further nodes that can be grouped

together.

When the grouping procedure is complete, some groups are formed while other nodes remain

uncorrelated. Note that the above algorithm, �rst described in [157], does not require a predeter-

mined number of nodes and groups to be selected as an input parameter. The output number of

groups and the total number of selected nodes depend on the correlation environment.

Following the division of nodes into groups, a group leader for each group is selected according

to the Leader Suitability (LS) parameter, de�ned as follows for the generic group member i:

LSi = c1Pd,i + c2exp

(
vi − vmin

vi − vmax

)
, (3.8)

where c1 and c2 are weight coe�cients that can be used to adjust the relative importance of the

two terms that form the LS parameter. The �rst term is the probability of detection of node i,

while the second term models the stability of the node, de�ned as its ability to stay as long as
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Figure 3.13: Behaviour of the term related to node velocity used in the Leader Suitability formula

possible at a given location. The stability coe�cient is equal to 1 when vi is equal to minimal

velocity and 0 if vi = vmax. The behaviour of the stability parameter is presented in Figure 3.13

for vmin = 1 m/s, vmax = 5 m/s.

The goal of the proposed metric is to ensure that selected group leaders are able to guarantee

good sensing performance not only at present time, but also in foreseeable future, thanks to their

low mobility. As a result of the selection procedure, the set of active nodes allowed to participate

in sensing is determined, and is composed by one group leader from every group and all the

uncorrelated nodes. The network switches then to the activity state for a predetermined amount

of time, before switching back to the training state for updating the set of active nodes.

3.2.4 Simulation Results

The performance of the mobility-aware correlation-based cooperative sensing scheme introduced

in Section 3.2.3 was investigated by means of computer simulations carried out in the Matlab

environment. In the simulations a square area of 200 m side was divided into 16 pixels of dcorr = 50

m side [112] and N = 100 SUs were randomly distributed in the area. The same area was covered

by the transmission of a PU. The PU signal was characterised by a carrier frequency of 300 MHz,

transmit power of 1 W, and distance to SUs in the range 1.41− 1.86 km. In order to observe the

bene�t of the grouping algorithm, it was assumed that the PU is always present. A list of key

simulation parameters and corresponding values is presented in Table 3.1.

According to Ofcom (the British spectrum regulator) rules, sensing should be executed at

least once a second and occupy no more than 10% of the total frame length [125]. Thus, in the

simulations a frame of duration Ttot = 1 s was divided in Tse = 0.1 s and Ttot − Tse = 0.9 s.

During the sensing part every node collected Ms = 1000 samples, corresponding to a sample

time equal to 0.1 ms. The decisions were generated by comparing the power of each sample to a

constant sensing threshold. Such decisions were then provided as an input to the CSS algorithm

for group formation and leader selection. As mentioned in Section 3.2.3, any fusion rule could be

adopted to take the network decision; in the performance evaluation presented in this Section an

OR fusion rule was adopted. The CFAR requirement was adopted in the system, with a global
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Table 3.1: Key parameters of simulation

Param. Description Value

Ms
Number of samples used for

1000
correlation approximation

N Number of nodes 100
Pf Local probability of false alarm 0.001
Qf Global probability of false alarm 0.095
SNR Averaged signal-to-noise ratio 2 dB
Tse Sensing phase duration 0.1 s
Ttot Frame duration 1 s
dcorr Decorrelation distance 50 m
ts Sample time 0.1 ms
vmin Minimal velocity of nodes 1 m/s
vmax Maximal velocity of nodes 5-50 m/s
∆f Doppler Shift 3-150 Hz
α Minimal correlation coe�cient 0.95
ϕi Direction of movement of nodes 0-2π rad
σSU Noise power at SU 3.01e-13 W
σs Shadowing variance 4.6 dB

probability of false alarm equal to 0.095, implying thus local probabilities of false alarm equal to

0.001, assuming that all nodes participate in the sensing process. Identical Pf and noise power

at SUs imply, as a result, constant sensing threshold in every node (see equation 1.2).

All of the simulations have been done under the assumption of an average SNR between

the PU signal received at an SU and the noise at the same SU equal to 2 dB. The results were

averaged over 20 thousand iterations, and in each iteration the state of the system was recorded

every second for a 70 seconds observing time. As already pointed out, mobility is expected to

play an important role in sensing performance. As a consequence, all simulations were performed

in presence of mobility.

An example of the state of the system after node grouping and group leaders selection is

presented in Fig. 3.14 (node velocities in the range 1− 20 m/s). In the �gure, di�erent markers

correspond to di�erent groups, while �lled markers identify the leader of the corresponding group.

The �gure shows that from every group, only one node is selected as a group leader except for

a group marked by circles. These are uncorrelated nodes�the nodes which are not correlated

enough to join another group. Therefore, all of these nodes are allowed to vote. In the situation

presented in Fig. 3.14, 11 nodes out of 100 are selected to vote: 6 uncorrelated nodes and 5 group

leaders. In general, it can be observed that in the low-SNR-scenario, the received power is often

below the sensing threshold, due to strong shadowing and/or fading. Thus, in such a scenario

many nodes with bad channel conditions take the decision that the PU is not present. As a result,

these nodes are associated with the same, large, group. Therefore, only a few groups are eventually

formed. This e�ect may prove a signi�cant advantage of correlation-based sensing when AND or

majority rules are adopted, as it signi�cantly reduces the impact of individual missed detections

by grouping all nodes likely to generate such missed detections in a single group. This result was
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Figure 3.14: Exemplary state of the system after node selection procedure. Triangles, squares, circles,
diamonds and stars re�ect belonging to particular group. Nodes marked with �lled symbols
are selected by the procedure.

Figure 3.15: Global probability of false alarm Qf in the function of the number of selected nodes

not observed in previous works on correlation-based sensing, most probably due to the lack of

detailed modelling for channel correlation.

The results have also showed that the number of selected nodes in�uences the value of Qd.

In general, the lower the number of selected nodes, the smaller Qd, with actual value depending

on the average SNR, as expected from the adoption of an OR decision rule. The loss in global

probability of detection Qd has been observed due to the reduction of the number of group

leaders. The �rst case is the Qd when all nodes in the system are allowed to send their decisions

to fusion centre. The second case, referred to as ideal selection, corresponds to executing the

grouping procedure at the beginning of each sensing phase, so at every second. The Qd for all

nodes is equal to 1, while for the optimally selected set of nodes it is around 0.9992. So the

selection of a smaller number of nodes introduces a penalty in terms of a slight reduction of the

global probability of detection, mainly as a result of the selected fusion rule. On the other hand,
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Table 3.2: Global probability of detection Qd values for ideal selection

Leader selection method Qd value

maxPd 0.9992
mixed 0.9975
maxST 0.9925

the global probability of false alarm was also signi�cantly reduced, which is a strong advantage

from the point of view of the secondary network. In fact, as under the CFAR requirement, the

local probability of false alarm for every node is kept constant, the global probability of false

alarm depends on the actual number of nodes taking part in decision making process. Figure 3.15

shows the relation between Qf and the number of active nodes. One can see that, e.g., selection

of 10 out of 100 nodes lowers the Qf from 0.095 to 0.01. This implies that for the SNR used in

experiments, the proper node grouping causes barely visible fall of Qd and sensible fall of Qf .

The above results prove that correlation-based node grouping can improve performance under

realistic channel conditions and go beyond the results in [157] since, as already discussed in

Section 3.2.1, in that work performance evaluation of the correlation based solution was limited

to a scenario with randomly generated local probabilities of detection with no connection to

relative positions and correlation of channel responses between secondary nodes.

The analysis focused next on the impact of the new leader selection metric. Three strategies

for the group leader selection were investigated, corresponding to three coe�cient sets for the

metric. The �rst strategy selected the node with the highest local probability of detection to act

as a group leader (corresponding to weight coe�cients for eq. (3.8): c1 = 1, c2 = 0), as proposed

in [157], referred to in the following as maxPd strategy. The second strategy aimed to select the

group leader on the basis of both the local Pd and the stability coe�cient (c1 = 0.5, c2 = 0.5), and

is referred to as the mixed strategy. Finally, the third strategy, maxST , only rewards stability

(c1 = 0, c2 = 1).

The results for maxPd, maxST and mixed strategies are shown in Figure 3.16. In every

�gure one can �nd three plots: the top curve is the ideal selection update strategy previously

de�ned; the bottom curve corresponds to an update strategy named starting selection in which

the grouping and selection procedure is executed only once, in the �rst second of simulation.

Finally, the middle plot corresponds to the periodic selection update strategy, in which grouping

is carried out every n seconds where n is selected so to keep the 0.95 threshold.

One can see that when adopting the ideal selection update strategy, the best result is gu-

aranteed by the maxPd strategy. In the mixed strategy Qd value is slightly lower, while the

maxST strategy leads to the worst result (see Table 3.2). The ideal selection values (presented

in Table 3.2) are matched exactly by the starting selection at the beginning of each simulation,

and by the periodic selection immediately after each update.

Maximum Qd values are doubtless relevant for evaluating the performance of grouping and

selection algorithms, but the stability of received measures is important as well. Figure 3.17a

presents results for the starting selection update strategy for the three leader selection strategies

introduced above. One can see that in the maxPd strategy, which guarantees the highest Qd

value for ideal selection, the Qd value decreases quickly in time, while for the stability-involved

strategies the slope is signi�cantly less steep. The least steep slope and the highest values of Qd
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Figure 3.16: Global probability of detection Qd vs time for a) maxPd strategy, n = 13 s, b) maxST

strategy, n = 13 s, c) mixed strategy, n = 18 s

after two seconds were obtained for the strategy involving both stability and Pd in the selection

of the group leader.

Fig. 3.17a shows that the global probability of detection might be acceptable not only imme-

diately after the leader selection but also some time after the grouping and selection procedure.

Since grouping and leader selection require signi�cant information exchanges between nodes and

thus introduce signi�cant overhead in the network, one might want to perform such a procedure

as seldom as possible while guaranteeing the desired probability of detection.

The bene�cial e�ect of taking into account stability in group leader selection can be observed

by comparing the periodic selection curves in Figure 3.16 that shows results assuming a minimum

acceptable Qd equal to 0.95. In fact one can observe that the periodic update time di�ers in the

three cases, with the mixed strategy requiring an update only every n = 18 seconds, while

the other strategies require an update at most every n = 13 s. The combination of node's Pd

and stability introduced in the proposed leader selection strategy guarantees thus an increase

of the minimum update time from 13 to 18 seconds corresponding to 38% gain. The price paid

to get such an improvement is a slightly lower Qd value in the very �rst seconds after each
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Figure 3.17: Global probability of detection Qd for starting selection for terminal velocities in the range
of: a) 1− 5 m/s, b) 1− 20 m/s

Figure 3.18: Floor value of the global probability of detection Qd vs maximum node velocity for three
leader selection strategies

selection procedure. Although further studies are required to quantify the overall impact of the

two phenomena on overall performance in the secondary network (e.g. in terms of throughput),

the results strongly suggest that the proposed strategy may provide a signi�cant advantage.

The trend of Qd as a function of time strongly depends on the mobility of SUs. In Fig. 3.17b,

one can observe results for nodes velocities in the range of 1-20 m/s. The results in Fig. 3.17

show that the �oor value in the starting selection update strategy is signi�cantly higher in the

vmax = 20 m/s case. Min and Shin in [112] pointed out that the sensing scheduling gain rises

proportionally as node's velocity increases. One could thus predict that wider range of nodes

velocities lowers correlation between nodes and thus improves global sensing results.

In order to verify this assumption, the �oor value of global probability of detection was

evaluated as a function of the SU maximum velocity vmax, with minimum velocity vmin set at

1 m/s (Fig. 3.18). One can see that the higher the node's maximum velocity, the higher �oor

value of Qd. This is determined by correlation between the sensors. In low-velocity scenarios,

decisions of nodes are highly correlated so there are a few large groups of nodes. Therefore, only

a few nodes are selected and allowed to vote. In a high-velocity scenario, the correlation between
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Figure 3.19: Number of selected nodes and percentage of sleeping nodes versus maximum node velocity

nodes' decisions is small. As a result, there are more groups of nodes and more uncorrelated

nodes. The higher the number of active nodes and the higher the average velocity, the higher

the probability that one or a few nodes experience reliable channel conditions. This is con�rmed

by Figure 3.19, showing the number of active nodes (dashed curve): the higher the mobility of

nodes, the higher number of active nodes. Moreover, the higher number of active nodes provides

lower overhead reduction. In Figure 3.19, in solid line, one can also observe the percentage of

sleeping nodes which were not selected by the procedure. These nodes may sleep and thus lower

the overhead information exchange as well as reduce energy consumption. For high-correlated

scenario the reduction in the number of updates and the corresponding overhead is the most

signi�cant. Even in the low-correlated scenario, the reduction of number of the active nodes is

however still prominent (75% for vmax = 50 m/s) thus justifying the adoption of a grouping and

selection procedure even at relatively high speeds.

3.2.5 Conclusion

In this section, a novel correlation-based node grouping and selection algorithms have been propo-

sed by the author of the thesis, that take into account both sensing performance and mobility of

secondary nodes. This is obtained by introducing a leader selection metric that combines node's

individual detection probability Pd and its stability. The performance of the proposed algorithm

has been evaluated and compared with previous work by means of extensive computer simula-

tions carried out in Matlab environment. Simulation results show that by including stability in

the group leader selection criteria correlation-based sensing can operate with larger time intervals

between the periodic updates, with a 38% decrease in the number of updates while guaranteeing

a network probability of detection above the 0.95 threshold, at the price of a slight reduction

in the maximum value of the same probability. It has been also proven that adopted selection

procedure guarantees usage of only 9% and 25% of nodes in high and low-correlated scenario,

respectively.

The proposed algorithm requires the availability of information about the nodes velocities; it

should be noted however, that this information can be derived by means of outdoor (e.g., Global

Positioning System (GPS)) and indoor positioning systems based on technologies like Wi-Fi or
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Radio Frequency Identi�cation (RFID). Furthermore, the algorithm can equally operate based

on relative velocities of nodes, rather than on their absolute speed. This relative information

can be obtained by monitoring the rate of topological change observed by a node (e.g., average

number of neighbours varied per second). One could thus argue that this assumption is overall

more realistic than the one of knowing exactly the local probability of detection of each node.

Nevertheless, most of the solutions for cooperative spectrum sensing presented in the literature

make the latter assumption.





Chapter 4

Energy-E�cient

Cooperative Spectrum Sensing

4.1 Considerations on Energy E�ciency for Spectrum Sensing

Algorithms

4.1.1 Identi�cation of the Figure of Merits

One can �nd several metrics related to power consumption in devices or networks [37]. The

basic one is the bits-per-Joule [b/J] which is essentially a throughput-per-energy usage metric.

Throughput is understood here as the total number of bits transmitted in a network. In the case

of CSS, where a number of steering and control messages are often interchanged, the metric of

e�ective bit-per-Joule can also be considered, where only the transmitted information-data bits

are counted, and the bits transmitted in supporting channels are not included. Alternatively, the

bit-per second-per-Watt metric can also be taken into account.

The next group of energy e�ciency indicators is connected with network coverage, such as the

Watt-per-square kilometre denoted as [W/km2]. This indicator is adequate for systems covering

large areas, e.g., in macrocells used in rural areas or in sensor networks designed to cover a given

area [145]. However, in urban areas, where a system is tra�c-demanded, a more fair indicator

is one related to the number of serviced users. Such a metric is de�ned as the number of users

served in the busy hours measured in users-per-Watt [60]. An energy-related metric taxonomy

may be found in [71]. Note that for cooperative sensing, these metrics have to be adapted to a

speci�c CSS case. Contrary to cellular networks, in CSS, the coverage has to be understood as

the area for which a decision made by the fusion centre is valid, or�alternatively�the area over

which sensing nodes are deployed.

Although the coverage and capacity-related metrics are important and widely used, they are

in fact not comprehensive enough in the cooperative spectrum sensing reality. It is suggested

to introduce energy e�ciency metrics related to the quality of sensing understood as the global

75
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probability of detection-per-Watt and the global probability of false alarm-per-Watt [32]. Such

metrics can be de�ned mathematically as:

EEQd
=

Qd

Ptot
, (4.1)

and

EEQf
=

1−Qf

Ptot
, (4.2)

respectively. Here, Qd and Qf stand for the global probability of detection and the global pro-

bability of false alarm in the network, which have been de�ned in Section 1.2.3. Moreover, Ptot
represents the total power consumed by the network in one sensing and data-transmission period.

The energy e�ciency increases when the detection quality increases, and when the consumed

power decreases, which are usually contradictory goals in the network.

4.1.2 Single Sensing-Node Power Optimisation

Because energy e�ciency may be measured with the use of a number of metrics, these consi-

derations are focused on the reduction of the consumed power with as low a degradation of

performance as possible. Thus, the �rst step in �nding reliable solutions for energy reduction is

to identify the possible opportunities where such optimisation can be achieved.

The power consumption in a sensing node Pnode in a network of cooperatively sensing nodes

consists of the energy devoted for sensing Psensing, for the processing of gathered data and the pre-

paration of the reporting message (e.g., quantisation) Pprocessing, and �nally, for the transmission

of this reporting message Ptransmission:

Pnode = Psensing + Pprocessing + Ptransmission. (4.3)

Therefore, the optimisation of energy e�ciency should include the reduction of the power related

to each component from formula 4.3. In other words, the sensing energy may be reduced by

shortening its duration, and the processing power usage depends on the complexity of adopted

sensing method, as well as on the adopted quantisation algorithm applied for sensing-information

representation (see Section 1.2.1). The power consumed on the transmission of the reporting mes-

sage depends then on the transmission distance and the environment in which the transmission

is performed (described by the path loss coe�cient). Besides, Ptransmission may be reduced by

lowering the size of the transmitted message.

One may try to analyse, in a more detailed way, which factors in�uence the average power

consumed by each sensing node in each phase. The amount of power consumed in the �rst phase,

i.e., spectrum sensing Psensing, depends on the electric and electronic components of the terminal

front-end. In particular, in order to e�ectively sense a wide range of a frequency spectrum,

the wireless terminal should be equipped�depending on the selected architecture (homodyne,

heterodyne, low-IF etc. [77, 140])�with a wideband (possibly tunable) aerial, wideband and

steerable �lters and Low Noise Power ampli�ers. Next, the received signal should also be shifted

to the baseband, thus appropriate wideband mixers and voltage-controlled oscillators with phase-

locked loops have to be used. Finally, such a signal has to be converted from the analogue to

digital domain, and the power consumption by such tunable converters strongly depends on the
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processed bandwidth. Clearly, instead of wideband elements mentioned above, a set of parallel

processing chains may be used. In order to estimate the power consumed by the analogue front-

end of the sensing node, one should apply relevant models proposed in the rich literature, e.g.,

in [49, 50].

The power consumed during data processing Pprocessing strongly depends on the computation

complexity of the selected sensing algorithms. Such computation complexity can be represented

by the number of operations (e.g., complex multiplications, complex additions and the number

of accesses to the memory) required for the preparation of the reporting message containing a

local sensing decision. By getting the number of operations, one may assess the average power

consumption by the Digital Signal Processor (DSP) or FPGA modules. A detailed comparison of

selected single-node spectrum sensing algorithms (including computational complexity) can be

found in [102].

Finally, Ptransmission represents the power required for reporting the message delivery to

distant nodes (e.g., to the fusion centre). Depending on the situation (environment type, e.g.,

urban, suburban), appropriate channel models can be used for an accurate assessment of the

power consumed by this data transmission.

Note that, in fact, the energy consumption within a given time also has to be considered

during the optimisation process. This is due to the fact that the time devoted for each phase

is also one of the parameters that can be optimised. For example, the selection of a speci�c

sensing algorithm (such as energy detection) in�uences both the average power used for sensing,

and the time required for it. Let Tsensing denote the sensing time, Tprocessing the processing time,

Ttransmission the reporting time. The energy consumed by a single node in a CSS network equals:

Enode = Psensing · Tsensing + Pprocessing · Tprocessing + Ptransmission · Ttransmission. (4.4)

4.1.3 Energy E�cient Optimisation From the Network Perspective

Each energy-e�cient sensing node improves the overall energy e�ciency in a cooperative network,

but the total energy consumption may be further reduced if the energy consumption is analysed

from a network-level point of view. In particular, the energy consumed in a centralised network

of N cooperating nodes (in a network where a central entity collects sensing information and

then announces a global decision by a broadcasting message) is given by:

Pnetwork =
N∑
i=1

Pnode,i + Pfusion + Pbroadcast, (4.5)

where Pnode,i is the power of sensing, processing and transmitting (reporting) the sensing infor-

mation by node i in the network, Pnetwork is the power devoted for CSS consumed in the whole

network, Pfusion is the power devoted for the process of decision fusion, and Pbroadcast is the power

for broadcasting the message by the fusion centre. Let us note that this formula can be easily

adopted to other network topologies used for CSS. For example, in the approaches known as

censoring or node sleeping (both described in Section 4.4), the number of nodes used for sensing

and data reporting can be reduced. Moreover, the value of Pbroadcast depends mainly on the di-

stance between the fusion centre and the most distant node awaiting its decision. In a centralised
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network, especially for large N , this component will be relatively small compared to the �rst

one, i.e., the N -fold included power consumed by sensing nodes. Again, the time used for report

delivery to the fusion centre and data broadcasting is also one of the parameters for optimisation.

Thus, instead of the total power consumed in the network, one should concentrate on the energy

consumed. The formula for energy consumption in a CSS network is the following:

Enetwork =

N∑
i=1

Pnode,i · Tnode,i + Pfusion · Tfusion + Pbroadcast · Tbroadcast, (4.6)

where Tnode,i is the time required for sensing, processing and transmitting (reporting) the sensing

information by node i (assumed as a single activity time-period), Tfusion is the time required by

the fusion centre for collected information processing and taking the global decision, and �nally,

Tbroadcast is the time of broadcasting the global sensing decision.

One can observe that the energy in the network may be saved by the reduction of the following

factors: i) the number of cooperating nodes (e.g., by selecting only substantial representative

nodes), ii) the power consumed by the nodes (e.g., in the sensing, sensing-information processing

or in the transmission phase for a selected subset of nodes), iii) the energy cost of data fusion

and decision delivery to the interested nodes (being a mixture of the two previous factors), iv) or

network topology.

To sum up, energy e�ciency may be provided to the CSS network with several possible

methods. A variety of propositions which may be found in the literature, and which are proposed

by the author in the thesis, show that the overall energy e�ciency depends on the operating

radio environment and desirable performance.

4.2 Energy E�ciency in Cooperative Spectrum Sensing: Classi�-

cation

The aforementioned analysis of cooperative spectrum sensing has set a solid background for the

possible directions of energy savings. In the literature, one can �nd a number of diverse energy-

e�cient techniques which may be grouped according to several possible classi�cations. In this

thesis, the classi�cation is proposed based on four main directions (or branches) of possible energy

savings (see Fig. 4.1). They are as follows:

� Branch A: energy reduction in the (local) spectrum sensing phase,

� Branch B: optimisation of the number of cooperating nodes,

� Branch C: proper selection and application of fusion and decision rules,

� Branch D: energy-e�cient network organisation.

Below some general observations for each branch are provided which will be discussed in detail

in the following sections.
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Figure 4.1: Classi�cation of energy-e�cient cooperative spectrum sensing

Branch A

Focusing on the �rst branch, one can state that an immediate and natural option of saving energy

is to go inside the sensing device for the proper selection of energy-e�cient components. The

application of advanced and �exible radio-frequency front-ends, where some portions of digital

or analogue elements can be switched o� or shifted into stand-by mode, may result in overall

energy consumption reduction, especially if the number of sensing nodes is high. Exemplary

discussions on such solutions may be found in [25, 64, 65].

Furthermore, one of the basic ideas of energy e�ciency in local spectrum sensing is to reduce

the sensing time or the number of collected samples regardless of the adopted sensing method.

Certainly, the lower the number of acquired samples, the lower the energy consumed. However,

this comes at the cost of decreased performance. Solutions which optimise the sensing time (or

the number of acquired samples) are described in Section 4.3. Although this may be done simply

in a non-cooperative network scenario, the sophisticated cooperative adjustment of sensing times

may also be provided.

A further increase of energy e�ciency may be achieved by optimisation of the decision

threshold, ϵ, shown in Fig. 1.8, which is used for the di�erentiation of decisions reported in

soft- and hard-decision scheme. However, taking into account network cooperativeness, joint

optimisation of the decision threshold may bring even higher a gain than the one obtained with

individual (distributed) optimisation.

Branch B

Another possibility of introducing energy e�ciency in CSS comes from the observation that

there may be some nodes in the network which bring a marginal pro�t to the overall detection

performance. Therefore, it is bene�cial to lower the number of active nodes when they encounter
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bad channel conditions in the sensed channel or their sensing results are highly correlated with

other (neighbouring) sensors. In such a case, these nodes o�er a relatively small added value to

the network EE metrics at the high cost of consumed energy. Thus, it is bene�cial to reduce

the activity of some nodes. One may pose two questions: i) selection of which nodes is the most

bene�cial, and ii) how to organise such a selection.

Dozens of authors have tried to ask the �rst question and �nd the optimum sets of selected

nodes for various topologies and network con�gurations. The general rule is that it is optimum

to select the sensing nodes on the basis of the signal-to-noise ratio (in the primary- to secondary-

user link) [129]. However, the possibility of proper selection depends on the radio propagation

conditions. It is not always possible to estimate an SNR accurately. Moreover, the transmission

of all approximation results consumes much of the spectral and energy resources.

As the nodes are recommended for active participation in the sensing process, the following

cases can be considered. First, a subset of nodes from a group can be selected, i.e., be active in the

sensing phase, while the other ones turn to the sleep mode, and do not sense the frequency-band

occupation or report any sensing information. The nodes may also be censored, i.e., may sense

the licensed signal but have no reporting rights, i.e., do not report local sensing observations to

the other nodes. Although a limited number of active nodes lower the overall energy consumption,

the node selection process may be ine�cient energy-wise, or incorrect (if wrong nodes are selected

for a sensing or sensing-and-reporting group).

Branch C

Further energy savings are possible if an e�cient fusion of sensing messages is considered. For

example, for the hard decision reporting mode, it is possible to adapt the decision fusion threshold

on the basis of the observed wireless channel conditions (e.g., [130]). When soft or quantised-soft

metrics are taken into account, further energy e�ciency improvements are possible.

Branch D

The consumed energy may also be limited by e�cient network organisation. Clearly, if the number

of interchanged steering messages in CSS is high, the energy devoted to this process should

de�nitely be considered more carefully. Thus, the question about cooperation gain and associated

overhead in the centralised and decentralised CSS topologies is crucial. Recently, much attention

has been given to the topic of relaying technologies. One may �nd papers tackling the problem

of how relaying is energy e�cient, and when it is more bene�cial (in terms of the saved energy)

compared to direct transmission (e.g., [68]). Apart from relays, the other solution for energy

e�ciency in Branch D is a cluster-based one.

Please note this is one of possible classi�cations. An other would be a division according

to the provided sensing procedure parts. In Fig. 1.7, one can see an illustrative diagram of

cooperative spectrum sensing. Here, energy e�ciency may be introduced for each state, e.g., in

�Local Decision Reporting�, energy may be saved by a proper selection of cooperating nodes or

a neat network organisation. Note that some solutions described in that work introduce energy

e�ciency by combining two di�erent branches shown in Fig. 4.1.
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Figure 4.2: Energy saving areas in a single node

4.3 Energy Savings in Local Spectrum Sensing

Energy-e�cient design and algorithms are possible inside a sensing device. The aforementioned

energy-e�cient hardware (e.g., power ampli�ers) may signi�cantly reduce the power consumption.

This may also be done if the spectrum sensing procedure is optimised. The �rst possibility is to

reduce the number of acquired samples or, in other words, reduce the sensing time. Although

the number of samples may theoretically always be reduced when the desired sensing reliability

should be achieved, the minimum number of collected samples can be found for each sensing

method. Regardless of the number of samples required for further processing, speci�c features

of the applied analogue elements in the transceiver front-end have to be de�ned (Fig. 4.2). For

example, one of the key contributors to the energy consumed by the terminal front-end is the

power ampli�er. Optimisation of its operating point also optimises its energy e�ciency, and can

lead to the reduction of nonlinear e�ects (like intermodulation products) which are not allowed in

practical systems, especially in the context of cognitive radio. Moreover, beside the total number

of samples needed for the sensing algorithm, the frequency of their collecting, as well as the

number of bits used to represent each sample in�uence the energy consumed by the ADC and

DAC. For example, in [70], it has been shown that for a given architecture, the power consumed

by a DAC varies from 10 nW achieved for the sampling-frequency of 1 kHz to 26µW at the

10MHz sampling frequency.

The sensing nodes should be able to operate in various frequency bands. Thus, all the neces-

sary elements should be recon�gurable, and very often such tuning possibility is provided to the

user at the cost of complexity, thus, higher energy consumption. It is then even more meaningful

to optimise the energy consumed by the wireless terminal front-end. The analysis of the energy



82 CHAPTER 4. ENERGY-EFFICIENT CSS

consumed by particular elements of the radio transceiver front-end can be found in [11, 66]. In

particular, in [66], the total power consumption at 1.1V for various system architectures (Global

System for Mobile Communications (GSM), Digital Video Broadcasting�Handheld (DVB-H),

WCDMA, MIMO WiMAX and MIMO WiFi) varies from 60W to 230W.

Note that the number of required samples strongly depends on the selected sensing algorithm.

For example, cyclostationary-based detection involves hundreds or even thousands of samples

in order to observe periodicity in the sensed signal. In energy detection, this number may be

reduced even to one sample, however, too small a number of samples (or too short sensing time)

leads to performance degradation. Therefore, there is a trade-o�: on the one hand, lowering the

number of samples leads to detection degradation, while on the other, it guarantees lower power

consumption, and results in a higher throughput because more time may be devoted to SU's

data transmission (for more details see Section 1.3).

Moreover, the selection of the spectrum sensing algorithm can also impact the energy con-

sumption by the radio-frequency front-end. The application of the pure energy-detection algori-

thm entails a high dependency of the �nal sensing decision on the noise variance. Thus, in order

to improve the reliability of detection, the sensitivity of the device should be as low as possible,

also meaning that the resultant noise �gure or the impact of the phase noise should be minimised.

It also means that the bitwise representation of each sample should be possibly high in order

to minimise the impact of the quantisation noise on the sensing procedure. Furthermore, the

application of more complex algorithms typically results in more sophisticated hardware realisa-

tion (using FPGAs or a digital signal processor), and this entails a higher power consumption by

these chips. An interesting discussion on the FPGA implementation of selected spectrum sensing

algorithms can be found in, e.g., [92, 172].

Discussion on sensing time optimisation may be found in [131], where it is shown that there

exists an optimum sensing time which guarantees a maximum throughput. Interestingly, the

sensing time is similar irrespective of the transmitted power level. In [111], the sensing time was

analysed from the perspective of time per bit. It was proven that the longer the transmission

time related to one bit, the higher the energy e�ciency. However, when the circuit energy in

a realistic implementation is taken into account, there exists an optimum point of time per

bit for which the energy per bit is the smallest. However, in such an optimum point, the delay

constraint has not been taken into account [154]. Finally, in [89], a sensing time allocation scheme

for two PUs is proposed, while in [151], a neural-network-based optimisation is delivered. It has

to be underlined that the individual optimisation of the sensing time may a�ect the transmission

throughput performance. In Section 1.3, the idea of the joint optimisation of the sensing time

and spectrum access is described.

Another possibility of increasing the energy e�ciency is to optimise the sensing threshold. In

[58], the threshold for energy detection is optimised. The algorithm in its two versions requires

instantaneous or averaged SNR, and it has been proved that the total energy may be reduced

and is supported by sensor-selection in the �rst step. Another threshold optimisation scheme

is described in [82]. Here, the optimum threshold for energy detection has been found for a

cooperative network in which the nodes send their binary decisions to the fusion centre adopting

the OR-rule. This solution also proves that a combined use of energy e�cient branches improves
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the overall e�ciency. Thus, the energy in CSS may be reduced for a single device, but a higher

number of possibilities is opened when the energy is saved in a cooperative way.

Finally, note that in the context of the relaying nodes (or even cluster heads), the above

discussion has to be slightly extended to the detection process performed before the signal is

forwarded. Thus, the energy devoted to signal detection (and potentially decoding followed by

re-encoding) has to be considered.

4.4 Number of Cooperating Nodes

The strength of the cooperative spectrum sensing solutions lies in the diversity of node locations

and thus, in the variety of channel conditions and spectrum observations. Thus, the e�ect of

faded and shadowed signal in one place for a single node is mitigated if a number of nodes

cooperate in order to make a global decision. However, too high a number of the sensing devices

may not bring relevant detection improvement while still consuming a high amount of power.

Therefore, many authors try to �nd the optimum number of cooperating nodes and/or give a

recipe for proper selection. For example, in [16], the number of nodes is optimised under speci�c

time constraints. It is assumed that the duration of a frame and its transmission part is �xed.

The general conclusion is that there exists an optimum number of nodes that maximises the

energy-e�ciency. Moreover, the longer the time for sensing and reporting, the higher the number

of nodes maximising the energy-e�ciency.

The optimum number of nodes may be selected in many ways. One may distinguish three

main approaches. In the �rst approach, known as node selection, a subset of SU nodes is not

allowed to sense the spectrum and report relevant sensing information (local decisions on spec-

trum occupancy). These nodes turn to the sleep mode and thus save energy. The licensed signal

is sensed just by another disjoint subset of nodes. Unlike in node selection, in a technique called

censoring, all nodes are allowed to make sensing observations but some of them cannot report

this information. In this technique, it is possible to censor nodes during the sensing process, i.e.,

on the basis of up-to-date local sensing results. These two situations are illustrated in Fig. 4.3.

Naturally, lowering the number of active nodes may degrade the overall probability of de-

tection. Thus, although a lower number of nodes decreases the number of transmitted messages

with reporting information, the power devoted to one link is higher due to the longer distance to

its neighbour when the decentralised scheme is used. Moreover, the energy savings nearly always

have an associated cost. One is the degraded performance through the decreased global probabi-

lity of detection or increased global probability of a false alarm. The other is that the sensing and

reporting nodes have to be somehow selected and informed about their selection. The additional

messages and processing cost should also be taken into account, as they may reduce the energy

e�ciency of the algorithm.

4.4.1 Node Selection

The basic assumption in lowering the number of active nodes is to maintain the overall perfor-

mance. This de�nitely depends on the criterion used for the selection of nodes in order to reduce

the energy with an acceptable and possibly minimised cost of performance degradation.
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Figure 4.3: Model of a centralised CSS system where a) node selection or b) censoring is applied

The �rst criterion of e�cient node selection is the observed signal-to-noise ratio. In [129], the

authors propose such a selection and claim the solution is the optimum one. In this algorithm,

the optimum value of Qf (or Qd) is found by the selection of an optimum number of nodes with

the highest signal-to-noise ratios. However, for the proposed algorithm, up-to-date information

about the nodes' instantaneous SNR is needed, and has to be delivered to the fusion centre, while

the fusion centre has to receive the information from every SU in the network. Variable channel

conditions induce SNR variations that must be dealt with, for example, by periodic updates of

the estimates of the SNR for each node. It was proven in the above-mentioned paper that the

appropriate selection of only 19 out of 200 nodes provides promising results: under the CFAR

with AND rule, the global probability of detection is improved from 92.04% to 99.88% and much

energy for the decision interchange is saved.

Another algorithm based on the SNR criterion has been described in [166]. In this work,

the secondary user with the highest SNR is chosen in the �rst iteration. Next, every other node

compares the quality of its link to the fusion centre with the quality of its link to the formerly

selected node and from the formerly selected node to the fusion centre. If a node determines

that its own link is less reliable, then it joins the group of nodes experiencing the highest SNR.

Otherwise, the next highest-SNR node among ungrouped nodes is selected, and then the pro-

cedure of comparing link qualities and grouping is repeated until all nodes are grouped. Again,

reliable information about the SNR ratio is demanded. Moreover, the energy e�ciency of the

scheme depends on the number of selected group-heads: the lower the number of selected heads,

the higher the energy e�ciency, up to 76%.

Another interesting SNR-based selection algorithm has been proposed in [20]. In this work,

the nodes are classi�ed either as leaders or followers based on the received SNR. The leading

nodes have good detection performance and are allowed to sense the PU signal and broadcast

their sensing information. The following nodes are considered unreliable due to a low SNR, so

they do not broadcast their decisions, but rather wait for the broadcast packets from leaders.

Thus, only the reliable information is broadcast. In addition, the information sent by the leaders

is rather limited, only consisting of the PU-presence information. As a result, the approach

proposed in [20] leads to low overhead information. However, the identi�cation of nodes with

the highest SNR is challenging, as it must rely on the presence of the PU during the training

(measurement) periods.

A typical SNR-based node selection similar to the aforementioned work [129] has been de-

scribed in [106]. In this paper, an adaptive double-threshold method is also introduced, and

connected with noise uncertainty. The presented results show, as emphasised in [129], that it is
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bene�cial to select only a minor percentage of nodes with the highest SNR, thus guaranteeing

an optimum global detection probability and important overhead reduction.

Although it is underlined that SNR-based node selection brings signi�cant gains, in the

literature, one may �nd another promising criterion of node selection. It is the correlation-based

node selection algorithm which is based on nodes' decisions about PU presence. The idea is

to select nodes whose sensing observations are uncorrelated. It relies on the assumption that

the selection the uncorrelated nodes should result in high detection quality, while signi�cantly

minimising the energy overhead spent in the network for reporting.

The idea of correlation-based node selection comes from [150]. The selection of nodes is

proposed to be conducted with the use of a correlation measure computed by the nodes. Starting

with a randomly selected node, the nodes, one after another, compute the correlation of their

own sensing decisions with the decisions of other nodes pair by pair. If the sum of correlation

coe�cients is high, the node becomes inactive and is removed from further correlation computing.

The correlation measure in [150] involves location of nodes and distances.

Unlike in the aforementioned article, in [27], the correlation is based only on sensing messages

received from nodes in the network. A randomly selected node broadcasts its sensing observation,

while every other node listens to messages received from other nodes and calculates the correlation

to that. If the correlation is above an assumed threshold, the node becomes inactive. Nodes which

have a correlation below the threshold select a random delay and the one which has the shortest

delay reports its data. The procedure is repeated until there are remaining uncorrelated nodes.

After the procedure is completed, all nodes may specify the global decision because during the

procedure they got the messages from all uncorrelated (i.e., selected) nodes.

In [157], the correlation between nodes is delivered only on the basis of decisions made by

nodes. In the algorithm, a number of sensing decisions has to be delivered to the fusion centre.

The FC then derives a correlation matrix and creates correlated groups of nodes according to the

minimum correlation threshold. The information about the formed groups is sent to the network,

and then, in each group of correlated nodes, a leading node is selected. In [157], the node with

the highest detection probability is selected as a group leader.

In [33], basing on [157], a di�erent selection of group leader has been proposed. It has been

shown that in a mobile scenario, the formed group of nodes may quickly become obsolete. Thus,

the leader selection metric considering both node mobility and sensing performance is proposed.

4.4.2 Censoring

In the censoring algorithm, all nodes sense the spectrum band, however, only some of them are

allowed to report their observations. Thus, the energy is saved during the reporting stage when

some nodes do not transmit their observations. Moreover, censoring is more reliable than node

selection because the censored nodes are selected after each sensing period.

An example of an algorithm based on censoring is introduced in [150]. In a network consisting

of N nodes, all nodes are grouped to the active set at the beginning of the algorithm. After the

selection, only X nodes may remain in the active set, while the rest is moved to the passive set,

and that includes all nodes that are not allowed to vote for the global decision. In order to make

a proper selection, the correlation measure is computed for pairs of nodes in the network. Then,

the node with the highest summed correlation with the remaining sensors is removed from the
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active set and moved to the passive set. The correlation measure used in [150] is based on the

positions of nodes and associated positioning uncertainty.

In [109], the censoring scheme has been optimised. The authors put censoring into the global

cost-function of sensing, and propose a solution for the selection process based on the double-

threshold energy detection. The sensing decision is censored if the collected energy of the PU

signal falls in between two thresholds. Under some constraints (the assumed global probabilities

of false alarm and detection, and the OR fusion rule) it was shown that the censoring probability

for an average node saturates rapidly and is not dependent on the number of cognitive radio

nodes, leading to a lower consumed energy. The scheme can be easily adopted in a practical

network.

The idea of censoring is further investigated in another article by the same authors [110].

There, a similar model of cooperative network is proposed, where censoring and sleeping are

adopted under the constraints of minimum detection probability and maximum false alarm pro-

bability. Moreover, the authors provide a detailed analysis of energies consumed in the network.

Two cases are compared: A) when the sensing and transmission energy are equal, and B) when

the sensing energy is a minor part of the transmission energy. It is shown that the censoring rate

in case A) is lower than in case B), and that the rate of turning to the sleep mode is higher in A)

than in B). Moreover, the proposed solution is adopted in the real ZigBee transmission network.

It is proved that it is possible to �nd the optimum censoring and sleeping rates and using these

values may result in signi�cant energy savings.

Finally, in [108], the idea of sequential censoring is introduced as a combination of traditional

censoring with the sequential algorithm. Again, the authors �nd the optimum values for censoring

thresholds both for the OR and AND rules. It is shown that for low-energy radios, sequential

censoring outperforms regular censoring in terms of energy e�ciency. Moreover, the AND fusion

rule guarantees a lower energy consumption for medium values of PU presence probability (not

higher than 0.8) than for higher values.

4.4.3 Voting Schemes

Note that it is not always possible to properly estimate the signal-to-noise ratio. Moreover, it may

not be energy-e�cient to interchange messages in order to �nd the speci�c SNR value. Therefore,

voting schemes have been proposed, based on the observation that the conclusion of own and

global decisions may be based on an SNR-like metric.

The �rst representative of voting schemes is the so-called Con�dence Voting [95], in which

the nodes build reliability-related measures. The idea is to limit unreliable decision transmissions.

Every node is obliged to compute a con�dence metric. In the hard decision scenario, the local

and global decisions are collated. In the case of coincidence, the con�dence metric is incremented,

otherwise it is decremented. After the training period, in which the metrics are computed, only

the nodes with the highest con�dence metrics are allowed to report their decisions to the fusion

centre. The authors claim that up to 40% of energy may be saved when using their algorithm.

The Collision Detection scheme, presented in [87], is based on node selection with the highest

correctness measure. The measure noti�es the number of a node's correct decisions when the

global false decision is that the PU is not present. The nodes with the highest correctness are

selected and involved in cooperative sensing.
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The schemes based on voting have the advantage of being applicable in scenarios when there

are no periods in which the presence of the PU is known in advance. However, these schemes

have a major drawback. As they rely on the opinion of the majority, if most of the secondary

users face bad channel conditions in their links between the PU and themselves, more con�dence

goes to unreliable nodes. As a result, the decision obtained in con�dence voting may be worse

than in the traditional scheme. Moreover, the voting schemes are not robust enough in the case

of the presence of malicious SUs. A malicious SU is the one that sends untrusted decisions and

makes the decision taken in the cooperative network unreliable [10].

In [120], the authors propose a scheme that combines energy e�ciency and sensing perfor-

mance in node selection. The scheme introduces a cost function that favours nodes with the lowest

sensing and decision-transmission energy usage among those satisfying the quality of detection

constraint. Furthermore, energy e�ciency is increased by introducing the Decision Nodes, each

acting as the collector of sensing results from a set of selected nodes, determining a common

decision and sending it to the fusion centre. The scheme requires information about the nodes'

signal-to-noise ratios and the distances between each node and the fusion centre in order to

operate, leading to a signi�cant control overhead.

In [59], the multi-channel aware algorithm is proposed. The nodes with the lowest energy

consumed by sensing and reporting, and the lowest number of channel switches are selected.

Moreover, the nodes experiencing higher SNRs (in the links between the PU and themselves) are

chosen due to shorter demanded sensing time. There, the nodes' selection is performed with an

occurring delay constraint. The algorithm results in low energy consumption.

4.5 Fusion Rule

As mentioned above, the decrease of energy consumption is possible if the fusion scheme is

appropriately optimised. In Section 1.2.1, it is stated that there exist two basic types of decisions

transferred from nodes to FC: hard- and soft-decisions. The main objectives are described and

some references are proposed: [105, 156, 22, 164]. This essentially determines the e�ectiveness of

decision fusion. The works presented below deal with the optimisation of the fusion rules, which

for the hard-decision reporting are as follows: OR, AND and the majority rule (known as the

k-out-of-N rule).

In [15], the authors analyse the energy consumption and detection probability of three fusion

rules under three parameters: frame length for each rule, the number of nodes and SNR. The

results show that for the critical set of conditions (very short frame length, substantial number

of nodes, low SNR), the Equal Gain Combining rule outperforms the Likelihood Ratio and

Maximum Ratio Combining rules [15].

The majority of authors make the assumption that the reporting channel is ideal and error-

free. This is, however, impractical in an actual CSS network. In [28], one may �nd an interesting

analysis of the fusion rule performance where the reporting channel is not ideal. Hard decisions

and soft decisions have been taken into account. It has been proven that the soft decision combi-

nation is more robust to channel impairments. However, the work has not covered the topics of

the associated complexity and transmission overhead.
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In [130], the authors propose optimisation of number k in the k-out-of-N fusion rule together

with energy detection threshold optimisation with the aim of energy e�ciency maximisation in

a network of cooperating nodes. The presented results show that the joint optimisation of k and

the decision threshold may lead to energy e�ciency up to 2 bits/Hz/Joule for di�erent SNRs.

The Adaptive Counting Rule, which is in fact an optimisation of the majority rule, is proposed

in [132]. There, a cooperative network of N SUs is considered. The adaptive rule is applied in

the hard-decision fusion scheme. It optimises the number of sensing SUs k declaring the presence

of the primary signal. It is shown that the optimum minimum value of k depends on the value

of the calculated correlation of the nodes' decisions, as well as the number of detectors in the

network and their detection performance. The authors also propose a continuous mechanism of

selecting the optimum k value. However, the work lacks information about introduced overhead

needed for the calculation of the optimum k.

An energy-e�cient algorithm connecting the majority fusion rule with the sequential algori-

thm can be found in [179]. A two-stage algorithm was proposed, where in the �rst (coarse) stage,

sequential sensing is applied with the modi�ed majority rule. The stage is �nished if more than

a half of sensors declare the same decision. If the condition is not ful�lled, a �ne stage is applied

with the traditional energy detection algorithm and the accustomed majority rule. The proposed

scheme may help in saving energy by up to 30% for low SNRs and 60% for high SNRs for most

common settings.

In [136], optimum linear cooperative sensing is presented. The authors propose a method

based on the combination of test statistics from the local nodes, instead of the full energy-

detection reports with associated transmission overhead. The authors have conducted di�erent

optimisations for cases with di�erent values of detection and false alarm probability. They claim

that the optimisation of the fusion rule has to be provided for speci�c cases, e.g., for cases with

a low possible false alarm rate and with a low detection rate.

4.6 Energy-E�cient Network Organisation

The energy-e�cient network-organisation methods are presented that can be applied in CSS

networks, allowing for energy-e�ciency improvement. The topic of Medium Access Control with

its details about spectrum access contention has not been addressed. Some details about spectrum

access optimisation can be found in Section 1.3 and in the comprehensive works: [52, 170, 38].

In [68], the authors analyse the bene�ts of relaying the sensing information. They propose a

two-stage algorithm consisting of the broadcasting and the relaying phase. The authors adopted

the Bellman-Ford algorithm which for a given network-graph minimises the cost of transmission

from a source to a sink in a distributed manner, taking the required transmission powers into

account. The optimum cooperative route is found in an iterative way by exchanging a number of

messages between the nodes, thus making the algorithm relevantly complex.

The same Bellman-Ford algorithm is used in an earlier work [78]. There, two solutions are

proposed: �rst, minimising the power consumption in the route, and second, minimising the

power under the constraint of achieving the assumed throughput. However, in that work, the

power consumption is optimised only for single links, not for the whole network. Moreover, the

scheme adopts a single-relay cooperation model due to an increased complexity for a higher
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number of relays, although in that way simplifying the solution. The presented performance

analysed for linear and grid networks shows signi�cant power savings compared to the shortest-

path algorithm.

An energy-e�cient network with relays is also proposed in [169]. A wireless network of

transmission pairs with the use of relays is analysed. There, it has been stated that for each

transmission pair, one relay had been considered. With the introduction of virtual relay, the

transmission mode selection has been simpli�ed (direct vs cooperative). Then, the proposed

iterative solution optimises the power allocation levels in order to �nd the minimum of the total

power consumed in the network. However, the authors introduce a doubtful performance metric

which is the transmission reliability, and adopt a limit of one relay per one transmission link.

Finally, they present promising results of obtaining fairness in the network and solve the max-

min fairness resource allocation problem. This fairness depends on the assumed transmission

powers and the so-called transmission reliability being the probability that SNRs between source,

destination and relay nodes follow a given criteria.

A similar single-relay scheme is proposed in [180]. The proposed protocol is based on request-

to-send/clear-to-send (RTS/CTS) messages sent by a source and a sink, and on the contention

phase in which relaying candidates compete. The contention is organised in a manner minimising

the signalling overhead. Then, two solutions are proposed: minimisation of the total transmission

energy and maximisation of the network lifetime. The presented results prove that direct trans-

mission is outperformed by the proposed minimum-energy scheme, in terms of the consumed

energy per packet and the network lifetime.

A similar cross-layer distributed algorithm can be found in [94]. As in some previously descri-

bed schemes, here, the best relaying node and allocated power optimisation is found. Moreover,

the authors not only present the prevailing min-energy total consumption but also introduce an

interesting transmission rate-power trade-o�. It is shown that under the energy minimisation

constraint, the cooperative scheme outperforms the non-cooperative one, however, in the latter

case, the gap in the de�ned utility-energy trade-o� between cooperative and non-cooperative

solutions is smaller.

In [163], an optimum routing strategy in a multi-hop network is proposed with identifying im-

portant delay constraints. The authors adopt a scheme where mutual information is accumulated

after each packet transmission. Every node may send its information at any time after it receives

the full packet composed of messages sent by other nodes. The authors propose a routing scheme

minimising the total energy consumed in the transmission link under the constraint of a given

delay. They show that this problem may be solved with the use of a greedy algorithm similar

to the minimum delay routing. To this end, they introduce two heuristic algorithms presenting

promising performance and underlining the fact of a limited overhead.

The authors of [155] present the analysis of energy e�ciency in a system with one-way or

two-way relaying. Although the proposed three-node scenario is quite simple, with a single relay

positioned exactly between the transmitting and the receiving node and with a simpli�ed channel

model, the presented results are interesting. Generally, two-way relaying is more energy e�cient

than one-way relaying, since symmetrical transmission is considered. However, it is shown that

relaying is not always more energy-e�cient than direct transmission. If the channel attenuation is

moderate, direct transmission is recommended. Otherwise, relaying is bene�cial. Moreover, some
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results related to the considered circuit power show that for a non-zero transmit, receive and idle

power, energy e�ciency has its non-zero maximum for medium spectral e�ciency.

In [24], the authors present an optimisation of energy consumption in a network with some

sel�sh nodes which may not be willing to relay other transmissions. The authors unveil the

scheme of forming partnerships with sel�sh nodes under the condition that no central entity is

employed. Finally, the presented results prove that the proposed bargaining technique guarantees

about 50% of energy e�ciency when compared to a centralised random scheme without sel�sh

nodes.

In [101], a cooperative beamforming scheme is described. The authors analyse the energy

e�ciency of direct and cooperative schemes in the function of distance between the communi-

cating entities. It is shown that the adaptive direct scheme, in which the transmission power is

neatly adjusted, outperforms the cooperative schemes for transmissions on short distances (up to

ca. 150m to 200m). For larger distances, cooperative relays are more energy e�cient, however,

the larger the distance, the higher the optimum number of the relaying nodes.

In [12], a scenario without any relays is analysed. The authors take two known algorithms into

account: the gossiping and the random walk, and proposed improvements in order to decrease the

information overhead in the network (resulting in an energy-e�ciency increase). In the gossiping

scheme, every node transmits information to a randomly selected node. In its enhanced version,

it is done only if the usage pattern of a given band changes. In the random walk algorithm, only

some nodes communicate to randomly selected neighbours while in the incremental version of it,

the procedure is started if an information update occurs. The authors present the results which

prove that the proposed enhancements decrease the number of overhead information up to 2.5

times. However, the de�nition of update is dubious, so is the number of collisions which may

occur in the presented schemes, e.g., when a node cannot transmit in the same time as it receives

the information signal.

In [75], the trade-o� between sensing performance and its energy e�ciency has been discus-

sed. The authors present a scheme in which a larger number of samples increases the detection

probability. However, if the minimum detection probability is satis�ed, the energy consumption

increases linearly with the number of samples. The authors analyse the scheme with a simple

amplify-and-forward scheme. The presented analysis shows that it is possible to �nd the optimum

pair of the amplifying gain and the number of samples in order to get the best trade-o� between

sensing performance and energy e�ciency.

Another solution which is not based on the idea of relays is presented in [121]. There, two

heuristic models are presented in order to optimise network utility and energy e�ciency. In the

network model, the authors assume several licensed signal spectra present in several fragmented

frequency bands. They adopt the economic concepts of social welfare and net revenue to the

communication network scenario. It is proved that the optimum trade-o� between energy con-

sumption and social welfare may be found by allowing for the interference-dependent competition

for links and source nodes.

The next solution proposed for a network with multiple-license signals is described in [141].

Here, the proposed solutions aim at maximising the energy e�ciency and transmission rates. It

is achieved by allowing the node to use vacant channels with the upper-bounded transmit power,

and to transmit multiple packets in one transmission.
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In [167], the cluster-and-forward scheme is presented, where the nodes are dynamically put

into cluster groups. In each group, a node with the best channel gain is selected as the Cluster

Head. Then, it collects local decisions from cluster members, forwards them to the Fusion Centre

and, in order to improve the energy e�ciency, also serves as the fusion centre for cluster members.

In the paper, it is shown that for a given number of nodes, there exist an optimum number of

clusters for which the amount of saved energy is the most signi�cant.

A similar clustering scheme is described in the aforementioned article [95]. There, the total

transmit energy in clustering and broadcasting is compared, proving that the clustering may

provide signi�cant energy savings due to shorter transmission links. Moreover, there exist an

optimum number of clusters for a given number of nodes which guarantee most of the energy

savings. A similar conclusion has been drawn in [168]. The transmit energy may be reduced

compared to the traditional scheme, especially when the transmission takes place over large

distances (1000m and more).

A cluster-based e�cient protocol has been described in [171]. First, a MAC mechanism is

proposed in order to reduce the number of collisions. Then, a channel sensing scheme is designed

to reduce the total consumed energy. It is proved that there is a relationship between the energy

e�ciency and the number of sensed channels, and the best overall performance is guaranteed by

cluster-based sensing for three channels.

Walid Saad et al. propose in [146] an interesting attitude to cluster formation. Although

usually clusters are formed during a centralised procedure where the key role is performed by the

central entity, in the cited work, node collaboration is provided in a distributed way. Two coalition-

formation approaches have been proposed. In the �rst one, under the false alarm requirement,

the nodes may form clusters (coalitions) by pairwise negotiations between them, followed by the

sequential merge-and-split procedure in order to maximise detection probability and keep the

false alarm rate su�ciently low. The second one aims at forming coalitions under the minimum-

detection constraint, while keeping the false alarm rate at a given level, thus guaranteeing the

achievement of detection probability with a minimum overhead. This is provided by forming

minimal winning coalitions. One may �nd promising results where the miss-detection rate has

been signi�cantly reduced and the detection rate relevantly increased for the �rst and second

algorithms, respectively.

4.7 Final Classi�cation of Energy-E�ciency Options for Coope-

rative Spectrum Sensing

In the previous sections, the ways to increase the energy e�ciency in CSS have been analysed.

Here, the discussed methods are summarised in the form of a table, which should guide the

reader through the papers for further reading. The analysis of Table 4.1 allows us to identify the

best ways for global energy consumption minimisation in CSS depending on various optimisation

constraints. Following the overall chapter structure, the table is split into four separate (yet

mutually related) parts which re�ect the four branches de�ned in Section 4.2. Within each part,

the key CSS aspects have been identi�ed which can be subject to optimisation. However, the

key challenges in accurate energy consumption modelling and optimisation for CSS networks

arise from the fact that there exist a great variety of elements that have to be considered in the
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Table 4.1: Classi�cation of energy saving approaches

Feature Pros Cons Ref.

A1. Reduction of

the number of col-

lected samples

� Less data to send and process

� Shorter sensing time

� Potentially less reliable deci-

sion

� Good candidate only for

strong PU signals or lack of

transmission

[89, 97,

131,

151,

154]

A2. Application

of an advanced,

energy e�cient

front-end

� Better energy utilisation

� Front-end adapted to current

requirements

� Mass-production of electronic

chips limits the degree of fre-

edom in energy-e�cient front-

end design for spectrum sen-

sing purposes

� More advanced chips typically

lead to higher prices

[25, 64,

65, 103,

175]

A3. Message qu-

antisation

� Reduction of the data volume

to send (reduced tra�c in the

CSS network)

� Optimised number of quanti-

sation levels can guarantee the

agreed level of QoS in CSS

� Insu�cient number of quanti-

sation levels reduces the relia-

bility of global decisions made

in CSS

[21, 22,

28, 134,

156,

164]

A4. Optimisation

of the decision

threshold

� Reduction of the processing

load

� Optimisation of sensing time

� Wrong threshold selection in-

�uences CSS reliability

[58, 82]
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A5. Selection of a

simpler sensing al-

gorithm

� Reduction of processing load

in each sensing node

� Reduction of energy consump-

tion in each node

� Poorer (e.g., less reliable) spec-

trum sensing algorithm can

breach the assumed QoS

[92,

172]

B1. Node selec-

tion

� Reduction of the sensing node

number

� Sleeping nodes do not con-

sume energy

� Proper selection of the repor-

ting node can improve the qu-

ality of the reported message

� Possible detection probability

degradation

� Proper selection of reporting

nodes possible when additio-

nal data is acquired (e.g., no-

des' SNRs)

[16, 20,

33, 106,

129,

150,

157,

166]
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B2. Node censo-

ring

� Reduction of the reporting

node number

� Censored nodes do not con-

sume energy for reporting

� Faulty or even malicious nodes

can be censored

� The censoring process may be

faulty leading to wrong deci-

sions

� The need for duly node selec-

tion for censoring or turning

o�

[108,

109,

110,

150]

Continued on next page
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Table 4.1 � continued from previous page

Feature Pros Cons Ref.

B3. Voting sche-

mes

� Easy usage of the procedure

� Limited number of steering

messages

� Does not demand much addi-

tional data (nodes' SNRs, lo-

cations etc.)

� Faulty or even malicious nodes

may a�ect performance

[10, 59,

87, 95,

120]
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C1. Selection of

the key fusion

rule

� The number of reports delive-

red to the fusion centre de-

pends on the selected fusion

rule

� Fusion rule can be selected de-

pending on the required qu-

ality

� Every change of the fusion

rule has to be reported to the

cooperative nodes

� The e�ciency of the fusion

rule has to be monitored

[69,

130,

132,

136,

142,

179]

C2. Soft or hard

reporting

� Depending on the situation,

soft or hard reporting can be

selected

� Adaptation of the tra�c rela-

ted to data reporting

� Trade-o� between the accu-

racy of each report and amo-

unt of data volume needed to

deliver

[21,

105,

156]

C3. Decision re-

porting

� Reduction of the tra�c � Reduced accuracy of informa-

tion delivered to the fusion

centre (compared to soft/hard

reporting)

[15, 74,

107,

162,

176]
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D1. Energy-

e�ective routing

� Selection of the routing

scheme that minimises the

consumption of energy

� Application of energy e�ective

routing requires access to de-

tailed information about the

environment

[56, 68,

78, 121,

146,

141,

171]

D2. Cross-layer

solutions

� Possible cooperation between

solutions applied in separate

OSI layers, e.g., routing algo-

rithms can consider physical-

layer constraints

� Increased degree of freedom in

system design

� Increased adaptation and �e-

xibility in system design typi-

cally results in the application

of advanced (thus complicated

and more energy-consuming)

algorithms

[94,

121]

D3. Application

of relaying nodes

� Reduction of the transmit po-

wer (thus overall interference

level observed in the system)

of the reporting node due to

shorter distances

� Increased energy consumption

in relaying node due to proces-

sing of messages from other re-

porting nodes

� Increased delay in data deli-

very to the fusion centre

[24, 68,

101,

169,

180]
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optimisation process. Optimisation of one parameter (e.g., selection of cyclostationarity-based

spectrum sensing instead of energy detection in each node) increases the reliability of the decision

made in one sensor at the expense of computational complexity. From the perspective of the whole

network such a modi�cation can result in relatively signi�cant changes in energy consumption.

Moreover, various factors that in�uence the energy consumption are mutually dependent, which

makes the analysis even harder.

4.8 Fuzzy Logic in the Optimisation Process of the Energy-E�cient

Cooperative Spectrum Sensing

4.8.1 Dependency Matrix

In order to identify the most promising optimisation areas, a matrix has been created that shows

the key relations and dependencies between the particular CSS solutions (see Tab. 4.2). Based

on the classi�cation in Fig. 4.1 and its detailed description in Tab. 4.1, fourteen CSS features are

compared which are denoted according to the branch each feature belongs to [37, 46]. Each cell

in the dependency matrix de�nes the mutual in�uence of two selected features, for example, the

cell in column A3 and row B2 represents the relation between message quantisation and node

censoring. It has been assumed that each two features can be highly correlated (dependent) when

the change of one of them signi�cantly in�uences the other one. Thus, this dependency parameter

can vary in the range from 0 to 1, where 0 means no correlation. Each cell uses colour coding,

meaning that the darker the colour, the higher the correlation between the parameters of a row

and a column.

Before the analysis of dependency matrix, some additional comments have to be made. First,

fourteen speci�c CSS features have been identi�ed, however, that selection is a matter of classi�-

cation. One can easily de�ne other sets of features allowing for drawing conclusions. Second, in

the discussed example, the dependencies between the features have been assigned somehow arbi-

trarily, based on our observations and overall assumptions. One can identify more entries to the

matrix records once the assumptions are modi�ed. However, in order to achieve precise results,

one needs to de�ne at least a generic metric or�at best�a mathematical relation between each

pair of features. This is the key challenge of the proposed approach, as such a metric could be

hard or even impossible to de�ne.

Having in mind all of these limitations (i.e., the matrix is case-dependent, it relies on user

experience and knowledge, etc.), one can state that a coarse analysis of such a matrix can shed

new light on the overall understanding of the CSS process and the existing relations between its

particular phases. First, let us notice that by �nding similarities between the rows (or columns),

the most dependent features can be identi�ed, meaning that in consequence, a dedicated opti-

misation function can be de�ned that considers these particular features. Second, as the darker

entries in the matrix represent high dependency between the features, the brighter ones allow

for the identi�cation of such agents of CSS which could be optimised independently. In general,

such an analysis can lead to the de�nition of sets of highly mutually-related features (note that

these sets can overlap).
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Table 4.2: Dependencies between the key CSS parameters

Par. A1 A2 A3 A4 A5 B1 B2 B3 C1 C2 C3 D1 D2 D3

A1

A2

A3

A4

A5

B1

B2

B3

C1

C2

C3

D1

D2

D3

A1 Reduction of the no. collected samples B3 Voting schemes

A2 Application of an advanced, EE front-end C1 Selection of the key fusion rule

A3 Message quantisation C2 Soft or hard reporting

A4 Optimisation of the decision threshold C3 Decision reporting

A5 Selection of a simpler sensing algorithm D1 Energy-e�ective routing

B1 Node selection D2 Cross-layer solutions

B2 Node censoring D3 Application of relaying nodes

In order to deal with the problem of precise de�nition of dependencies between any pair

of features, the approach known from fuzzy logic is applied, where the exact values can be

intentionally replaced with some generic, descriptive de�nitions. In this approach, �ve levels

de�ning the degree of mutual dependency have been stated:
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� Level 0 � no or very low dependency;

� Level 1 � low dependency;

� Level 2 � moderate dependency;

� Level 4 � high dependency, and

� Level 5 � very high or full dependency.

The number of levels, as well as their (fuzzy) meanings de�ne the accuracy of the conclusions

that will be drawn from it. Tab. 4.2 has been created using the �ve levels mentioned above.

In Tab. 4.2, one can notice that the highest correlation exists between solutions within

branches B and C, it is substantial in branch D and moderate in branch A. Moreover, the solutions

in the dependency matrix may generally be split into two groups: in the �rst group, consisting

of solutions from branches B, C and D, one may observe a rather high dependency between

them (these are essentially cooperation-based solutions), while in the second group, consisting of

solutions from branch A (these are single-node solutions), there is a much lower dependency with

the exception of A3 highly correlated with branch C ideas. Therefore, the general observation

is that the introduction of one energy-e�cient cooperation-based solution (e.g., the number of

nodes or acceleration of the fusion rule) highly a�ects the others. However, the optimisation of a

single node's operations does not impact signi�cantly the energy-e�ciency solutions of the other

branches.

One can also notice that in the presented example, the absolute values of dependencies have

been assumed. However, much e�ort should be put into the precise de�nition of mutual relation

between features, i.e., the modi�cation of a certain feature can either improve or degrade the

energy e�ciency of an other feature. These aspects (i.e., positive or negative in�uence) could also

be taken into account, providing new insights into the problem.

4.8.2 Rose Chart

As the dependency matrix (or, in some sense, correlation matrix) provides us with some statistical

insight into the energy e�ciency of CSS, the key challenge would be to de�ne a detailed energy

consumption model. However, as the full model of energy consumption in a whole CSS network

would be highly complicated, it is important to identify the key relations between the factors that

in�uence the total energy consumption. It can be achieved, to some degree, by the analysis of a

rose chart with key factors assigned to separate axes, where each axis of this chart represents a

di�erent feature (criterion) considered in the analysis. All of the axes start at the same zero point,

and it is important to precisely de�ne the terms and units in which the selected feature (criterion)

can be de�ned numerically. Once the numerical values are marked on the axes, a polygon can be

created through the connection of all points, and the area of this polygon to some respect re�ects

the overall energy consumption of the considered system. An illustrative example showing the

concept has been presented in Fig. 4.4.

Here, six criteria for evaluating CSS schemes have been identi�ed:

� Accuracy of reports delivered to fusion centre;
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Figure 4.4: Rose-chart for energy consumption comparison

� Number of cooperative nodes;

� Processing time;

� Total sensing time;

� Number of operations executed in each node;

� Reliability of spectrum sensing decisions.

Similarly to the approach applied in the creation of �lling in the dependency matrix, also in

this case (the rose chart), particular attention has to be given to the accurate de�nition of the

considered criteria (the rose chart axes). As it has been already stated, there always exists some

mutual dependency between any pair of the proposed criteria. Having this in mind, it is proposed

to select them in such a way that the mutual dependency is minimised. In order to achieve this,

one can utilise the dependency matrix presented at the beginning of this section.

Once the criteria (including their number) have been de�ned, the most important thing would

be to precisely de�ne the quantitative metric used for the numerical assessment of a criterion.

For example, the number of cooperative nodes can be straightforwardly measured in terms of

integer numbers, and complexity � understood as the number of operations executed in one node,

can be measured in operations per second or Floating Point Operations Per Second (FLOPS).

Similarly, the processing time can be easily represented in the form of seconds. On the other

hand, the numerical assessment of reliability of sensing decisions or accuracy of reports are not

as straightforward. As one can consider various types of probabilities (e.g., probability of a false

alarm, error probability, etc.), also other metrics could be proposed. Finally, it would be wise to

translate such generic measures into concrete values of consumed energy. In other words, taking
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the total sensing time as an example, although it is measured in seconds, it should rather be

analysed as a function of time that gives us even a rough approximation of the energy consumed.

As the de�nition of accurate functions describing the energy consumption in each criterion

can be complicated, it is proposed to apply the methodology known from fuzzy logic, as it has been

done previously. Thus, depending on the criterion, particular levels can be de�ned giving coarse

estimations of their impact on the energy consumption. For example, complexity or accuracy of

reports can be classi�ed as very low, low, medium, high, and very high; analogously, the number

of cooperative nodes can be low, medium and high. One needs to propose the mapping function

that connects pure numerical values with their descriptive counterparts.

In Fig. 4.4, a comparison of three arbitrarily selected schemes is presented, allowing to

identify the key di�erences between them and to assess the key contributions to the total energy

consumption in a CSS network in each case.

In schemes I and II, centralised networks of energy detection-based nodes are assumed. Thus,

both schemes have low complexity and high reliability. However, in the second one, the nodes

are censored and use hard-metric delivery, while in the �rst, soft metrics are used. Therefore,

they have di�erent accuracies of reports, as well as sensing and processing times. In scheme III,

a distributed network is proposed (with a high number of nodes) with cyclostationary detection.

Thus, it has a short sensing time at the cost of high complexity and low reliability. The three

presented schemes are simple proposals, however, one may observe the great variety of parameters

that in�uence the total energy e�ciency.

4.8.3 Exemplary Use Cases

In this section, the proposed evaluation tools (i.e., dependency matrix and rose chart) are applied

to a very speci�c example. Two di�erent test scenarios (use cases) have been arbitrarily selected,

deriving from them the illustrative values of the parameters and choosing appropriate methods.

The �rst considered use case is a mobile dense network which is monitored by densely-

deployed static sensors and, additionally, by mobile users who deliver the sensing results to a cen-

tralised fusion centre. The obtained spectrum occupancy information is used for updating global

databases (REMs). Each static node periodically senses the spectrum based on a cyclostationary-

features algorithm while mobile users perform sequential energy detection. As the static nodes

report the measured values to the fusion centre, the mobile users report their hard decisions, as

well as their location. FC applies the majority rule to these reports, and: i) circulates the deci-

sions to the a�ected users (e.g., a certain user may need to modify its transmission parameters),

ii) updates the REM, iii) optimises the majority rule in order to guarantee a high detection rate

and a low false alarm rate, iv) switches certain sensing nodes on or o� in order to minimise the

utilised energy, while keeping the sensing performance unchanged.

In the second scenario, machine-to-machine communication is considered, where a set of

dedicated sensors is deployed over a large area and used for monitoring the occupancy of data

transmission in unlicensed bands (e.g., 5GHz). The role of the CSS system is to detect the pre-

sence of any WiFi users, particularly considering the problem of a hidden node, and to provide

some valuable updates to the operator who applied the Licensed Assisted Access (LAA) spec-

trum sharing scheme [100, 139]. The nodes create a mesh network with the ability to de�ne

clusters, cluster heads and routing rules. However, most decisions are made by the centralised
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fusion centre which receives information from the cluster heads only. FC can take the following

actions: i) instruct the cluster heads to activate/deactivate sensing nodes, and to reconstruct

the network, ii) deliver information about presence to databases (or other entities from the 5G

network architecture), iii) instruct a�ected users (via cluster heads) about the measured activity

of WiFi users. For example, when the total measured power in the observed unlicensed band is

high, the 5G operator decides to switch o� the LAA strategy and rely on the licensed band only.

In such an approach, the decision about the measured interference should be reliable, but there

are no strict requirements on the reporting time and periods.

Table 4.3: Dependencies between the key CSS parameters in mobile dense network use case

Par. A1 A3 A4 B1 B2 B3 C1 C2 C3

A1

A3

A4

B1

B2

B3

C1

C2

C3

Table 4.4: Dependencies between the key CSS parameters in machine-to-machine use case

Par. B1 B2 B3 C1 D1 D2 D3

B1

B2

B3

C1

D1

D2

D3
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Figure 4.5: Rose-chart for presented use cases

In Tables 4.3 and 4.4, dependency matrices for the analysed use cases are presented. One

may observe that these dependency matrices are created on the basis of Table 4.2. Each speci�c

use case has given constraints, thus, a subset of EE methods cannot be used. Consequently,

dependency matrices presented for use cases are created for a given subset of EE solutions. Now,

one may de�ne the possible directions of EE optimisation and observe the possible dependencies

between features.

The picture of EE optimisation may be amended by the observation of rose charts for the

two considered use cases. In Fig. 4.5, one may note that the values on the axes may be strict

(e.g., for reliability) or may be determined by the range. For instance, in a machine-to-machine

communication use case where the local sensing phase could not be rearranged, the value for

sensing time is strict (similarly for the FC reports on accuracy and reliability). However, the

three remaining axes present features that may be optimised, thus, there exist ranges of values.

The application of a speci�c routing scheme, which is a possible direction of optimisation, may

a�ect the complexity and processing axes in the rose chart, and is correlated with the number of

cooperative nodes. The selection of a given EE solution in�uences other solutions (the dependency

matrix highlights this) and further a�ects other axes of energy e�ciency (observed in the rose

chart).

Another considered use case of a mobile dense-network presents a higher �exibility in EE

optimisation than the machine-to-machine communication use case. Just one parameter is strict

(reliability), while the �ve remaining ones may be subject to optimisation. This goes in line with

Tab. 4.3, where nine various EE methods may be adopted and may a�ect the values on the axes

of the rose chart.
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Conclusion

� The area enclosed by the solutions on the rose chart generally relates to the energy consumption

of the considered use case. The higher the value on the rose chart axes, the higher the energy

usage.

� However, this relation is not linearly proportional. The exact energy usage depends on speci�c

parameters, e.g., distances between nodes, which are not covered by the axes.

� Although energy consumption can be extrapolated from the rose chart, the energy e�ciency

cannot. The use case with a very limited energy consumption may not be energy e�cient due

to its low reliability or low throughput.

� There exist a high number of degrees of freedom in the CSS optimisation process. However,

under speci�c use case constraints, the number of degrees of freedom may be signi�cantly

reduced. This may be observed in Fig. 4.5 where some values on the axes are strict and some

are in a range. Therefore, instead of a polygon, one may observe a circled area which is explicitly

the possible area of optimisation.

4.9 Energy-E�cient Cooperative Spectrum Sensing with Node

Sleeping and Relaying

The aforementioned energy-e�ciency-related analysis unveiled the possible directions of the opti-

misation in cooperative energy-e�cient spectrum sensing. Following the classi�cation presented

in Section 4.2, this section presents a solution which merges in essentials the two following bran-

ches speci�ed in the aforementioned classi�cation: Branch B, where the number of cooperating

nodes is optimised, and Branch D, highlighting the e�cient network organisation [41, 42]. Howe-

ver, the presented dependencies analysis has shown that these parameters have high dependency.

Therefore, as it is recommended, the whole system is analysed from the energy consumption and

quality of detection point of view, in concert with the presented analysis.

4.9.1 System Model and Problem Formulation

The motivation is to maximise the energy-e�ciency understood as quality of detection to total

network power consumption ratio. The EE-metric employed in this section is similar to the one

introduced in eq. (4.1). ζ is the added weighing coe�cient increasing the signi�cance of the

numerator of EE:

EE = ζ
Qd

PTOT

[
1

W

]
, (4.7)

while Qd and PTOT correspond to the global probability of detection and the total power consu-

med by the network in the sensing procedure, respectively.
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Global probability of detection

The increase of energy e�ciency is worthwhile if the quality of detection is not damaged. The

probability of detection for sensing node i using energy detector is given as:

P
(i)
d = Q

(
ϵ− (M + η(i))σ̂2n√
2(M + 2η(i))σ̂4n

)
, (4.8)

where Q(· ) is a Q function, ϵ is the detection threshold from eq. (1.2), and η(i) is the signal-to-

noise ratio at the primary to secondary link acquired by the i-th node. In the adopted model,

the CFAR requirement has been applied so every node in the network experiences the same

boundary false alarm value. Thus, the detection threshold is set as constant in every node, and

therefore the key parameter a�ecting the detection probability highlighted in eq. (4.8) is the

experienced signal-to-noise ratio. In the assumed centralised-cooperation case, the FC processes

local decisions and takes the global decision according to a selected fusion rule. Three major

rules are considered in the fusion process: OR (1-out-of-N), AND (N -out-of-N) and majority

rule (⌊N/2⌋+ 1)-out-of-N .

Power consumption

The most straightforward attitude for increasing the energy e�ciency de�ned above is to reduce

the power consumption. The total power consumption PTOT in the network of N collaborating

nodes, where each node reports its sensing observations directly to FC, is given as:

PTOT =
N∑
i=1

(
P

(i)
sensing + P

(i)
reporting

)
, (4.9)

where P
(i)
sensing is the power related to spectrum sensing in node i, and P

(i)
reporting is the power

related to reporting of the sensing observation by node i to the FC. Note that P
(i)
reporting depends

on the multipath loss χ
(i)
FC in the link between the i-th sensing node and the FC, as well as on

the distance between them d
(i)
FC:

P
(i)
reporting =

σ̂2n
δ

N∑
i=1

(
erfc−1(2Pb)

)2 (
d
(i)
FC

)n
χ
(i)
FC

, (4.10)

where erfc−1(· ) is an inverse complementary error function, Pb is an assumed probability of

binary error required for transmission with BPSK modulation, n is an exponent of the received

power decrease, and δ is the coe�cient re�ecting the antennas gains, used frequency and the

path loss at the reference distance (measured in [m−n]). The e�ective SNR Λ
(i)
FC modelling the

multipath e�ects is the Exponential E�ective SINR Mapping (EESM) [83]:

Λ
(i)
FC = ln

 1

J

J∑
j=1

exp (−η(i)j )

 , (4.11)

where J is the number of the signal paths components in the link between the i-th node and the

FC, η
(i)
j is a linear value of an SNR for component j and node i. The values of EESM between
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di�erent links are mutually independent as there are channels between the nodes and the FC. If

P
(i)
sensing is the same for each node, formula 4.9 changes to:

PTOT = NP
(i)
sensing +

σ̂2n
δ

(
erfc−1(2Pb)

)2 N∑
i=1

(
d
(i)
FC

)n
χ
(i)
FC

. (4.12)

Power consumption for node selection. Node selection technique has been described in

Section 4.4. The energy savings are based on the idea that in case of unreliable or highly correlated

sensing observations, it is more e�cient to select a subset of nodes to perform the sensing. The

unselected nodes turn then to the sleeping mode in which they are allowed neither to sense, nor to

report the sensing outcomes. Thus, the total sensing-related energy consumption in the network,

where W nodes is selected (W ∈ [1, N ]), is as follows:

P selection
TOT =

W∑
i=1

(
P

(i)
sensing + P

(i)
reporting

)
+ Psharing, (4.13)

where Psharing is the energy related to the information sharing, i.e., to the additional information

exchange needed before nodes selection or relaying procedures. In the information sharing pro-

cedure, each node is �rst obliged to send its information to the FC, and then, the FC�on the

basis of these messages�prepares node selection or/and relaying scheme and sends the broad-

cast message to the entire network. The power needed for message broadcasting is su�ciently low

when compared with the sum of energy costs related to the transmission of separate messages by

nodes, and may be neglected. Thus, the power of information sharing is de�ned as follows:

Psharing =

N∑
i=1

P
(i)
reporting. (4.14)

Power consumption in relaying scenario. In the case of relaying scenario, one or a few nodes

serve as relay to forward local sensing observation to the FC. This is particularly bene�cial when

the relay node has a high quality channel to the FC, and could apply low transmit power, while

other nodes experience bad channel qualities to the FC due to, e.g., shadowed signal, and their

transmission-power cost could be high. In the relaying scenario, the total power consumed is

given as:

P relaying
TOT = NP

(i)
sensing + P relaying

reporting + Psharing, (4.15)

where P relaying
reporting is the reporting power for all nodes in the network for the relaying scenario. The

assumed relaying strategy is the so-called Decode and Forward (DAF). The reporting power for

node i and relaying node r is equal to:

P
(i,r)
reporting =

(
erfc−1(2Pb)

)2
(
d
(i)
r

)n
Λ
(i)
r

+

(
d
(i)
FC

)n
Λ
(i)
FC

 , (4.16)

where d
(i)
r and Λ

(i)
r is the distance and the e�ective SNR of the link between nodes i and r,

respectively.
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Figure 4.6: Exemplary topology of the network of three sensing nodes and one Fusion Centre. Note the

exemplary values of the SNR between the PU and the sensing nodes, the calculated P
(i)
d

values and e�ective SNRs between the nodes

4.9.2 Simulation Scenario

In order to verify the impact of various parameters of the CSS network on the CSS performance,

computer simulations have been conducted. The considered network area is a 100×100 m square.

The position of each sensing node is randomised by employing the two following factors: i) the

distance to the area central point modelled with the Gaussian distribution N ∼ (0, σc) and

ii) the angle between a node-to-central-point line and the horizontal axis modelled with the

uniform distribution (0, 2π). The FC is located inside the network area while the PU is outside

it with the distance to the central area point equal to dPU. In Fig. 4.6, the considered topology

is shown with three sensing nodes and one FC. The applied channel model is the six-paths ETSI

GSM 05.05 with the line-of-sight path.

The attenuation of the channel between the PU and the SU is modelled by including path-

loss, shadowing and fast fading components. The path-loss attenuation component is therefore

calculated using the known Friis formula where the received-to-transmitted signal ratio decreases

with second power of the distance. Its value is constant unless the location of the sensing node

is not changing and the PU is also stationary. The coe�cients of the shadowing component are

time- and location-dependent. Thus, as in real radio-environment, there exists a space correlation

between close SUs on the primary-to-secondary link due to similar radio environment where SUs

are located and thus similar signal re�ections from, e.g., obstacles. Moreover, the obstacles may be

time-dependent, therefore, the shadowing coe�cients, though correlated in space, may change in

time. Unlike the small-scale fading whose parameters are random in the space and time domains.

In the shadowing model, the exponential correlation proposed in [67] is employed:

R(d) = exp (−ωd), (4.17)

where exp(−ω) is the correlation coe�cient for points separated by d = 1 m, and ω is the correla-

tion coe�cient speci�c for the transmission environment. However, the calculation of exponential

coe�cients is computationally complex, thus, in [48] one may �nd the low-complex creation of
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Figure 4.7: Exemplary channel attenuation map for the simulated area 100 × 100 m. Path loss and
shadowing e�ects are included, while fast fading is omitted as the unavailable statistics;
distance to PU: dPU = 500 m

(a) Energy e�ciency (b) Global probability of detection (c) Number of nodes

Figure 4.8: Simulation results vs distance to Primary User (dPU), N = 5, σc = 5 m, FC in the central
area point

the shadowing map with correlated coe�cients. Its low complexity is based on the observation

that calculation of correlation coe�cients just on the basis of a couple of neighbour values is suf-

�cient enough and is vulnerable with low error. In Figure 4.7, one may �nd a map of correlated

coe�cients for the considered network area with the resolution of 1 m and ω equal to 1/20.

Finally, the fast (small-scale) fading coe�cients in the channels between the PU and the

sensing nodes are independent for every node and are modelled with Rayleigh distribution with

parameter σFAD.

4.9.3 Simulation Results

The set of selected simulation parameters is as follows: ζ = 104,M = 50, P
(i)
ftarget

= 0.1, P
(i)
sensing =

10 µW, J = 200, Pb = 10−6, σc = 5 m and σFAD = 0.5.
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(a) Energy e�ciency (b) Global probability of detection (c) Number of nodes

Figure 4.9: Simulation results vs various distance of Fusion Centre from central area point, N = 5,
dPU = 500 m, σc = 5 m

(a) Energy e�ciency (b) Global probability of detection (c) Number of nodes

Figure 4.10: Simulation results vs various spread of nodes σc, N = 5, dPU = 500 m

(a) Energy e�ciency (b) Global probability of detection (c) Number of nodes

Figure 4.11: Simulation results vs various number of nodes N , dPU = 500 m, σc = 5 m

The energy e�ciency has been analysed in four possible scenarios. In the �rst one, referred

in the remainder of the section as cooperative, all sensing nodes transmit observations directly

to the FC regardless of the experienced SNR and locations. Thus, in such a basic scenario, no

information-sharing phase is needed. The second scenario is the one which employs node selection,

referred as cooperative with sleeping. In that scenario, the number of selected nodes may vary

from 1 to N − 1. Moreover, all possible network topologies have been considered. Therefore,

2N − 2 possibilities have been analysed and the topology with the highest energy-e�ciency has

been selected. E�cient network organisation employed in the form of relays is the next scenario,

referred as cooperative with relaying, where some constraints regarding the relays have been

set: �rst, on the link between any sensing node and the FC no more than one relay node may

serve (nodes may transmit data directly to FC or via one relay node). Second, one relay may
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forward data of many nodes under the DAF employment. Thus, the number of analysed cases

in the relaying scenario is equal to
∑N−1

i=1

(
N
i

)
iN−1. The last scenario is a merge of the last two

aforementioned, referenced as cooperative with sleeping and relaying.

In Figs. 4.8, 4.9, 4.10, 4.11 one may analyse sensing performance under the various metrics

uni�ed for all �gures. First, in case (a) the energy e�ciency is shown; second, the global pro-

bability of detection is presented in (b), and �nally, the number of active nodes (those which

are not in a sleeping-mode) and reporting nodes (i.e., the nodes which are transmitting sensing

observations directly to FC or are serving as a relay) can be seen in the relaying scenario (c).

In Figure 4.8, the sensing-related metrics are shown for the varying distance from the central

area point to the PU (dPU). In Fig. 4.8b, one may observe that below ca. 500 m, Qd is close

to 1 so it is su�ciently high, while for dPU > 500 m the signi�cant detection degradation is

observed. Thus, the most signi�cant energy e�ciency is observed for below-500-m-region in sce-

narios denoted as cooperative with sleeping and cooperative with sleeping and relaying (Fig. 4.8a).

For lower signal-to-noise ratios, where detection quality is lower (i.e., when dPU > 500 m), the

most energy-e�cient is the basic cooperative scheme. The highest EE for low dPU is caused by

selection of one node on average (see Fig. 4.8c). Moreover, the number of reporting nodes (and

as a consequence a number of relays) does not depend on dPU.

As in previous set, the Fusion Centre has been assumed to be at the central point of the

network, the next idea is to analyse the in�uence of the position of the FC. In Fig. 4.9, the results

in the function of the distance from the centre of the network area to the FC are shown. The

minimum distance 0 means that the FC is located in the central point of the network. Note that

the closer the FC to the group of nodes, the higher the EE. Moreover, the global probability

of detection is stable (Fig. 4.9b) except for the case when relaying and sleeping is adopted. In

Fig. 4.9b, one may observe that the number of reporting nodes is getting close to 1 when the

FC is far from the group of sensing nodes (at the distance greater than 15 m). Moreover, it is

interesting that the number of selected nodes in the scenario with sleeping nodes decreases, while

it increases when relaying is also considered (Fig. 4.9c). Thus, the use of relays when the FC is

outside the network area is advantageous in terms of power savings.

In Figure 4.10, the analysis regarding the spread of sensing nodes is conducted. The highest

energy e�ciency is observed for low spread of nodes (Fig. 4.10a). The EE for scenarios which

include sleeping is additionally higher than in cooperative and in cooperative with relaying sce-

narios. However, this gain is caused by the selection of very few nodes (Fig. 4.10c), and thus is

vulnerable to the decrease of global detection probability (Fig. 4.10b). The number of reporting

nodes in the cooperative with relaying scenario does not depend on the nodes spread.

The simulation results comparing the EE for a di�erent number of sensing nodes in the

network area (Fig. 4.11a) show that the EE in all scenarios decreases, while the number of

cooperating nodes increases due to the larger number of links, and therefore larger amount

of energy consumed for sensing, information sharing and reporting. However, a larger number

of nodes introduces diversi�cation and increases the global probability of detection (Fig. 4.11b).

Finally, the number of selected nodes and/or reporting nodes increases for all cooperative-sensing

scenarios with an increase of the number of nodes (Fig. 4.11c).
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Conclusion

The presented analysis shows that the energy e�ciency in the network of sensing nodes may

be signi�cantly increased while keeping the detection quality su�ciently high. The applied node

selection and relaying techniques have, however, highlighted the issue that this optimisation

should be designed carefully. Node selection brings substantial energy bene�ts when quality of

the link between the PU and the SU is su�ciently high. However, a joint scheme of relaying

and node selection may not be substantially more energy-e�cient than the basic cooperative

scenario. This is caused by the high energy cost of the information sharing phase when each node

has to send its channel-quality indicator to the FC. Thus, it is not always bene�cial to adopt

sophisticated network organisation. Finally, the EE decrease is observed for increasing distance

to the PU and to the FC, for the increasing spread of nodes and the increasing number of nodes

in the network.

4.10 Energy-E�cient Cooperative Spectrum Sensing with a Mer-

ged Clustering Measure

As it is concluded in the previous section, if the number of nodes is increasing, then the detection

quality is also enhanced. Certainly, the more cooperating nodes, the more links between them and

more interchanged messages. One may constitute the following trade-o�: the higher the number

of cooperating nodes, the better the spectrum sensing reliability but at the same time the higher

amount of data for exchange. In order to minimise the load of the system due to the huge

amount of control messages to be exchanged, it would be advisable to cluster the nodes, identify

the Cluster Head (CH) and exchange the messages only between the cluster heads. On the other

hand, in the traditional attitude applied in the previous section and known as centralised sensing,

there exists no CH and the overall network organisation is simple.

In a wider context, the key idea of grouping nodes operating in the dense network into clusters

is to optimise the whole network based on the de�ned criteria, for example, to reduce the number

of exchanged messages or to reduce the mutual interference between the nodes. Typically, these

goals are achieved in a way that neighbouring nodes that ful�l the prede�ned selection criteria

are gathered, and the chosen representative of that cluster, i.e., CH, interacts with the rest of the

network on behalf of all the nodes in this cluster. Two important issues can be identi�ed here:

one is the way how the clusters are created, and the second, how to select the CH e�ciently. In

this thesis, in Section 3.2, one may �nd the correlation-based clustering scheme where a novel

leader selection metric is proposed.

One may envisage various criteria for cluster creation, such as nodes density, the distance

between nodes and cluster head, channel characteristic between the node and the PU or the node

and the cluster head, signal-to-noise (SNR) ratio acquired by node, nodes battery life, nodes

mobility etc. In this work the focus is put on two criteria: the �rst is based on SNRs experienced

by nodes [129], and on the observation that nodes located in a similar area may experience similar

radio channel conditions and then be correlated. Therefore, the correlated nodes bring similar

sensing results and may make common decisions since the energy consumption may be limited

[150]. The second analysed option is the cluster formation on the basis of distances between
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nodes. It has been observed that the distance is mainly proportional to the energy devoted to

message spread. Thus, the motivation of the work presented in this section is to �nd the best

proportion between nodes' distances and nodes' signal-to-noise ratios in order to �nd the most

e�cient cluster formation in terms of energy e�ciency, as proposed later in Section 4.10.1.

4.10.1 System Model

The aim in the optimisation is to maximise the energy e�ciency according to the metric introdu-

ced by the author of the thesis in eq. (4.7). The reliability of the global decision is not di�erent

in node clustering and is given by the formula in Section 1.2.3, and depends on the number of

cooperating nodes.

Power consumption in clustering

Power consumption in the network with the applied clustering depends on the power devoted

for sensing P
(i)
sensing and the power devoted for reporting the sensing information from cluster

member i to the CH P
(i,CH)
reporting. The �rst indicator is persistent irrespective of the applied network

organisation, while the second is highly dependent on the applied network organisation. Thus,

the total power consumption in the network of N cooperating nodes where clustering is applied

and C clusters has been formed C > 1 is equal to:

PTOTAL =
N∑
i=1

P
(i)
sensing +

C∑
i=1

P
(CH,FC)
reporting +

N∑
i=C

P
(i,CH)
reporting + Psharing, (4.18)

where P
(CH(i),FC)
reporting is the power devoted to forward the sensing observations from cluster members

by the appropriate CH to the FC and Psharing is the power devoted for message interchange

between the nodes in order to form clusters and nominate cluster leaders. The sensing observation

from node i to its cluster head are reported with the power:

P
(i,CH)
reporting =

(
erfc−1(2Pb)

)2 (d(i)CH

)n
Λ
(i)
CH

. (4.19)

While the power consumed by the CH in order to report the sensing observations to the FC is

equal to:

P
(CH,FC)
reporting =

(
erfc−1(2Pb)

)2 (d(CH)
FC

)n
Λ
(CH)
FC

+ κ, (4.20)

where κ is the power devoted in Cluster Head to merge the cluster-members sensing-observations

(e.g., by applying decision fusion) into one message sent to the FC under the assumption that the

DAF procedure is followed. Therefore, if the sensing power is equal in each node and the Psharing

is the power devoted to sense one message with parameters to the fusion centre, then the total

consumed power in clustering simpli�es to:

PTOTAL = NPsensing +

C∑
i=1

P
(CH,FC)
reporting +

N∑
i=C

P
(i,CH)
reporting + Psharing. (4.21)
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SNR- and distance-based clustering

E�cient clustering may be conducted according to the various criteria. The analysis presented

in this section has covered two. In the �rst instance, correlation of signal-to-noise measures

experienced by the nodes is taken into account. By selection of a given number of nodes according

to this criterion, the highest global detection probability is guaranteed, as stated in [129]. However,

for energy e�ciency the quality of detection is one side, yet relevant. The other side is the

energy consumption which depends on various phenomena. In this context, the distance-based

clustering is proposed which takes into account the topology of the analysed network and aims

at the minimisation of the overall energy consumption. Thus, putting these two attitudes into

one merged measure gives the merged clustering measure:

γ
(i,k)
merged(λ) = λd

(i,k)
normalised + (1− λ)SNR

(i,k)
normalised, (4.22)

where γ
(i,k)
merged is a merged clustering measure between node i and k, λ is a weighing coe�cient

of distance and SNR, and d
(i,k)
normalised is the normalised distance between node i and k, while

SNR
(i,k)
normalised is the normalised signal-to-noise-ratio from i-th to k-th node.

The merged correlation coe�cients are then calculated for each pair of nodes and put into

correlation matrix A (eq. 4.23):

A =


γ
(1,1)
merged γ

(1,2)
merged · · · γ

(1,k)
merged

γ
(2,1)
merged γ

(2,2)
merged · · · γ

(1,k)
merged

...
...

. . .
...

γ
(i,1)
merged γ

(i,2)
merged · · · γ

(i,k)
merged

 . (4.23)

The correlation between nodes is reciprocal, thus, the array A may be transformed to upper-

triangular array Ã:

Ã =


0 γ

(1,2)
merged · · · γ

(1,k)
merged

0 0 · · · γ
(1,k)
merged

...
...

. . .
...

0 0 · · · γ
(i,k)
merged

 . (4.24)

The clusters are then formed proceeding the clustering algorithm leveraged from Section 3.2.

In short, the procedure follows the following steps. First, in correlation array Ã the highest

correlation coe�cient is found. Thus, a pair of nodes with the highest correlation is selected and

clustered. Then, the next highest correlation value is taken from the array. If both nodes have

not been put in clusters so far, then they form the next cluster. If one of them is a member of

a previously formed cluster, then the second node becomes a candidate. A candidate may join

the cluster when it is correlated with every cluster member at the level of at least β. If not, then

the candidate is not clustered. In an exceptional case when two candidates (nodes previously

included into disjoint clusters) want to form a cluster, it is possible that their clusters are merged

and form a common one. It is possible if all members of both clusters have correlation of no less

than β. The procedure is repeated until all pairs of nodes with correlation greater than β from

array Ã are analysed.
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The result of the clustering procedure completed in the network of N nodes is the formation

of C clusters. Please note that the node may not become the member of any cluster unless it

has ful�lled the correlation requirement. In that case, the node is referred as alone. This case

is particularly possible while the node is separated from other network members in terms of

distance or received signal-to-noise ratio.

4.10.2 Simulation Results

The motivation staying behind the presented research is to assess if it is more bene�cial in terms

of EE to cluster nodes according to the distance or the SNR. To that end, �ve various scenarios

have been employed, with three being the reference scenarios and two speci�c scenarios.

In the group of the reference scenarios, the �rst is the cooperative algorithm where all nodes

sense the spectrum and transfer decisions directly to the FC, referred similarly to the notation

found in previous section as cooperative. The second reference scenario is the scheme where node

selection is applied according to the SNR criterion. N/2 nodes with the highest experienced SNR

in the link between the PU and the SU is selected and, thus, allowed to conduct spectrum sensing

and report its observation. The unselected nodes turn into sleeping and neither can sense, nor

report. The scenario is named in the remainder as SNR selection. Similarly, in the third case,

node selection is employed, this time according to the lowest energy consumption in the reporting

link from the SU to the FC. The last, energy selection is the selection of N/2 nodes which have

the lowest energy consumption at the reporting links (from SU to FC).

Apart from the references scenarios, two sophisticated scenarios have been introduced. The

�rst one is the clustering with the novel merged clustering measure, as introduced in eq. (4.22).

In this scenario, referred as clustering, N nodes take part in the clustering and C clusters are

formed. The weighing coe�cient λ is the variable in conducted simulations, thus, among analysed

cases one may �nd such where just the distance between nodes is taken for cluster formation

(λ = 1) or only the SNR is taken for cluster formation (λ = 0), or these two have been mixed

(λ ∈ (0, 1)).

However, the sensing conducted by all network members, even if the e�cient network organi-

sation is applied in the form of clustering, is not always bene�cial, as stated in the conclusion of

Section 4.9. Therefore, in the �fth scenario the clustering with applied node sleeping is analysed.

The clusters are formed according to the same procedure. Then, a part of nodes is selected, i.e.,

cluster heads and alone nodes. Thus, the number of selected nodes in that scenario is �oating

and depends on the amount of correlation in the considered network.

In Fig. 4.12, the results of the simulations are presented. One may see the �ve scenarios,

where three are the reference scenarios whose results are constant in terms of λ. The reason is

that, as stated in the above paragraphs, these scenarios do not employ the clustering approach

with the merged measure and their performance results are conducted as reference.

Thus, in Fig. 4.12a, the detection quality is plotted. Although the OR rule is applied, the

global probability of detection depends on the number of nodes. On this account the greatest

value is observed in schemes where all members of the network take part in spectrum sensing

(cooperative and clustering). In three lowest cases, the subset of network members is allowed to

sense, thus, the Qd is lower. In SNR selection its value is the greatest (among the selection cases)

even though in the clustering and selection case more nodes (at mean) take part in sensing (see



112 CHAPTER 4. ENERGY-EFFICIENT CSS

0 0.2 0.4 0.6 0.8 1
λ

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Q
d

cooperative
clustering
clustering with selection
SNR selection
energy selection

(a) Quality of detection

0 0.2 0.4 0.6 0.8 1
λ

0.5

1

1.5

2

2.5

3

3.5

4

4.5

E
ne

rg
y 

E
ffi

ci
en

cy

cooperative
clustering
clustering with selection
SNR selection
energy selection

(b) Energy E�ciency

0 0.2 0.4 0.6 0.8 1
λ

4

5

6

7

8

9

10

11

12

N
um

be
r 

of
 a

ct
iv

e 
no

de
s

cooperative
clustering
clustering with sleeping
SNR selection
energy selection

(c) Number of active nodes

Figure 4.12: Performance of the clustering scheme with a merged clustering measure for various weighing
coe�cient λ, σc = 5 m, N = 12

Fig. 4.12c). Thus, when employing the node selection, the best quality of detection is possible if

the sole SNR-criterion is employed.

Energy e�ciency, plotted in Fig. 4.12b, is in�uenced by detection quality (plotted in Fig. 4.12a)

and power consumed by the network of nodes. In three reference scenarios the highest EE is obse-

rved for SNR selection, while the lowest for cooperative. Clustering approach is the most e�cient

if the sole distance-criterion is applied in cluster formation. Although in that case the quality of

detection is persistent, the EE increase is caused by the low energy consumption in reporting

links while clustering according to the sole distance metric (λ = 1) is applied. Clustering with

selection brings the greatest EE among all solutions for λ = 0. This scenario brings the minimum

value of the energy e�ciency for weighing coe�cient λ = 0.6. This is in�uenced by the number

of selected nodes (plotted in Fig. 4.12c) which is the biggest for mediocre weighing coe�cient

and caused by the lowest correlation in the network for these assumptions.
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Conclusion

In the presented work the merged clustering measure has been proposed by the author of the

thesis. The conducted simulations have shown that in low-SNR region, where quality of detection

is relevant, it is bene�cial to allow all nodes to sense the spectrum and form them into clusters

according to the sole distance-criterion. However, the node selection may be added to the cluste-

ring, thus guaranteeing even higher energy e�ciency, under the constraint that detection quality

degradation is acceptable. Moreover, the clustering should be conducted according to the sole

SNR-criterion. Among the presented reference scenarios, the reasonable performance, both in

terms of detection quality and energy e�ciency, is possible in the case of SNR selection.





Chapter 5

Conclusions

Based on the research and practical experiments conducted by the author of this thesis, regarding

both the autonomous and cooperative spectrum sensing, the following conclusions can be drawn.

An energy detector may be enhanced by the application of the Sequential scheme. The

conducted simulations and performed implementation have shown that within this technique

the mean sensing time may be limited. However, the sensing reliability is insu�cient. Thus, the

SPCAF method has been applied, which is a cyclostationary-based approach and allows one to

substantially improve detection probability at the cost of extended complexity. Therefore, hybrid

scheme is proposed to join both the advantages of ED's simplicity and cyclostationary-based

reliability into a hybrid approach. The aforementioned algorithms have been implemented by

the author of the thesis on USRP platforms and the conducted implementations unveil various

e�ects that may cause performance limitation. Thus, the sensing methods need to take into

account hardware impairments such as DC o�set, in�uence of temperature or various noise �oor

level. To address these issues the author of the thesis proposes the Sequential Pragmatic EnErgy

Detection (SPEED) approach which allows one to reduce false alarm rate observed after the

implementation of other schemes. Moreover, the key issue in energy detector is the proper noise

estimation. Under the existing noise uncertainty limitation observed in each device, it is crucial to

guarantee the accurate noise estimation. Three di�erent methods have been tested. The general

conclusion is that because the noise distribution observed in sensing device is not �at, it needs

more scienti�c interest in order to guarantee reliable spectrum sensing.

Limited reliability in single-node detection may be improved by introducing cooperation

between nodes resulting in greater spatial diversi�cation. The prolonged implementation of the

cooperative algorithm has shown that the cooperative detection results may be actually impaired.

However, the proposed signal analysis directions may strictly improve the cooperative detection

performance. The quality of performed sensing may be even further improved by the applied

learning mechanisms that may build the spectral awareness, which is one of possible avenues

for further investigations. There still exist many research directions such as correlation-based

cooperation with included mobility. The proposed node grouping and selection algorithm that

takes into account both sensing performance and mobility has been proposed by the author of the
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thesis by introducing the leader selection metric. The introduced solution allows for the decrease

of the number of grouping procedures. Moreover, in the correlated scenario it is possible to select

one-fourth sensing devices out of their total number while keeping the sensing reliability at the

same level and lowering the energy consumption.

Regarding the energy consumption limitation, the author of the thesis has put emphasis on

de�ning the energy e�ciency in CSS and has proposed classi�cation of cooperative approaches. In

the de�nition of energy-e�ciency, the author focused on the quality of detection which should be

taken into account when the energy-e�cient CSS is proposed. Moreover, the author unveiled the

original possibility of EE-approaches classi�cation. The conclusion is that the approaches existing

in the literature merely focus on a few aspects of EE-optimisation, usually take one or two of

them into account. However, there exists a great area of opportunities when more directions

taken together bring visible gains. On the other hand, there is a risk that employing a complex

algorithm may not bring signi�cant bene�t over limited factors optimisation because the fact, that

employing of one EE-optimisation area limits the other. Thus, the dependency matrix has been

proposed in order to highlight dependencies between the optimisation areas. Moreover, the other

employed tool, which is a rose-chart, has shown that it is impossible to �nd a universal algorithm,

optimised for all use cases. The proposition is rather to neatly select the areas for optimisation

on the basis of practical systems and goals. The presented energy-e�cient solutions have shown

that employing the energy-e�cient approaches is not always straightforwardly bene�cial. For

example, sensing nodes selection and application of a sleep mode bring many bene�ts, however,

the conducted research has shown that node relaying under the applied model consumes more

energy than it really saves. The other point of view in sensing nodes clustering procedure is

to take into account not only the acquired (sensed) signal-to-noise ratio but also the distance

between the nodes which in�uences the energy consumption.

The author believes that the above conclusions allow to claim that the thesis of the dis-

sertation has been proved, i.e., that there exist new methods for spectrum sensing providing

both higher reliability and energy-e�ciency. Some of these new methods have been proposed and

evaluated in this dissertation.
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