
Poznań University of Technology
Faculty of Computing

Automatic generation of user manual
for web applications

Bartosz Alchimowicz

A dissertation
submitted in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy.

Supervisor: Jerzy Nawrocki, PhD, Dr Habil.
Co-supervisor: Mirosław Ochodek, PhD

Poznań, Poland, 2015

A B S T R A C T

Context: Elaboration of a good quality user documentation is a time consuming task. Any
inconsistency between user documentation and software has a number of negative impli-
cations. Users often perceive errors or omissions in user documentation as errors in the
application, which results in bad opinion about the product and increases costs of support
(according to Mike Markel, the cost of one support call in 2008 was about $32).
User documentation comprises not only user manual but also explanations, including expla-
nations of syntax of fields in web application forms, often called field explanations, for short.
These explanations usually have the form of short messages (for example, in HTML5, field
explanation is given as attribute title of tag input).
Time pressure negatively affects quality of user documentation. Thus, the questions arises,
whether it is possible to help software vendors by automating at least part of the work
associated with the creation of user documentation.

Objective: The aim of this thesis is to investigate the possibility of automatic generation of
user documentation whose quality were similar to content created by a human.

Method: Evaluation criteria, commonly referred to as a quality model, are needed to deter-
mine whether the quality of an automatically generated document is similar to the quality of
a corresponding document prepared by a human. Literature review revealed that the existing
quality models for manuals are too detailed and too lengthy (e.g. ISO standards 26512, 26513,
and 26514 contain about 700 low-level control questions, which can be regarded as evalua-
tion criteria). Therefore, a new quality model for user manual was proposed, called COCA,
which comprises four criteria: Completeness, Operability, Correctness, and Appearance. For
quantitative evaluation of operability the Documentation Evaluation Test method (DET) has
been used, which is based on Browser Evaluation Test.
To check feasibility of automatic generation of user documentation prototypes of the two
tools have been developed:

• a field explanation generator (an input to the generator is a regular expression de-
scribing the syntax of the field), and

• a user manual generator (this generator uses a project’s business case, requirements
specification, including use cases, acceptance tests, and a working software).

The quality of the generated manual was evaluated using the COCA model and the DET
method, while the quality of generated explanations was empirically investigated using the
understandability criterion.

Results: The outcome of the research can be summarized in the following statements:

• It is possible to automatically generate field explanations whose quality is no worse
than quality of a description provided by a human. In the conducted experiments
84.0% of correct answers have been obtained for field explanations generated by the
prototype tool and less than 79% for field explanations written by humans.

• It is possible to generate a user manual whose quality is no worse than a manual
written by a human. In the experiment based on the commercial system Plagiat.pl
percentage of correct answers for the user manual generated by the prototype tool
was about 85% and for the original user manual it was almost 83%. The average
time spent by a subject on searching the user manual to find the answer to a given
question was 2:41 min for the prototype tool, and 2:27 min in the case of the original
manual. Although, the generated manual proved “slower”, the difference of 10% seems
neglectable.

Conclusion:
It is possible to automate significant part of work related to the creation of user documenta-
tion. However, it requires maintaining good quality requirements specification and scripts for
automated acceptance testing.

Politechnika Poznańska
Wydział Informatyki

Automatyczne generowanie instrukcji obsługi
dla aplikacji internetowych

Bartosz Alchimowicz

Rozprawa doktorska

Promotor: dr hab. inż. Jerzy Nawrocki
Promotor pomocniczy: dr inż. Mirosław Ochodek

Poznań, 2015

S T R E S Z C Z E N I E

Kontekst: Opracowanie dobrej dokumentacji użytkownika jest czasochłonne, a ewentualne
niezgodności dokumentacji z oprogramowaniem niosą szereg negatywnych implikacji. Braki
lub błędy w dokumentacji są często odbierane przez użytkowników jako błędy w aplikacji,
co skutkuje złą opinią o produkcie i prowadzi do wzrostu kosztów wsparcia technicznego
(według Mike’a Markela koszt wsparcia telefonicznego dla jednego zgłoszenia wynosił w 2008
roku około $32).
Dokumentacja użytkownika obejmuje oprócz instrukcji obsługi (podręcznika) także objaśnie-
nia, w tym objaśnienia dotyczące składni pól w formularzach aplikacji internetowych, zwane
krótko objaśnieniami pól. Objaśnienia te mają zazwyczaj formę krótkich komunikatów (na
przykład w języku HTML5 objaśniania pól podaje się jako atrybut title znacznika input).
Presja czasu negatywnie wpływa na jakość tworzonej dokumentacji użytkownika. Powstaje
zatem pytanie, czy można pomóc producentom oprogramowania poprzez automatyzację
choćby części prac związanych z tworzeniem dokumentacji użytkownika.

Cel: Celem pracy jest zbadanie możliwości automatycznego generowania dokumentacji
użytkownika o jakości zbliżonej do materiałów opracowywanych przez człowieka.

Metoda: Aby móc stwierdzić czy jakość automatycznie wygenerowanego dokumentu jest
zbliżona do jakości analogicznego dokumentu wytworzonego przez człowieka potrzebne
są kryteria oceny, których zbiór nazywa się potocznie modelem jakości. Analiza literatury
wykazała, że istniejące modele jakości dla instrukcji obsługi są zbyt drobiazgowe (np. stan-
dardy ISO 26512, 26513 i 26514 zawiera około 700 bardzo szczegółowych pytań kontrolnych,
które można by traktować jako kryteria oceny). Dlatego też opracowano nowy model jako-
ści dla instrukcji obsługi, nazwany COCA, obejmujący cztery kryteria: kompletność (ang.
Completeness), operowalność (ang. Operability), poprawność (ang. Correctness) i wygląd
(ang. Appearance). Dla ilościowej oceny operowalności wykorzystano metodę Documentation
Evaluation Test (DET) bazującą na Browser Evaluation Test.
Zbadanie możliwości automatycznego generowania dokumentacji użytkownika polegało na
opracowaniu prototypów dwóch narzędzi:

• generatora objaśnień pól (wejściem dla generatora jest wyrażenie regularne opisujące
składnię pola) i

• generatora instrukcji użytkownika (generator ten wykorzystuje w swoim działaniu uza-
sadnienie biznesowe projektu, specyfikację wymagań obejmującą przypadki użycia,
testy akceptacyjne oraz działające oprogramowanie).

Jakość wygenerowanej instrukcji obsługi oceniono w oparciu o model COCA i metodę DET, a
jakość generowanych objaśnień w oparciu o jedno kryterium jakim jest zrozumiałość.

Wyniki: Z przeprowadzonych badań wynikają następujące wnioski:

• Możliwe jest automatyczne generowanie objaśnień pól o jakości nie gorszej niż opisy
opracowywane przez człowieka. W przeprowadzonych eksperymentach uzyskano
84.0% poprawnych odpowiedzi w oparciu o automatycznie wygenerowane objaśnienia
pól i mniej niż 79% poprawnych odpowiedzi w oparciu o objaśnienia napisane przez
uczestników eksperymentu.

• Możliwe jest wygenerowanie instrukcji obsługi o jakości nie gorszej niż instrukcja
opracowywana przez człowieka. W eksperymencie bazującym na komercyjnym syste-
mie Plagiat.pl, procent poprawnych odpowiedzi dla instrukcji obsługi wygenerowanej
przez prototyp wynosił około 85%, a dla oryginalnej instrukcji obsługi wynosił pra-
wie 83%. Średni czas wyszukania odpowiedzi w instrukcji obsługi na pytanie zadane
uczestnikom eksperymentu wynosił 2:41 min dla prototypowego narzędzia, i 2:27
min dla oryginalnej wersji instrukcji. Mimo, że wygenerowana instrukcja okazała się
“wolniejsza”, różnica 10% wydaje się być pomijalna.

Konkluzja: Możliwa jest daleko idąca automatyzacja prac związanych z wytwarzaniem do-
kumentacji użytkownika pod warunkiem, że pracom stricte programistycznym towarzyszy
dbałość o specyfikację wymagań i skrypty automatyzujące testy akceptacyjne.

Acknowledgments

This thesis could not have been written without the help of numerous people. I

would like to take this opportunity to mention some of them.

First of all, I would like to extend my gratitude to Professor Jerzy Nawrocki. He

guided me through the exciting world of research problems and showed that every

challenge can be a beautiful adventure. Without his support and feedback I could

have never conducted the research presented in this thesis.

Many thanks go to my colleagues, with whom I had the pleasure to collabo-

rate: Magdalena Deckert, Sylwia Kopczynska, Jakub Jurkiewicz, Michał Maćkowiak,

Mirosław Ochodek, Konrad Siek, Marcin Szajek, Bartosz Walter, Wojciech Wojciecho-

wicz, Adam Wojciechowski. They were always eager to listen and help me with the

problems I encountered.

Experiments are an important part of this thesis. I would like to thank students

from Poznań University of Technology for their time. It was with their help that I was

able to conduct many experimental evaluations.

I am greatful to the Authorities of the Institute of Computing Science at Poznań

University of Technology for creating an environment in which I could develop my

skills as a researcher and work with my colleagues.

I would like to thank the Polish National Science Center for supporting my rese-

arch under the grant DEC-2011/03/N/ST6/03016.

Last but not least, I want to show my appreciation to my parents, sister, girlfriend

and friends for their constant support and encouragement during my work on this

thesis.

Bartosz Alchimowicz, Poznań, March 2015

List of journal papers by Bartosz Alchimowicz
(sorted by 5-year impact factor)

Symbols:
IF = 5-year impact factor according to Journals Citations Report (JCR) 2013
Ranking = ISI ranking for the Software Engineering category according to JCR 2013
Citations = citations according to Google Scholar, visited on 2015-02-23
Ministry = points assigned by Polish Ministry of Sci. and Higher Education as of Dec. 2014.

1. M. Ochodek, B. Alchimowicz, J. Jurkiewicz, J. Nawrocki: Improving the reliability
of transaction identification in use cases, Information and Software Technology,
53(8), pp. 885–897, 2011. DOI: 10.1016/j.infsof.2011.02.004
IF: 1.583; Ranking: 24/105; Citations: 6; Ministry: 35.

2. B. Alchimowicz, J. Nawrocki: The COCA quality model for user documentation,
Software Quality Journal, DOI: 10.1007/s11219-014-9252-4 (available on-line
but not assigned to an issue yet)
IF: 0.889; Ranking: 68/105; Citations: 0; Ministry: 20.

3. B. Alchimowicz, J. Jurkiewicz, M. Ochodek, J. Nawrocki: Building benchmarks
for use cases, Computing and Informatics, 29(1), pp. 27–44, 2010.
IF: 0.331; Ranking: 110/1211; Citations: 12; Ministry: 15

4. B. Alchimowicz, J. Nawrocki: Generating Syntax Diagrams from Regular Expres-
sions, Foundations of Computing and Decision Sciences, 36(2), pp. 81–97, 2011.
IF: N/A; Ranking: N/A; Citations: 1; Ministry: 9

5. Ł.Olek, B. Alchimowicz, J. Nawrocki: Acceptance Testing of Web Applications
with Test Description Language, Computer Science, 15(4), pp. 459–477, 2014,
DOI: 10.7494/csci.2014.15.4.459
IF: N/A; Ranking: N/A; Citations: 0; Ministry: 8

List of conference papers by Bartosz Alchimowicz
(sorted by the Ministry points)

1. B. Alchimowicz, J. Jurkiewicz, M. Ochodek, J. Nawrocki: Towards Use-Cases
Benchmark, Lecture Notes in Computer Science. vol. 4980, pp. 20–33, 2011.
Citations: 3; Ministry: 10

2. J. Nawrocki, M. Ochodek, J. Jurkiewicz, S. Kopczyńska, B. Alchimowicz: Agile
Requirements Engineering: A Research Perspective, In: SOFSEM 2014: Theory
and Practice of Computer Science, ed. by Geffert, Viliam and Preneel, Bart
and Rovan, Branislav and Štuller, Július and Tjoa, AMin, vol. 8327, pp. 40–51,
Springer. Lecture Notes in Computer Science. 2014.
Citations: 0; Ministry: 10

3. M. Ochodek, B. Alchimowicz, J. Jurkiewicz, J. Nawrocki: Reliability of transac-
tion identification in use cases, Proceedings of the Workshop on Advances in
Functional Size Measurement and Effort Estimation, pp. 51–58, 2010.
Citations: 0; Ministry: 0

1Category: Artificial Intelligence

Contents

List of Abbreviations V

1 Introduction 1

1.1 Problems concerning user documentation in software projects 1

1.2 Aim and scope . 2

1.3 Conventions . 4

2 Selected aspects of creating user documentation for web applications 5

2.1 Audience analysis . 5

2.2 Basic types of user documentation . 6

2.3 Style guides and standards . 7

2.4 General recommendations . 8

2.5 Legal issues . 9

2.6 Cost estimation . 9

2.7 Benefits of a good quality . 10

3 Selected aspects of Natural Language Processing 11

3.1 Natural Language Understanding . 11

3.1.1 Segmentation . 12

3.1.2 Part-of-speech tagging . 13

3.1.3 Lemmatization . 13

3.1.4 Parsing . 14

3.2 Automatic Text Generation . 15

3.2.1 Input data . 15

3.2.2 Template-based approach . 16

3.2.3 Natural Language Generation . 17

3.2.4 Evaluation of language generation tools 17

4 The COCA quality model for user documentation 20

4.1 Introduction . 21

I

II

4.2 Design assumptions for the quality model 22

4.2.1 Form of user documentation . 22

4.2.2 Point of view . 23

4.2.3 External quality and quality-in-use 23

4.2.4 Context of use . 23

4.2.5 Orthogonality of a quality model 24

4.2.6 Completeness of a quality model 24

4.3 The COCA quality model . 25

4.4 Review-based evaluation of user documentation 30

4.4.1 Goal-Question-Metric approach to evaluation of user docu-

mentation . 31

4.4.2 Evaluation procedure . 33

4.4.3 Quality profile for user documentation 36

4.5 Empirical evaluation of operability . 39

4.5.1 DET questions . 39

4.5.2 Case studies . 42

4.6 Related work . 42

4.7 Conclusions . 44

5 Automatic explanation of field syntax in web applications 46

5.1 Introduction . 47

5.2 Problem . 49

5.3 Syntax-Directed Flexible Templates . 50

5.4 Grammatical attributes . 52

5.5 Conditional fragments . 56

5.6 Extensible templates . 56

5.7 General purpose attributes . 58

5.8 Idiomatic patterns . 60

5.9 Auxiliary diagrams and referring expressions 63

5.10 Gordian knots of explanation . 67

5.11 Generation of examples . 69

5.11.1 Removal . 71

5.11.2 Contamination . 72

5.12 Experimental evaluation . 74

5.12.1 Experiment design . 75

5.12.2 Operation of the experiment . 76

5.12.3 Analysis and interpretation . 77

5.12.4 Threats to validity . 79

III

5.13 Related work . 81

5.14 Conclusions . 84

6 Compiling software artifacts to generate user manuals 85

6.1 Introduction . 86

6.2 Content of a generated user manual . 88

6.2.1 Components of a user manual . 89

6.2.2 Variants of a user manual . 90

6.2.3 Completeness of selected components 90

6.3 Universal artifacts of software projects 91

6.4 Generation of a user manual . 92

6.4.1 Design assumptions . 92

6.4.2 Project database . 93

6.4.3 Templates . 94

6.5 Naive user manual . 94

6.6 Requirements concerning the operating environment 96

6.7 Exemplary usages . 97

6.7.1 Find relationships between data 98

6.7.2 Selection of acceptance tests . 99

6.7.3 Planning generation of an exemplary usage 100

6.7.4 Generating an exemplary usage 103

6.8 Glossary . 104

6.9 Early evaluation . 104

6.9.1 Exploratory study . 104

6.9.2 Improvements . 106

6.9.3 Empirical evaluation . 107

6.10 Related work . 111

6.11 Conclusions . 111

7 Conclusions 114

A COCA quality model for user documentation 116

A.1 Evaluation mandate – an example . 116

A.2 Evaluation form for Prospective Users – an example 117

A.3 Evaluation report – an example . 118

A.4 Evaluation report for profile . 119

B Compiling software artifacts to generate user manuals 121

B.1 Project database . 121

IV

B.1.1 Business Case . 121

B.1.2 Software requirement Specification 121

B.1.3 Acceptance tests . 123

B.1.4 Glossary . 123

B.2 Non-functional Requirement Templates and Technical Constraint Tem-

plates . 124

B.2.1 Cover . 124

B.2.2 Introduction . 124

B.2.3 Requirements concerning operating environment 125

B.3 The user manual generated for the Plagiat.pl web application 126

B.4 Evaluation mandate . 141

B.5 Evaluation form for Prospective User (simplified) 141

B.6 Evaluation report . 142

C Generating Syntax Diagrams from Regular Expressions 144

C.1 Introduction . 144

C.2 Overview of the proposed automatic explanation system 145

C.3 Describing field syntax with regular expressions 147

C.4 Explaining regular languages with syntax diagrams 147

C.4.1 Classical syntax diagrams . 147

C.4.2 Extended syntax diagrams . 148

C.5 Generation of a syntax diagram . 150

C.5.1 Overview of the generator . 150

C.5.2 Expression parser . 151

C.5.3 Decorator . 153

C.5.4 Explanation planner . 156

C.5.5 Generator of referring expressions 157

C.5.6 Surface producer . 158

C.6 Early evaluation . 159

C.7 Conclusions . 159

Bibliography 160

List of Abbreviations

A

ATG Automatic Text Generation

C

COCA Quality model for user documentation; the name is an abbreviation from

the following characteristics: Completeness, Operability, Correctness and

Appearance

D

DSL Domain-Specific Language

F

DET Documentation Evaluation Test

G

GUI Graphical User Interface

I

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

ISO International Organization for Standardization

IT Information Technology

N

NFR Non-functional Requirement

NLG Natural Language Generation

NLP Natural Language Processing

NLU Natural Language Understanding

NoRT Non-functional Requirements Template

V

List of Abbreviations VI

TeCT Technical Constraint Template

P

PDF Portable Document Format

POS Part of Speech

S

SE Software Engineering

SRS Software Requirment Specification

V

TDL Test Description Language

U

UC Use Case

UCDB Use Cases Database

UM User Manual

UML Unified Modeling Language™

V

VDM Vienna Development Method

Chapter 1

Introduction

1.1 Problems concerning user documentation in software

projects

User documentation is one of the deliverables in software development projects. The

aim of user documentation is to “describe, explain, or instruct how to use software”

[67, 70]. This is accomplished by writing documentation for people who perform

certain roles as users of an application (e.g. the user manual can contain chapters

aimed at different end-users, like the chief accountant or the warehouse manager).

This aim can also be realized by enriching an application with on-line explanations,

e.g. the explanation of field’s syntax in HTML5 forms.

The creation of a high quality documentation is an expensive and time consum-

ing task [79, 145]. Jones states that, for each function point1 (estimated during size

estimation) it is necessary to write 0.425 of a page in a document [79], while guide-

lines by Sun Technical Publications describes that 3-5 hours are required to create

one page of a user manual [145]. Unfortunately, common pressure to minimize costs

marginalizes tasks other then code development. The situation is additionally hin-

dered by low reuse of already written documentation. According to Jones, only 15%

of the documentation can be reused, while code reuse has been estimated for about

36% (depending on the computer language) [79].

Consequently, the quality of user documentation is often low and readers are

often dissatisfied [110, 111]. But irritation among readers is not the only issue; inaccu-

rate user documentation can lead to financial loses. For example, when documenta-

tion is unavailable, or is of low quality, a company may be forced to organize training

courses. Furthermore, users who cannot solve problems on their own may disturb

1A function point is a unit of functional size measurement in Function Point Analysis.

1

1.2. Aim and scope 2

their co-workers, thus reducing the effectiveness of the company. The same problem

may occur when an available feature is not explained. This can lead to unwanted

side effects, like removing all records in a database.

Unexpected losses are not limited to customers. End-users often ask vendors

to help them solve their problems, which results in higher support costs [98, 137].

Moreover, information about a feature in documentation which are not available in

software, may be reported as a bug in an application. All of this can negatively affect

the budget of a vendor, or the opinion about the software and the vendor.

The question arises, whether it is possible to improve the quality of user docu-

mentation in ways other than increasing its budget. One could consider automatic

generation of documentation. There are some attempts to automatize some compo-

nents of technical documentation, but most of them are dedicated to technical staff

as the target audience [52, 101, 118], and other readers seem to be neglected. The

question about evaluation criteria can be raised as well, since generation of documen-

tation can be beneficial only if the resulting content meets readers’ requirements. To

ensure good quality, one can use evaluation methods proposed in literature, however

most of them suffer from many issues. Some of them provide a number of low-level

quality criteria, (e.g. ISO 2654nm series concerning user documentation) which make

evaluation quite a time consuming task. Other approaches use non-orthogonal crite-

ria (e.g. eight measures of excellence by Markel [98]), which makes it difficult to draw

conclusions.

1.2 Aim and scope

To improve the quality of user documentation, it was decided to investigate the

following research question:

QUESTION 1. Is it possible to automatically generate user documentation for web

applications whose quality is similar to that of content created by a human?

The term user documentation is used to refer to many types of documents which

are dedicated to many roles. It was decided to limit the research by defining the

following assumption:

ASSUMPTION 1. User documentation is evaluated from the end-users’ point of view.

It was decided that the focus should be on end-users, since they appear to be

the largest group using web applications. These people often have a limited amount

of IT knowledge or experience, therefore well written documentation could be very

1.2. Aim and scope 3

beneficial to them and their employers. From the end-users’ standpoint, the user

manual and field explanations appear to be the most important.

Contemporary Internet applications use forms as a way of transferring data from

the end-user to the server. A form is a collection of fields—an end-user is expected

to enter data (text) into this type of field. Some of the fields have non-trivial syntax

which is specified by a programmer as a regular expression. Such syntax should be

explained to the end-user (for instance, in HTML5 there is an attribute called “title”,

which contains text to be displayed to the end-user). A field explanation is a piece of

information (narrative text or graphics) presented to an end-user to explain what is a

syntactically correct input to a given field of a form.

ASSUMPTION 2. User documentation comprises user manual and field explanations.

A quality model is necessary in order to compare the quality of two user manuals,

thus the following research questions are considered in the thesis:

QUESTION 2. Which evaluation criteria for user documentation should be taken

into consideration?

QUESTION 3. What is the average quality of commercially available user manuals?

To automatically generate user documentation, one must know what is to be

generated and which input data can be reused to save effort and time.

QUESTION 4. What kinds of software artifacts are widely available in software projects?

QUESTION 5. What is the expected content of user documentation and how to

generate it on the basis of artifacts available in a project?

Moreover, linguistic issues are also taken into account.

ASSUMPTION 3. The focus is on the English language, but the issue of multiple-

language user documentation is also considered, where appropriate, with special

attention paid to the Polish language.

Many parts of this thesis are based on previously published papers or reports.

Each chapter that is based on published material includes a structured abstract

summarizing its main contribution.

The thesis is organized as follows: Chapter 2 presents basic information about

user documentation. Chapter 3 describes the methods and tools of Natural Language

Processing which were used when working on the thesis. Before beginning work on

methods of automatic generation of user documentation, one needs to decide on

evaluation criteria necessary to check whether the quality of generated documenta-

tion is comparable to that of handmade one. Those criteria compose a quality model

1.3. Conventions 4

which is discussed in Chapter 4. The most important part of this thesis are Chapters

5 and 6. The former aims at generating field explanations on the basis of regular

expressions, and it proved quite a challange. The latter presents initial research

concerning generation of a complete user manual on the basis of earlier produced

artifacts, such as business case, use cases, and test cases. Chapter 7 summarizes the

results of the thesis.

1.3 Conventions

The following typographical conventions are used in the thesis:

code Program code, statements, variables, classes.

KEY TERM Margin notes about key terms and concepts appearing in the correspond-

ing paragraph.

[5] Citations to books and articles, and references to other sources of infor-

mation.

In the case of mathematical symbols and variables, their meaning is explained in

the place where they are introduced.

A number of people participated in the research. To emphasise their contribution,

the pronoun “we” is used in the thesis. However, despite the help and inspiration I

have received, I am taking full responsibility for all research and results described in

this thesis.

Chapter 2

Selected aspects of creating user

documentation for web

applications

This chapter addresses those aspects of creating user documentation which are not

discussed in further parts of this thesis. The primary focus is on activities which

should be taken into consideration by a vendor before (sections 2.1, 2.2, 2.6 and 2.7)

and during the creation of user documentation for a web application (sections 2.3

and 2.4, 2.5).

2.1 Audience analysis

Typically, there are several types of stakeholders that can play different roles within AUDIENCE

ANALYSISthe life-cycle of a web application. Some of them install the application on a server,

other may be responsible for its configuration and customization, and others still can

use it to perform their daily activities. From the perspective of user documentation,

it is important to recognize and characterize all of these roles. Such an analysis

allows vendors to select the appropriate type of user documentation (see Section

2.2), the most suitable vocabulary (either a natural language or a controlled one,

e.g., Simplified Technical English [27]), decide what to describe, how detailed the

description should be, etc.

The following traits of prospective users may be taken into consideration while

creating user documentation [61, 67, 145]:

• domain knowledge and experience,

• technical knowledge and experience,

5

2.2. Basic types of user documentation 6

• education level (including training and language level1),

• performed tasks and their frequency, and

• disabilities.

Some potential sources of such information are Software Requirement Specifica-

tion and Stakeholder Requirements Specification [61, 72].

2.2 Basic types of user documentation

According to [67, 145], the most popular types of user documentation are as follows:

• User manual—explains how to use the software; USER MANUAL

• Installation manual—describes how to install and configure software on servers

and for clients;

• Programmer manual—explains how to extend the functionality of software,

e.g., by creating plugins (if possible);

• System administration manual—informs how to maintain software and trou-

bleshoot different kinds of problems;

• Reference manual—provides details concerning the software, such as supported

functions, computer language syntax, etc.

Furthermore, a user documentation should contain explanations of syntax of fields

in application forms [67].

User documentation can also be divided by its usage mode [67]:

• instructional mode—teaches how to perform tasks using the software;

• reference mode—provides details for users who are familiar with the software’s

functions.

ISO/IEC Std 26514:2008 points out also the importance of explanations of syntax FIELD EXPLA-

NATIONSof fields in forms, often called field explanations, for short.

In the context of web applications, an instructional mode user manual can be

used by many classes of users, including IT-laymen, while other documents are more

suited to advanced users (e.g. administrators and programmers).

1For example, according to Common European Framework of Reference for Languages: Learning,
Teaching, Assessment, see [5]

2.3. Style guides and standards 7

Different organizations use various naming conventions to refer to user documen-

tation, for example, some prefer the term guide, others manual or documentation

[34, 145].

2.3 Style guides and standards

To improve the quality of user documentation, a number of guidelines were created

(in some way, they are similar to code conventions used by programmers). The most

popular style guides are:

• Microsoft Manual of Style by Microsoft Corporation (see [34]) STYLE GUIDES

• The IBM Style Guide by International Business Machines Corporation (see [37])

• Read Me First! A Style Guide for the Computer Industry by Sun Technical Publi-

cation (see [145])

In addition, there is a family of ISO/IEC/IEEE 265nn standards:

• ISO/IEC/IEEE Std 26511:2012 - Systems and software engineering – Requirements STANDARDS

for managers of user documentation—focuses on documentation management,

such as planning and controlling methods (see [74])

• ISO/IEC/IEEE Std 26512:2011 - Systems and software engineering – Require-

ments for acquirers and suppliers of user documentation—describes agreements,

requirements, constraints and other issues concerning user documentation

which are important from the acquirer’s and supplier’s point of view (see [71])

• ISO/IEC Std 26513:2009 / IEEE Std 26513-2010 - Systems and software engineer-

ing – Requirements for testers and reviewers of user documentation—presents

exemplary methods of evaluation (see [68])

• ISO/IEC Std 26514:2008 / IEEE Std 26514-2010 - Systems and software engi-

neering – Requirements for designers and developers of user documentation—

concentrates on activities carried out by a development team (see [67])

• ISO/IEC/IEEE Std 26515:2012 - Systems and software engineering – Developing

user documentation in an agile environment—focuses on issues concerning

creation of user documentation in agile environment (see [75])

Moreover, there is IEEE Std 1063-2001 - IEEE Standard for Software User Docu-

mentation (see [22]), which presents requirements for the content and format of user

2.4. General recommendations 8

documentation. This standard is superseded by the ISO/IEC/IEEE 265nm series, but

research still refers to it.

Presented guidelines and standards generally focus on two aspects:

• the process in which user documentation is created (including roles, manage-

ment documents, etc.; this topic is outside the scope of this thesis) and

• the structure, content and format of user documentation (see Section 2.4).

Additionally, style guides for general writing can be taken advantage of, such as

The Chicago Manual of Style and The Elements of Style (see [149] and [143] respec-

tively). They are not as focused on user documentation as the literature presented

above, but they can be a source of helpful advice.

2.4 General recommendations

The main goal is to create user documentation that can be easily understood by its

readers, i.e. where language complexity (grammatical structures, vocabulary and

technical terms), document organization, layout, and other elements do not create

any difficulties for the target audience. Moreover, everything should follow the rules

of a given language (grammar, punctuation, etc.) and be bias-free (i.e. without any

sexual, political, or racial stereotypes) [34, 145].

Here are the most common recommendation [34, 37, 145]:

• Use present tense and active voice.

• Use second person (direct address).

• Write simple sentences with short and plain words.

• Use vocabulary consistently, especially technical terms.

• Use anthropomorphism only when necessary (e.g., when it is a convention in a

given domain).

• Explain technical terms and abbreviations2.

• Avoid ambiguous words.

• Avoid needless words (e.g., use to instead of in order to)

• Avoid foreign words (e.g., vis-à-vis, ad hoc).

2Microsoft Manual of Style recommends not to use Latin abbreviations [34].

2.5. Legal issues 9

• Avoid humor, jargon and slang.

• Avoid idioms and nonstandard colloquialism.

When it comes to technical terms, it is important to comply with the conventions

of a given software platform (e.g. Windows, Linux) or environment (e.g. web-browser).

For example, a widget in which users enter text can be called as a Text Box (using the

class name TextBox from Google Web Toolkit) or Input (HTML). To avoid misunder-

standings, it is important to find terminology that is the most appropriate for a given

target audience.

Another problem concerns writing portable explanation (e.g., for a desktop and

web application). In these cases, one can refer to a field by its label, not its type [34].

When it comes to usage of style guides it is important to use them consistently. It

may happen that different styles propose to explain the same item using contradictory

vocabulary. For example, Microsoft’s style proposes to call [[]] as a double brackets

[34], while Sun’s style recommends phrase double square brackets and discourages

the use of double brackets [145].

The structure of a user manual is discussed in Chapter 6.

2.5 Legal issues

User documentation should protect intellectual property of companies and other

organizations [145]. The following elements should be taken into consideration when

creating user documentation:

• copyright information (including third-party copyright information);

• trademark information (terms, usage, etc.);

• identification of confidential information.

2.6 Cost estimation

According to the style guide by Sun Technical Publications [145], 3-5 hours are re- COST ESTIMA-

TIONquired to write one page of a manual and 1-3 hours are needed to revise a previously

created page. Editing takes 6-8 hours per page and indexing takes 20 minutes per

page. Furthermore, 5% of the total time of all other activities is necessary for produc-

tion preparations, and 10-15% is required for project management.

Jones states that for each function point estimated during software size estima-

tion, 0.425 of a page in the user guide is required3 [79]. This is an average value based
3Term full users guides is used in the book.

2.7. Benefits of a good quality 10

on four types of software: management information systems (0.2 page per function

point), systems software4 (0.4), military (0.8), and commercial (0.3).

2.7 Benefits of a good quality

The value of user documentation can be assessed within the following categories

(among others) [145]:

• increased benefits—increasing vendor and user profit owing to user documen-

tation, e.g., through higher sales or better productivity;

• costs saved—reducing vendor cost, e.g., through lower support and training

costs.

For instance, Spencer presented a case in which the number of support calls was

reduced from 641 to 59 over a 5-month period [137]. Taking into account that the

cost of an average support call in 2008 was estimated at $32 [98], the time spent

on improving user documentation quality is shown to be beneficial. Additionally,

Redish demonstrated an estimation made by Cover, which shows that the cost of

fixing a problem in user documentation is $123 during the edit cycle, but $3116 after

a document has already been released (this estimation includes both customers’ and

vendor’s cost; the paper was published in 1995) [124].

4Understood as Software that controls a physical device [79]

Chapter 3

Selected aspects of Natural

Language Processing

In order to automatically generate user documentation one needs first to acquire

information about the software system being documented. Unfortunately, most of

the information processed and stored in software development projects is expressed

using natural language. Therefore, in order to automatically process such loosely

structured and often ambiguous information one needs to use natural language

processing (NLP) tools—which include natural language understanding (NLU) and

natural language generation (NLG) [81, 134].

In this thesis, the goal of NLU methods is to analyze input data so that it can

be used to generate new content (Section 3.1), which can be further used to create

descriptions using NLG techniques (Section 3.2).

3.1 Natural Language Understanding

To uncover the user’s intentions, it is necessary to transform input text into an easy

to analyze form. This section describes four stages in which it can be done. Each task

focuses on one problem, discusses possible approaches and prepares data for the

next stage.

Instead of creating a new tool, we decided to use existing NLU systems for dif-

ferent purposes (like Standford [2, 3], OpenNLP [1], and Natural Language Toolkit

(NLTK) [121])

11

3.1. Natural Language Understanding 12

3.1.1 Segmentation

The goal of this stage is to divide a step into a list of words [121]. To do this, each

step must be divided into sentences (it is recommended to write a step as one simple

sentence [29], but, multiple sentences are also possible [12]); next each sentence

needs to be divided into words. Both tasks can be done using segmentation (also

known as tokenization) [49, 56, 121].

Segmentation into sentences can be done using a specified character as a bound-

ary (e.g., a period). However, not all sentences end with a period, thus regular

expressions (regexps) may support more options [6, 121]. Unfortunately, regexps can

quickly become complicated and difficult to maintain [42]. A possible solution is

using tokenizers which learn how to divide text on the basis of a training data set

(i.e. trainable tokenizers). The training can be either supervised (e.g., TrTok [99]) or

unsupervised (e.g., Punkt [87]).

For example, step Selecting committee changes the status of the application to

rejected. Use Case finishes. (exemplary step from UCDB: Quantitative Referential

Specification Full version 2.0F [12]) can be divided into the following sentences:

• Selecting committee changes the status of the application to rejected.

• Use Case finishes.

Next, each sentence is divided into words [4]. The simplest approach is to split

a sentence at the point of a space character (unsegmented languages, like Chinese,

are beyond the scope of this thesis). However, there is an issue with the punctuation

within a sentence, i.e., whether a given punctuation mark should be assigned to

the preceding or subsequent word, or perhaps left alone. It is important to divide

sentences in a way supported by a tagger. For example, the sentence No, he didn’t.

can be divided in the following ways (using word tokenizers available in NLTK [121]):

• Treebank tokenizer – "No" "," "he" "did" "n’t" "."

• Punkt tokenizer – "No" "," "he" "didn" "’t."

• Punct tokenizer – "No" "," "he" "didn" "’" "t" "."

Multi-part words and multi-word expressions are another concern. For instance,

some words are constructed from other words by joining them with a hyphen, e.g.

event-driven. To detect words of this kind, a variant of maximum matching algorithm

can be used [36]. This method uses a list of words (for a given language) and, while

analyzing text, it tries to find the longest word in that list.

3.1. Natural Language Understanding 13

There are two common outputs from this task: a list of words and the text itself,

with a list of pairs of integers (each pair marks the beginning and the end of one

word).

3.1.2 Part-of-speech tagging

This phase assigns parts-of-speech (POS) to words. Here is a small example (a period

is not a POS, but can be tagged as well):

Sentence: Actor provides data .
POS: noun verb noun period

The name of POS may vary between taggers. For example, a noun can be called a

noun, NN or any other way.

The main problem with this task is connected with the ambiguity of words. For

example, words such as book, break, cut, display, say (and many more) can be used

both as nouns and as verbs. DeRose states that over 40% of English words listed in

Brown University Standard Corpus of Present-Day American English1 have more than

one tag [38, 46].

There are two common approaches to tagging: rule-based and stochastic [81, 121].

The first approach tags words according to certain rules; for instance, one can assume

that all words which end with ing are verbs, all words which end with ment are nouns,

etc. A more advanced rule-based approach uses affix tagging [121]. In this strategy, a

tagger learns how to tag words on the basis of n-characters from words’ affix (prefix

or suffix) available in a training set.

Stochastic tagging, based on the Hidden Markov Model, computes the probability

of a word with a certain tag on the basis of training corpus [81, 82]. For example,

after the determiner the a noun will occur with a certain probability, adjective with

another, etc.

An example of a supervised learning rule-based tagger is the Brill tagger [25] and

an example of a stochastic tagger is Trigrams’n’Tags proposed by Brants [24].

3.1.3 Lemmatization

Lemmatization makes it possible to find the base form of a word, called a lemma.

For example, the lemma of the word provides is provide.

1Corpus is a collection of selected documents with tagged parts of speech

3.1. Natural Language Understanding 14

This task is often done using WordNet, an online lexical database for the English

language2 [106]. Since some words are ambiguous, it is a good practice to use POS

assigned by a tagger while searching for lemma.

There is also a Polish version of WordNet called plWordNet [39].

3.1.4 Parsing

This is the phase in which a syntactic structure is defined [81]. A syntactic structure

is often represented by a parse tree, similarly to computer languages [8].

For example, using the following rules (where N stands for a noun, V for a verb, S

stands for a sentence, VP for a verb phrase and NP for a noun phrase):

N -> actor | data

V -> provide

S -> NP VP

S -> VP

VP -> V NP

NP -> N

step Actor provides data can be represented by the following parse tree:

S

NP

N

Actor

VP

V

provides

NP

N

data
According to Jurafsky and Martin [81], the most popular strategies to construct a

parse tree are top-down (also known as goal-directed search) and bottom-up (also

known as data-directed search). Both strategies apply the grammatical rules of a

language. The difference between them is in how the parse tree is constructed. In

the top-down approach, a parse tree is build from node S down to the leaves. That is

to say, a parser takes all starting points and adds leaves to it (on the basis of available

grammar rules) until POS is reached. Trees that do not match all POS are rejected.

Trees in the bottom-up approach are constructed from the bottom, i.e. staring from

POS. The tree expands by adding grammar rules that match leaves. A tree to which

no rule can be applied is rejected.

2The tool can be tested online at http://wordnetweb.princeton.edu/perl/webwn.

http://wordnetweb.princeton.edu/perl/webwn

3.2. Automatic Text Generation 15

Due to the ambiguity of natural languages, it is possible to get more than one

parse tree. In that case Probabilistic Context-Free Grammar can be used (also known

as Stochastic Context-Free Grammar) [23, 131]. This approach adds the probability of

occurrence to every rule. When two or more parse trees are created, the probability

of each tree is computed, and the most probable is selected.

An example of a top-down parser is the Earley algorithm [41]. Its probabilistic

version was presented by Stolcke [142]. An example of a bottom-up parser is the

Cocke-Younger-Kasami algorithm [81, 85], of which the probabilistic version was

presented by Ney [109].

3.2 Automatic Text Generation

There are two common approaches to converting input data to text: template-based

and natural language generation (NLG) [81, 125, 126, 150]. Reiter proposed automatic

text generation (ATG) as a term referring to both [125].

In this thesis we use the template-based approach.

3.2.1 Input data

According to Reiter and Dale, input data for ATG systems can be divided into the

following categories [126]:

• Knowledge source—or simply a database. A source of raw information which

can be used to generate content. For example, Chapter 5 presents a system

which requires the name of a web form’s entry box along with a regular expres-

sion (used for string validation) as input.

• User model—characteristics of the reader (knowledge, experience, education,

etc.). This information can be used to adjust text to the audience. For exam-

ple, the explanation of a regular expression provided to programmers may be

different from the one given to IT-laymen (see Section 2.1).

• Communicative goal—defines what to do with available data, whether to ex-

plain, summarize, etc. For example, an explanation of metacharacters used in

a regular expression may be expected in one case, but another may demand an

in-depth explanation of how regexp works.

• Discourse history—elements that had been presented to a reader in the past.

This can prevent a generator from describing items already known or previously

explained.

3.2. Automatic Text Generation 16

When an ATG system is designed to create one type of explanation for a specified

audience only, it is not necessary to provide User model and Communicative goal. If

text optimization is not required, Discourse history can be omitted as well.

3.2.2 Template-based approach

Generally, in a template-based approach there is a data structure (a template) with

gaps which need to be filled in. [104, 125, 126]. It is possible to insert either text

(e.g., from input data) or another template (depending on how the template has been

written) inside each gap. In the end, all gaps are filled in with available data and the

text is ready to be presented.

For example, an online shopping application can show the number of items in a

cart with the following code:

switch (n) {
case 0: printf ("There are no items in your cart "); break;
case 1: printf ("There is 1 item in your cart "); break;
default: printf ("There are %d items in your cart", n);

}

An appropriate template is selected on the basis of variable n. In the case of n > 1 a

gap needs to be filled in, i.e. %d has to be replaced by a number of items in the cart.

Another example can be seen in mail-merge applications (e.g., mail-merge in

OpenOffice or MS Word) [126]. An e-mail template (with gaps) is prepared by a

human user. When messages are generated, all gaps are filled out with information

from a database. More advanced tools can customize text on the basis of available

data, e.g., there can be a version for women and men, adults and children, etc.

A more sophisticated strategy is used in YAG [103, 104]. This tool is designed to

generate single sentences, and supports embedding templates. A template is made

up of its name, default slot values (attributes) and rules for text creation. In order

to generate a sentence, one needs to provide data using a feature structure3 (which

includes name of a template). The generation starts with setting additional attributes

on the basis of information in templates. Next, rules for text creation are executed

(rules for embedded templates are run first). Finally, top-level template rules generate

the output.

YAG also supports knowledge representations described in the Semantic Network

Processing System, which can be used to input data understood by YAG.

3A feature structure is a set of attribute-value pairs.

3.2. Automatic Text Generation 17

Input data Planning

Realisation Text

Figure 3.1: Simplified architecture of a text generation system

3.2.3 Natural Language Generation

Systems of this kind use linguistic knowledge and artificial intelligence [81, 125, 126,

150]. According to Reiter, this approach allows the creation of descriptions of higher

quality than those generated by template-based systems [125]. However, not everyone

agrees with this opinion (see [150]).

Reiter and Dale, as well as Jurafsky and Martin, provide an exemplary architecture

of a NLG system [81, 126]. A simplified version is presented in Figure 3.1. Initially

there is only raw input (which can be similar to the one used in the template-based

approach). This input (in a data structure) is analyzed and the content of an expected

description is planned. It may then be decided what kind of information to include

(this is called Content determination) and how to represent it (e.g., what to put in

each paragraph and what phrases to use). When everything is planned out, text is

generated by a realization module.

Detailed planning of a long description can be problematic. To simplify this task,

one can begin with making a draft with general decisions (e.g. what kind of data

to include and where to put it) and postpone all detailed arrangement (e.g. how

to represent particular data). This is called Microplanning and it can include the

following tasks [126]:

• lexicalization—selection of words and phrases;

• aggregation—merge/division of elements into one/many groups (e.g. John has

a cat. Cat is always hungry can be also presented as John has a cat which is

always hungry);

• generation of referring expressions—selection of words indicating the same

entity (e.g. John, he, suppliant, etc.)

It is up to the designer of a NLG system what phases to use and how to divide the

system into modules.

3.2.4 Evaluation of language generation tools

According to Mellish and Dale, the evaluation of NLG systems can be carried out with

the following goals in mind [105]:

3.2. Automatic Text Generation 18

• Evaluation of a theory—Text generators can use different approaches to natural

text organization, called theories (e.g. Rhetorical Structure Theory). One may

evaluate the degree to which a given theory is appropriate for a particular task.

• Evaluation of a system—Determine the performance of a system, e.g., measure

the speed of generation or grammatical correctness of created text.

• Evaluation of applicability—Determine which solution is more suitable for a

given problem, e.g., whether a more useful weather forecast is generated by a

NLG system or a template-based approach.

The presented goals are dedicated to NLG systems, but due to their very general

nature it should be possible to use them in assessing template-based systems as well.

The aforementioned goals can be evaluated in a number of ways. The most

common strategies seem to be human-subject evaluation (with, e.g., prospective

users, tool authors, experts, etc.) and comparison with existing texts (e.g., corpus)

[81, 105].

In human-subject evaluation, participants are frequently asked to read a gener-

ated text and rate it, using various criteria [28, 95]. For example, an evaluation carried

out by Coch used correct spelling, comprehensiveness and several other criteria [28].

Unfortunately, no standard or convention of criteria is known to us.

Domain experts are a unique type of participant [51, 95, 139]. The assessment

can be carried out similarly to the evaluation by non-experts described above (i.e.

read and rate), or by comparing texts created by a system and written by experts

[138]. Another approach is to analyze modifications made by experts to a generated

text [107].

Another variant of evaluation was proposed by Hardcastle and Scott [51]. They

described a Turing-like test, in which human- and computer-created variants are

shown to participants, who are then asked to determine whether the author of text is

a human or a computer program; each decision needs to be justified.

Human-subject evaluation can also be used to measure the efficiency of achiev-

ing goals. It is, for example, possible to test the speed of reading or measure task

performance [153, 155]. In the case of performance evaluation, there are frequently

two or more groups, which perform the same tasks, but according to a different

description [155]. Comparing completion time or the number of accomplished tasks

makes it possible to determine which explanation is superior.

Experiments with human-subjects can be time consuming. Langkilde proposed

an automatic, corpus-based evaluation [92]. Generator input is created on the basis

of annotations in the corpus; text is then created, and compared with the original

3.2. Automatic Text Generation 19

sentence. This approach is quite popular (see e.g. Bangalore et al. [15], and Marciniak

and Strube [97]), however, it is questioned as well. Reiter and Sripada state that it

is possible to generate text which is different from the original, but still meet the

established quality requirements [127].

Another means of evaluating ATG systems is the use of metrics from the Machine

Translation (MT) field. Bilingual Evaluation Understudy (BLEU) metric counts the

proportion of n words placed next to each other (called n-grams) that are shared by

the generated text and reference translation (a reference translation can be a text

written by a professional translator; there can be more than one reference text) [117].

According to Belz and Reiter, 4-grams (4-words) is the common size for evaluation

[18]. Unfortunately, BLEU have problems with n-grams that are more informative, i.e.

those that are used less frequently [40, 130]. To solve this issue,the NIST metric4 can

be used [40].

4The name comes from the National Institute of Standards and Technology.

Chapter 4

The COCA quality model for user

documentation

Preface

This chapter contains the paper: Bartosz Alchimowicz and Jerzy Nawrocki: The

COCA quality model for user documentation, Software Quality Journal,

DOI: 10.1007/s11219-014-9252-4 (available on-line since 12 October 2014, but not

assigned to an issue yet).

My contribution to this paper included the following tasks: 1) co-elaboration

of COCA quality model and Documentation Evaluation Test; 2) co-elaboration of

evaluation methods; 3) conducting experiments and case studies; 4) creation of the

COCA and the DET quality profiles.

Context: Evaluation criteria are needed to compare the quality of a generated user

manual with the quality of a corresponding man-made documentation. There are

some proposals in the literature (e.g. ISO Standards, Markel’s measures of excellence,

etc.), but they have many drawbacks, e.g., some of them are time consuming, other

lack orthogonality, and still others are superficial.

Objective: The goal of this chapter is to propose a quality model for user manuals.

The model has to be orthogonal, complete and equipped with evaluation methods.

Method: Creation of a quality profile started with a literature review, including anal-

ysis of existing quality models and standards. Proposed quality model has been

compared with other models (which directly or indirectly concern user manual), and

checked while evaluating 9 commercial user manuals.

Results: The COCA quality model is presented. It comprises of four orthogonal quality

characteristics: Completeness, Operability, Correctness, and Appearance. Moreover,

two acceptance methods are introduced: pure review (based on ISO Std. 1028:2008),

and Documentation Evaluation Test (based on Browser Evaluation Test).

20

4.1. Introduction 21

Two exemplary quality profiles have been proposed on the basis of collected data:

for the COCA quality model and for the Documentation Evaluation Test.

Conclusion: It is possible to design a complete and an orthogonal quality model for

user manuals which allows to evaluate a user manual from standpoint of end-users

and can be used to compare quality of documents.

4.1 Introduction

A good quality user manual can be beneficial for both vendors and users. According to

Fisher [44], a project can be called successful if its software performs as intended and

the users are satisfied. From the point of view of end-users, the intended behaviour

of a software system is described in the user manual. Thus, a defective user manual

(e.g. lack of consistency with the software system) has an effect similar to defective

software (off specification) – both will lead to user irritation, which will decrease user

satisfaction. Pedraz-Delhaes et al. [120] also point out that users evaluate both the

product and the vendor on the basis of provided documentation. According to the

data presented by Spencer [137], a good quality user manual can reduce the number

of calls from 641 to 59 over a 5-month period (in 2008 the average cost of support for

one call was above $32 [98]).

Unfortunately, end-users are too frequently dissatisfied with the quality of their

user manuals. They complain that the language is too hard to understand, the

descriptions are boring, the included information is outdated and useless [110, 111].

Some users even feel frustrated while working with the software [55].

So, a good quality user manual is important. Thus, the question arises of what

good quality means in this context, i.e. what quality characteristics should be consid-

ered when evaluating the quality of a user manual. A set of quality characteristics

constitutes a quality model [65] and these should be orthogonal (i.e. there should be

no overlap between any two characteristics) and complete (i.e. all the quality aspects

important from a given point of view should be covered by those characteristics).

In this paper, an orthogonal and complete quality model for user documentation

is presented. The model is called COCA and consists of four quality characteristics:

Completeness, Operability, Correctness and Appearance. From the practical point of

view, what matters is not only quality characteristics, but also the way they are used in

the evaluation process. As indicated by the requirements of Level 4 of Documentation

Maturity Model [59], quality characteristics should allow quantitative assessment. In

this paper, two approaches are discussed, a review-based evaluation and an empirical

one. Both of them provide quantitative data. For each of them, quality profiles for the

4.2. Design assumptions for the quality model 22

educational domain are presented which can be used when interpreting evaluation

data obtained for a particular user documentation.

The paper is organized as follows: In Section 4.2, a set of design assumptions

for the proposed quality model is presented. Section 4.3 contains the COCA quality

model. Section 4.4 shows how the proposed model can be used. Section 4.5 presents

an empirical approach to operability assessment. Related work is discussed in Section

4.6. A summary of the findings and conclusions are contained in Section 4.7.

4.2 Design assumptions for the quality model

As defined by ISO Std. 25000:2005 [65], a quality model is a set of characteristics,

and of relationships between them, which provides a framework for specifying quality

requirements and evaluating quality.

The quality model described in this paper is oriented towards user documenta-

tion, understood as documentation for users of a system, including a system descrip-

tion and procedures for using the system to obtain desired results [70].

The design assumptions for the quality model are presented in the subsequent

parts of this section.

4.2.1 Form of user documentation

User documentation can have different forms. It can be a PDF-like file ready to print,

a printed book, on-screen information or standalone online help [71].

ASSUMPTION 1. It is assumed that user documentation is presented in the form of a

static PDF-like file.

JUSTIFICATION. On-screen help is based on special software and to assess its quality

one would have to take into account the quality characteristics appropriate for the

software, such as those presented in one of the ISO standards [69]. That would

complicate the quality model and the aspects which are really important for user

documentation would be embedded into many other characteristics. Thus, for the

sake of clarity, such forms of user documentation as on-screen help are out of the

scope of the presented model. To be more precise, on-screen help can be evaluated

on the basis of the proposed model, but to have a complete picture one should also

evaluate it from the software point of view.

4.2. Design assumptions for the quality model 23

4.2.2 Point of view

The quality of user documentation can be assessed from different points of view.

Standards concerning user documentation presented by ISO describe a number

of roles that are involved in the production and usage of user documentation (e.g.

suppliers [71], testers and reviewers [68], designers and developers [67], and users for

whom such documentation is created).

ASSUMPTION 2. It is assumed that user documentation is assessed from the end-users’

point of view.

JUSTIFICATION. People may have different requirements for user documentation

and thus they focus on different aspects, i.e. project managers may want to have

documentation on time while designers may be interested in creating a pleasing

layout. However, all work that is done aims to provide user documentation that is

satisfactory for end-users. Thus, their perspective seems to be the most important.

As a consequence, legal aspects, conformance with documentation design plans, etc.

are neglected in the proposed model.

4.2.3 External quality and quality-in-use

The software quality model presented in ISO/IEC Std. 9126:1991 was threefold: the

internal quality model, the external quality model, the quality-in-use model. From

the users’ point of view, internal quality seems negligible and as such is omitted

in this paper. We are also not taking into account the relationship between user

documentation and other actors, such as the documentation writer. Considering the

above, the following assumption seems justified:

ASSUMPTION 3. A quality model for user documentation can be restricted to charac-

teristics concerning external quality and quality-in-use.

4.2.4 Context of use

There are many possible contexts of use for user documentation. One could expect

that such documentation would explain scientific bases of given software or compare

the software against its competitors. Although this information can be valuable in

some contexts, it seems that text books or papers in professional journals would be

more appropriate for this type of information. Thus, the following assumption has

been made when working on the proposed quality model:

4.2. Design assumptions for the quality model 24

ASSUMPTION 4. User documentation is intended to support users in performing

business tasks.

4.2.5 Orthogonality of a quality model

DEFINITION 1. A quality model is orthogonal, if for each pair of characteristics C1,

C2 belonging to it, there are objects O1, O2 which are subject to evaluation such that

O1 gets a highly positive score with C1 and a highly negative score with C2, and for O2

it is the opposite.

ASSUMPTION 5. A good quality model for user documentation should be orthogonal.

JUSTIFICATION. If a quality model is not orthogonal, then it is quite possible that

some of its characteristics are superfluous, as what they show (i.e. the informa-

tion they bring) can be derived from the other characteristics. For instance, when

considering the subcharacteristics of ISO Std. 9126 [64] one may doubt whether

changeability and stability are orthogonal, as one strongly correlates with the other

(see [80]).

4.2.6 Completeness of a quality model

The completeness of a quality model should be considered in the context of the

point of view of a stakeholder. This point of view can be characterized with the set of

quality aspects one is interested in. A quality aspect is a type of detailed information

about quality. Using terminology from ISO Std. 9126 and ISO Std. 25010 [69], a

quality aspect could be a quality subcharacteristic, sub-subcharacteristic etc. An

example of a quality aspect could be completeness of documentation from the legal

point of view (that could be important from a company standpoint) or the presence

of a table of contents. Many quality aspects can be found in standards such as ISO

Std. 26513 and ISO Std. 26514 [67, 68].

DEFINITION 2. A quality model is complete from a given point of view, if every quality

aspect important from that point of view can be clearly assigned to one of the quality

characteristics belonging to the quality model.

ASSUMPTION 6. A good quality model for user documentation should be complete

from the end-user point of view.

The above assumption follows from Assumption 2.

4.3. The COCA quality model 25

4.3 The COCA quality model

The COCA quality model presents the end-users’ point of view on the quality of COCA QUALITY

MODELuser documentation. As its name suggests, it consists of four quality characteristics:

Completeness, Operability, Correctness, and Appearance. Those characteristics are

defined below.

DEFINITION 3. Completeness is the degree to which user documentation provides all COMPLETENESS

the information needed by end-users to use the described software.

DEFINITION 4. Operability sensu stricto (Operability for short) is the degree to which OPERABILITY

user documentation has attributes that make it easy to use and helpful when acquiring

information that is contained in the user documentation.

JUSTIFICATION. There are two possible definitions of Operability: sensu stricto and

sensu largo. Operability sensu largo could be defined as follows:

Operability sensu largo is the degree to which user documentation has

attributes that make it easy to use and helpful when operating the software

documented by it.

Operability sensu largo depends on two other criteria: Completeness and Cor-

rectness. If some information is missing from a given user manual or it is incorrect

then the helpfulness of that user manual is diminished when operating the software.

Operability sensu largo is not a characteristic of a user manual itself, but is also de-

pends on (the version of) the software. For instance, Operability sensu largo of a user

manual can be high for one version of software, and low for another, newer version,

if that new version of software was substantially extended with new features. Thus,

Operability sensu largo is not orthogonal with Completeness and Correctness. Oper-

ability sensu stricto is defined in such a way that it is independent of Completeness or

Correctness of the user manual. It depends only on the way in which a user manual

is made up and how it is organized. To preserve orthogonality of the proposed quality

model, Operability sensu stricto has been chosen over Operability sensu largo.

DEFINITION 5. Correctness is the degree to which the descriptions provided by the CORRECTNESS

user documentation are correct.

DEFINITION 6. Appearance is the degree to which information contained in user APPEARANCE

documentation is presented in an aesthetic way.

As mentioned earlier, it is expected that the COCA quality model is both orthogo-

nal and complete. These issues are discussed below.

4.3. The COCA quality model 26

CLAIM 1. The COCA quality model is considered orthogonal.

JUSTIFICATION. Since the COCA quality model consists of four characteristics, one

has to consider 6 pairs of them. All of the pairs are examined below, and, for each of

them, two manuals which would lead to opposing evaluations are described.

Completeness vs Operability

When a user manual contains all the information a user needs to operate a given

software, but the user manual is thick and ill-designed (no index, exceedingly brief

table of contents, all text formatted with a single font type without underlining etc.),

then such a user manual would be highly complete, but its operability would be low.

And vice versa: a user manual can be highly operable (i.e. its Operability sensu stricto

can be high) but still be missing a lot of important information, causing its complete-

ness to be low. That shows that Completeness and Operability are orthogonal.

Completeness vs Correctness

It is possible that a user manual covers all the aspects concerning usage of a

given software, but the screen shots still refer to the old version of the software.

Similarly, business logic described in the user manual may be based on outdated

law regulations etc., which meanwhile have been changed in both the real world

and in the software, but not in the user manual. And the contrary is also possible:

all the descriptions provided by a user manual can be correct, but some important

information can be missing (e.g. about new features added to the software recently).

Thus, Completeness and Correctness are orthogonal.

Completeness vs Appearance

It is pretty obvious that a document can be highly complete, as far as information

is concerned, but far from giving an impression of beauty, a good taste, etc.; and vice

versa. Therefore, Completeness and Appearance are orthogonal.

Operability vs Correctness

According to Definition 4, Operability is the degree of ease of finding information

contained in the user manual. It does not take into account whether or not that

information is correct. Because of this, Operability and Correctness are orthogonal.

Operability vs Appearance

According to Definition 6, Appearance is about aesthetics. According to the Free

Dictionary1, aesthetics is about beauty or good taste. Here are several examples of

factors that can impact the aesthetics of a user manual:

• the chosen set of font types (many different font types can increase Operability,

but decrease aesthetics; small font types can increase aesthetics but decrease

Operability);

1http://www.thefreedictionary.com/aesthetic

4.3. The COCA quality model 27

• the set of colors used in the document (red and green can increase Operability

but, if used improperly, can decrease the aesthetic value of a user manual);

• screenshots (they can be very valuable from the Operability point of view, but –

if not properly placed – can decrease the aesthetics of a user document);

• decorative background (though favoured by some, it can decrease the readabil-

ity of a document, thus it can decrease its Operability).

These factors can create a trade-off between the aesthetics and Operability of a user

manual, thus Operability and Appearance can be regarded as orthogonal.

Correctness vs Appearance

It seems pretty clear that those two characteristics are orthogonal; a document

can be highly correct but its Appearance can be low, and vice versa.

CLAIM 2. The COCA quality model is considered complete.

JUSTIFICATION. To check completeness of the COCA model, the model will be exam-

ined from the point of view of the following sets of quality characteristics: ISO Std.

26513 and ISO Std. 26514 [67, 68], Markel’s measures of excellence [98], Allwood’s

characteristics [14], Ortega’s systemic model [116], and Steidl’s quality characteristics

for comments in code [141].

If talking about completeness, it is important to distinguish between two notions:

• documentation-wide quality aspects: all of them should be covered by a quality

model if that model is to be considered complete;

• documentation themes: all of them should be covered by a user manual if that

manual is to be considered complete.

Here are the documentation themes identified on the basis of ISO Std. 26513 and

ISO Std. 26514:

• description of warnings and cautions,

• information about the product from the point of view of appropriateness rec-

ognizability,

• information on how to use the documentation,

• description of functionality,

• information about installation (or getting started).

4.3. The COCA quality model 28

If one of those themes is missing, the documentation can be incomplete in the

eye of an end user. Thus, documentation themes influence Completeness of a user

manual, but do not directly contribute to a quality model.

The quality aspects that can be found in ISO Std. 26513 and ISO Std. 26514 are

listed in Table 4.1. They can be mapped into the three COCA characteristics: Oper-

ability (covers ease of understanding and consistency of terminology), Correctness (it

corresponds to consistency with the product), and Appearance (it is influenced by

consistency with style guidelines, editorial consistency, and cultural requirements).

Thus, from the point of ISO Std. 26513 and ISO Std. 26514 the COCA model seems

complete.

Completeness of the COCA quality model can be also examined against Markel’s

model of quality of technical communication [98]. Merkel’s model is based on eight

measures of excellence. Seven of them are presented in Table 4.2 and they are covered

by the COCA characteristics. The eighth measure of excellence is honesty. It does

not fit any of the COCA characteristics. However, it is not an external quality nor a

quality-in-use characteristic, so – according to Assumption 3 – it is out of scope of the

defined interest. Thus, the COCA model, when compared against Markel’s measures

of excellence, is considered complete.

Another set of quality characteristics has been presented by Allwood [14]. Two of

them, i.e. comprehensibility and readability, are covered by COCA’s Operability (if a

document lacks comprehensiveness or readability then acquiring information from it

is difficult, so COCA’s Operability will be low). The third Allwood’s characteristic is

usability. It is a very general characteristic, which is influenced by both comprehen-

sibility and readability. When comparing it with the COCA characteristics, one can

find that usability encompasses COCA’s Completeness, Operability, and Correctness,

i.e. Allwood’s usability can be regarded as a triplet of COCA’s characteristics. Allwood

also mentioned two other quality characteristics: interesting and stimulating. As we

are interested in user documentation as support in performing business tasks (see

Table 4.1: Documentation-wide quality aspects vs COCA characteristics

Quality aspect COCA
(ISO Std. 26513 and ISO Std. 26514) characteristics

ease of understanding Operability
consistency of terminology

consistency with the product Correctness
consistency with style guidelines Appearance

editorial consistency
cultural requirements

4.3. The COCA quality model 29

Table 4.2: Markel’s measures of excellence[98] vs COCA characteristics

Markel’s measures of excellence COCA characteristics
Comprehensiveness

CompletenessA good technical document provides all the information
readers need.

Clarity

Operability

Your goal is to produce a document that conveys a single
meaning the reader can understand easily.

Accessibility
readers should not be forced to flip through the pages
. . . to find the appropriate section

Conciseness
A document must be concise enough to be useful to a
busy reader.

Accuracy
Correctness

a major inaccuracy can be dangerous and expensive
Professional appearance

Appearance

document looks neat and professional.
Correctness

A correct document is one that adheres to the conven-
tions of grammar, punctuation, spelling, mechanics,
and usage.

Assumption 6), those characteristics can be neglected. Thus, one can assume that

the COCA model is complete in its context of use.

Other quality characteristics the COCA model can be examined against are Or-

tega’s characteristics [116]. Although those characteristics are oriented towards soft-

ware products, they can be translated into the needs of user documentation, see

Table 4.3. For instance, learnability, in the context of user documentation, can be

understood as the degree to which it is easy to learn how to use a given user doc-

umentation. So, learnability is part of COCA’s Operability. Similar meaning can be

given to self-descriptiveness in the context of user documentation. Ortega’s under-

standability also fits COCA’s Operability, as it supports acquiring information from

documentation. Consistency of software can be translated into consistency of user

documentation with its software, so it is COCA’s Correctness. Attractiveness of user

documentation and its appearance are synonyms. Thus, all those characteristics are

covered by COCA’s characteristics. What is left outside is effectiveness (i.e. the capacity

of producing a desired result), and a requirement for software to be specified and

documented. All those three characteristics have no meaning when translated into

quality of user documentation perceived from the point of view of the end-user.

The last set of quality characteristics is Steidl’s quality model for comments in

4.4. Review-based evaluation of user documentation 30

code [141]. Steidl’s coherence (how comment and code relate to each other) maps

onto COCA’s Correctness (how user documentation and code relate to each other).

Steidl’s completeness and COCA’s Completeness are also very similar as they refer to the

completeness of information they convey. The remaining two Steidl’s characteristics

are usefulness (the degree of contributing to system understanding) and consistency (is

the language of the comments the same, are the file headers structured the same way

etc.). When translating them into the needs of user documentation readers, they map

onto COCA’s Operability (if user documentation did not contribute to understanding

how to use the software, or the language of each chapter was different, Operability of

such documentation would be low). Thus, the COCA model is also complete from

the point of view of Steidl’s characteristics.

4.4 Review-based evaluation of user documentation

One of the aspects concerning software development is to decide whether a product

is ready for delivery or not. A typical activity performed here is acceptance testing.

However, this issue concerns not only software, but also user documentation. A

counterpart of acceptance testing, when talking about user documentation, is quality

evaluation of documentation for the purpose of acceptance. That assessment can

be performed taking into account the COCA characteristics and is described below.

Another application of the COCA quality model is selection. This kind of evaluation

is used to compare two user manuals concerning the same system. The comparison

can be performed for a number of purposes, e.g. to decide which method of creation

is better (manual writing vs. computer aided) or to select a writer who provides a

more understandable description for an audience.

Table 4.3: Ortega’s quality characteristics[116] vs COCA characteristics.

Ortega’s characteristics COCA characteristics
Completeness Completeness

Learnability
OperabilitySelf-descriptiveness

Understandability
Consistency Correctness

Attractiveness Appearance

4.4. Review-based evaluation of user documentation 31

4.4.1 Goal-Question-Metric approach to evaluation of user

documentation

Quality evaluation is a kind of measurement. A widely accepted approach to defining

a measurement is Goal-Question-Metric [151] (GQM for short). It will be used here

to describe quality evaluation when using the COCA quality model.

Goal

The measurement goal of quality evaluation of user documentation can be defined

in the following way:

Analyze the user documentation for the purpose of its acceptance with

respect to Completeness, Operability, Correctness, and Appearance, from

the point of view of the end-user in the context of a given software system.

Questions

Each of the COCA characteristics can be assigned a number of questions which

refine the measurement goal. Those questions should cover the quality aspects and

documentation themes one is interested in (see justification to Claim 2). Table 4.4

presents the questions that, from our point of view, are the most important. We hope

that they will also prove important in many other settings. Obviously, one can adapt

those questions to one’s needs.

At first glance it may appear that the question assigned to Operability is too wide

when compared with the definition of Operability (Definition 4), as the definition

excludes the completeness and correctness problems. That exclusion is not necessary

when the evaluation procedure first checks Completeness and Correctness, and

initiates Operability evaluation only when those checks are successful (see Figure

4.1).

Metrics

When evaluating user documentation, two types of quality indicators, also called

metrics, can be used: subjective and objective.

Subjective quality indicators provide information on what people think or feel

about the quality of a given documentation. Usually, they are formed as a question

with a 5-grade Likert scale. Taking into account the questions in Table 4.4 (To what

extent. . .), the scale could be as follows: Not at all (N for short), Weak (w), Hard to

say (?), Good enough (g), Very good (VG). The results of polling can be presented

as a vector of 5 integers [#N , #w, #?, #g , #V G], where #x denotes the number of

4.4. Review-based evaluation of user documentation 32

Table 4.4: Questions assigned to the COCA characteristics

Question
Completeness

• To what extent does the user documentation cover all the functionality
provided by the system with the needed level of detail?

• To what extent does the user documentation provide information which
is helpful in deciding whether the system is appropriate for the needs of
prospective users?

• To what extent does the user documentation contain information about
how to use it with effectiveness and efficiency?

Operability

• To what extent is the user documentation easy to use and helpful when
operating the system documented by it?

Correctness

• To what extent does the user documentation provide correct descriptions
with the needed degree of precision?

Appearance

• To what extent is the information contained in the user documentation
presented in an aesthetic way?

responses with answer x. For example, vector [0, 1, 2, 3, 4,] means that no one

gave the answer Not at all, 1 participant gave the answer Weak, etc. (this resembles

the quality spectrum mentioned by Kaiya et. al. [84]). These kinds of vectors can be

normalized to the relative form, which presents the results as a percentage of the

total number of votes. For example, the mentioned vector can be transformed to

the following relative form [0%, 10%, 20%, 30%, 40%]. This form of representation

should be accompanied by the total number of votes that would allow one to return

to the original vector.

Objective quality indicators are usually the result of an evaluation experiment

and they strongly depend on the design of the experiment. For instance, one could

evaluate the Operability of user documentation by preparing a test for subjects par-

ticipating in the evaluation, asking the subjects to take an open-book examination

(i.e. having access to the documentation), and measuring the percentage of correct

answers or time used by the subjects.

4.4. Review-based evaluation of user documentation 33

Interpretation

The fourth element of GQM is interpretation of measurement results. Interpretation

requires reference data, against which the obtained measurement data can be com-

pared. Reference data represent a population of similar objects (in our case, user

manuals), and they are called a quality profile. In the case of subjective quality indi-

cators both the profile and measurement data should be represented in the relative

form – this allows one to compare user manuals evaluated by different numbers of

people. An example of a quality profile for user manuals is presented in Table 4.6.

4.4.2 Evaluation procedure

The proposed evaluation procedure is based on Management Reviews of IEEE Std.

1028:2008. This type of review was selected on the grounds that it is very general and

can be easily adapted to any particular context.

Moreover, the proposed procedure applies very well to quality management ac-

tivities undertaken within the framework of PRINCE2 [148]. PRINCE2 is a project

management methodology developed under the auspices of UK’s Office of Govern-

ment Commerce (OCG). Quality management is the central theme of PRINCE2. It is

based on two pillars: Product Description and Quality Register. Product Description

(one for each product being a part of project output) specifies not only the product’s

purpose and its composition, but also the quality criteria (with their tolerances), qual-

ity methods to be used, and the roles to be played when using the quality methods.

In PRINCE2, quality methods are split into two categories:

• in-process methods: they are the means by which quality can be built into the

products – these are out of scope of this paper,

• appraisal methods: using them allows the quality of the finished products to

be assessed – these are what the proposed evaluation procedure is concerned

with.

Quality Register is a place (database) where the records concerning planned or per-

formed quality activities are stored.

Roles

The following roles participate in user documentation evaluation:

• Decision Maker uses results from the evaluation to decide whether user docu-

mentation is appropriate for its purpose or not.

4.4. Review-based evaluation of user documentation 34

• Prospective User is going to use the system documented by the user documen-

tation. For evaluation purposes, it is important that a Prospective user does

not yet know the system. This lack of knowledge about the system is, from the

evaluation point of view, an important attribute of a person in this role.

• Expert knows the system very well, or at least its requirements if the system is

not ready yet.

• Review Leader is responsible for organizing the evaluation and preparing a

report for the Decision Maker.

Input

The following items should be provided before examining the user documentation:

1. Evaluation mandate for Review Leader (see below)

2. Evaluation forms for Prospective Users, Experts and Review Leader (Appendix

A.2 contains an example of such a form)

3. User documentation under examination

4. Template for an evaluation report (see Appendix A.3)

Evaluation Mandate is composed of five parts (an example is given in Appendix EVALUATION

MANDATEA.1):

• Header – besides auxiliary data such as id, software name, file name, etc., it

includes the purpose, scope and the evaluation approach:

– Purpose of examination – There are two variants: Acceptance and Selec-

tion.

– Scope of evaluation – The evaluation can be based on exhaustive reading

(one is asked to read the whole document) or sample reading (reading is

limited to a selected subset of chapters). Sample reading allows saving

effort but makes evaluation less accurate.

– Evaluation approach – Depending on available time and resources, dif-

ferent approaches to evaluation can be employed. One can decide to

organize a physical meeting or use electronic communication only. Fur-

thermore, the examination can be carried out individually or in groups

(e.g. Wideband Delphi[100]). Each meeting can be supported by a number

of forms (e.g. evaluation forms) and guidelines which should be available

before the examination.

4.4. Review-based evaluation of user documentation 35

• Evaluation grades – These grades depend on the purpose of the examination.

In the case of Acceptance evaluation, typical grades are the following: accept,

accept with minor revision (necessary modifications are very easy to introduce

and no other evaluation meeting is necessary), accept with major revision (iden-

tified defects are not easy to fix and a new version should go through another

evaluation), reject (quality of the submitted documentation is unacceptable

and other corrective actions concerning the staff or process of writing must be

taken). These grades can be given on the basis of evaluation data presented

together with the population profile. In the case of Selection between variants

A and B of the documentation, the grades can be based on the 5-grade scale:

variant A when compared to variant B is definitely better/rather better/hard to

say/rather worse/definitely worse.

• Selection of quality questions – One should choose quality questions (see Ta-

ble 4.4) to be used during evaluation. Each question should be assigned to

roles taking into account the knowledge, experience and motivation of people

assigned to each role. For example, it is hard to expect from people who do not

know the system (or requirements) that they decide whether user documenta-

tion describes all the functionality supported by the system, thus evaluation of

Completeness in such conditions may provide insignificant results.

Evaluation Mandate can be derived from information available in project docu-

mentation. For example, a project in which PRINCE2 [148] is used should contain

a Product Description for user documentation. An Evaluation Mandate can be de-

rived from that description. In PRINCE2 Product Description contains, among others,

Quality Criteria and Quality Method (see Appendix A.17 in [148]). The Scope of evalu-

ation and Evaluation approach can be derived from Quality Method, and Selection of

quality questions follows from Quality Criteria. Purpose of examination usually will

be set to Acceptance (Selection will be used only in research-like projects when one

wants to compare different methods or tools).

Evaluation

Activities required to evaluate user documentation are presented in Figure 4.1 in the

form of a use case [29]. Use cases seem to be a good option as they can be easily

understood, even by IT-laymen.

4.4. Review-based evaluation of user documentation 36

UC: Evaluation of user documentation
Main scenario:

1. Review Leader creates, on behalf of Decision Maker, an Evaluation Mandate.
He also prepares Evaluation Forms.

2. Experts assess the user documentation from the point of view of the quality
characteristics assigned to them (e.g. Completeness and Correctness) and
fill in the Evaluation Forms.

3. Review leader gets the Evaluation Forms.

4. Prospective Users assess the user documentation from the point of view of
the quality characteristics assigned to them (e.g. Operability and Appear-
ance) and fill in the Evaluation Forms.

5. Review Leader collects the Evaluation Forms, determines the final grade
and writes her/his Evaluation Report.

Exceptions:

3.A. Experts’ evaluation is negative.

3.A.1. Go to step 5.

Figure 4.1: Procedure for evaluation of user documentation

Quality evaluation procedure vs. management reviews

The proposed procedure differs from the classical Management review [62] in the

following aspects:

• The proposed procedure has a clear interface to PRINCE2’s Product Description

through Evaluation Mandate (see Section 4.4.2).

• Experts (their counterparts in Management Review are called Technical staff)

and Prospective Users (in Management Review they are called User representa-

tives) have clearly defined responsibilities (see Figure 4.1).

• Decision making is based on clearly described multiple criteria accompanied by

a quality profile describing previously evaluated documents (see Interpretation

of Section 4.4.1 and Appendix A.3).

4.4.3 Quality profile for user documentation

In the case of Acceptance it is proposed that a given user documentation is compared

with other user manuals created by a given organization (e.g. company) or available

4.4. Review-based evaluation of user documentation 37

on the market. Instead of comparing user documentation at hand with n other

documents, one by one, it is proposed that those n documents are evaluated, a

quality profile describing an average user documentation is created and the given

user documentation is compared with the quality profile (see Table 4.6).

To give an example, a small research has been conducted, the goal of which can

be described as follows:

Analyze a set of user manuals for the purpose of creating a quality profile

from the point of view of end-users and in the context in which the role

of end-users is played by students and the role of Experts is played by

researchers and Ph.D. students.

The evaluation experiment was designed in the following way:

• For each considered user manual, one of the authors played the role of Review

Leader, three Experts were assigned from Ph.D. students and staff members,

and 16-17 students were engaged to play the role of Prospective Users.

• The evaluation was performed as a controlled experiment based on the proce-

dure described in Figure 4.1.

• The evaluation time available to Prospective Users was limited to 90 min. None

of the subjects exceeded the allotted time.

• The evaluated user manuals were selected to describe commercial systems and

concerned a domain which was not difficult to understand for the subjects

playing the role of Prospective Users. The user manuals were connected with

the products available on the Polish market which are presented in Table 4.5.

For Plagiarism.pl, nSzkoła, and Hermes the whole user manual was evaluated;

in all the other cases, only selected chapters describing a consistent subset of

functionality went through review.

The resulting quality profile is presented in Table 4.6 and the data collected

during evaluation are available in Appendix A.4. As the role of experts was played by

Ph.D. students and staff members, who knew only some of the systems used in the

experiment, the percentage of g (good) and VG (very good) grades shown in Table

4.6 (questions Q1 and Q5) should be regarded rather as upper limits (real experts

could identify some functionality provided by the system which was not covered in

the evaluated users manuals, or some additional incorrect descriptions).

How to use the data of a quality profile such as the one presented in Table

4.6 is another question. When making a final decision (to accept or reject a user

4.4. Review-based evaluation of user documentation 38

Table 4.5: List of evaluated user manuals (pages are counted without cover page and
table of contents; last column presents number of Experts and Users participating in
an evaluation)

User manual Description Pages Experts/
Users

Plagiarism.pl – Manual for indi-
vidual user (in Polish Plagiat.pl
– Instrukcja użytkownika indy-
widualnego)

The system allows detection of pla-
giarism in different types of docu-
ments, e.g. M.Sc. thesis.

13 3/16

Getting Started with Deanery.XP
9.65.5.0 (in Polish Podstawy ob-
sługi Dziekanatu.XP)

Supports staff of a dean office in
management of students at a uni-
versity.

19 3/17

Optivum Secretariat – User
manual (in Polish Sekre-
tariat Optivum – Podręcznik
użytkownika programu)

Supports management of a primary
and secondary school.

25 3/17

User manual for nSzkoła plat-
form – Student’s panel (in Pol-
ish Instrukcja obsługi Platformy
nSzkoła – Panel Ucznia)

Allows students to read records in
an electronic log.

16 3/16

Secretariat DDJ 6.8 (in Polish
Sekretariat DDJ 6.8)

Supports management of a school. 21 3/16

LangSystem 4.2.5 – User doc-
umentation (in Polish Lang-
System 4.2.5 – Dokumentacja
użytkownika)

Supports management of a school
of foreign languages.

22 3/17

SchoolManager – User manual
(in Polish School Manager – Po-
dręcznik użytkownika)

Supports management of a school
of foreign languages.

27 3/17

User manual for Hermes 2012
(in Polish Instrukcja obsługi ap-
likacji HERMES 2012)

Collecting data about examinations
concerning professional qualifica-
tions.

21 3/16

E-grades: Electronic log (in Pol-
ish Dziennik elektroniczny e-
oceny)

Allows students to read records in
an electronic log.

23 3/16

4.5. Empirical evaluation of operability 39

manual) one can use one of many multi-attribute decision making methods and

tools (there are many of them – see e.g. [43, 156]). For instance one could use

the notion of dominance and require that a given user manual gets a score, for

every criterion (characteristic), not worse than a given threshold. Such a threshold

could be calculated, for instance, as a percentage of g and VG answers to each

question. It is also possible to infer thresholds from a historical database, providing

that the database contains both evaluation answers and final decisions (or customer

opinions).

When using the profile presented in Table 4.6 one should be aware that all the

evaluated documents are connected with educational software (see Table 4.5). So,

one must be careful when using the presented profile in other contexts. We believe

that a profile, such as of Table 4.6 can be useful especially when a company or a

project does not have its own quality profile. To support this we established a web

page with results from ongoing evaluations2.

4.5 Empirical evaluation of operability

To evaluate a user manual experimentally, one can use a form of Browser Evaluation

Test (BET) [152]. The BET method was developed to evaluate the quality of meeting

browsers based on a video recording of a meeting. In such an evaluation each subject

is given a list of complementary assertions (one is true and the other is false), and

must identify which of the two is true (e.g. one is Susan says the footstool is not

expensive and the other is Susan says the footstool is expensive [152]). Obviously, by

making lucky guesses one can get a score of about 50%. From our point of view

this is unacceptable. To help this, a variant of BET was developed (see below) which

is oriented towards evaluation of user documentation (it is called Documentation DOCUMENTATION

EVALUATION

TEST
Evaluation Test - DET) and by guessing one can get a score of about 25%. The DET

procedure is presented in Figure 4.2.

4.5.1 DET questions

Questions are very important for the effectiveness of the DET procedure. An exem-

plary question is presented in Table 4.7. A DET question consists of a theme (e.g. The

following items are included into a similarity report) and four proposed answers of

which one is correct and the other three are false. Every question is accompanied

by an auxiliary statement (I could not find the answer) which is to be evaluated by

the subject (true/false). That statement allows subjects to say that for some reasons

2http://coca.cs.put.poznan.pl/

4.5. Empirical evaluation of operability 40

Table 4.6: An exemplary quality profile (9 user manuals, 3 experts, 16-17 prospective
users per manual; abbreviations: N - Not at all, w - Weak, ? - Hard to say, g - Good
enough VG - Very good)

Id Questions N w ? g VG
Completeness responsible: Expert
Q1 To what extent does the user documentation

cover all the functionality provided by the system
with the needed level of detail?

3.7% 18.5% 29.6% 44.4% 3.7%

Q2 To what extent does the user documentation pro-
vide information which is helpful in deciding
whether the system is appropriate for the needs
of prospective users?

0.0% 3.7% 11.1% 55.6% 29.6%

responsible: Prospective User
Q3 To what extent does the user documentation con-

tain information about how to use it with effec-
tiveness and efficiency?

6.1% 9.5% 7.4% 50.0% 27.0%

Operability responsible: Prospective User
Q4 To what extent is the user documentation easy

to use and helpful when operating the system
documented by it?

1.4% 6.8% 14.9% 48.0% 29.1%

Correctness responsible: Expert
Q5 To what extent does the user documentation pro-

vide correct descriptions with the needed degree
of precision?

0.0% 18.5% 25.9% 44.4% 11.1%

Appearance responsible: Prospective User
Q6 To what extent is the information contained in

the user documentation presented in an aesthetic
way?

1.4% 12.2% 12.2% 49.3% 25.0%

they failed when trying to find the answer. Questions with answers and additional

statements are used to create a Knowledge Test which is presented to subjects during

an evaluation.

When analyzing questions provided by Experts at early stages of this research, we

identified a number of weaknesses, which are unacceptable:

W1. Some choices were synonyms, e.g. month and 1/12 of year.

W2. Some choices were answers to other questions.

W3. Some questions were suggesting a number of choices (e.g. The following values

are correct ISBN numbers).

W4. Some references to the user interface were imprecise, especially when elements

with the same name occur multiple times in a different context.

4.5. Empirical evaluation of operability 41

Table 4.7: Exemplary question

Question no 2

The following items are included into a similarity report:

Choose one of the proposed answers: Correct?
A) Info about whether a given document is plagiarised
B) Similarity coefficients and a list of similar documents
C) Similarity coefficients, a list of similar documents and whether

a given document is plagiarised
D) Similarity coefficients, a list of similar documents and fragments of

the document which have been found in another document

The answer is in the user documentation on page:

I could not find the answer:

W5. Some choices did not require the user manual to make a selection – it was

enough to use general knowledge.

To cope with these weaknesses, a set of guidelines was formulated. Here they are:

• the choices of questions should not contain a synonym of any other choice

(addresses weakness W1).

• the choices of questions should not contain an answer to any other question

(addresses weakness W2).

UC: Documentation Evaluation Test
Main scenario:

1. Experts individually read user documentation, create Questions and pass
them to Review Leader.

2. Review Leader cleans the Questions submitted by the Experts (i.e. removes
duplicates, corrects spelling, etc.).

3. Review Leader prepares a Knowledge Test by random selection of Questions.

4. Prospective Users, to assess Operability, take an open-book Knowledge Test
(the book is the user documentation).

5. Review Leader writes a Review Report concerning the user documentation.
Extensions:

3.A. Review Leader realizes that the number of Questions is too small.

3.A.1. Review Leader asks one more Expert to perform step 1.

Figure 4.2: The DET procedure

4.6. Related work 42

• questions should not suggest a number of choices (addresses weakness W3).

• references to the user interface must be unambiguous (addresses weakness

W4).

• selecting a choice must require information contained in the user documenta-

tion (addresses weakness W5).

4.5.2 Case studies

To characterize the DET method, we have analyzed five user manuals with the aim

of presenting an example of how such an evaluation could be conducted. Each user

manual was assessed with the following purpose in mind:

Analyze the user manual for the purpose of quality evaluation with respect

to Operability, from the point of view of end-users in the context of Ph.D.

students playing the role of Experts and students as Prospective Users.

The evaluation experiment was designed in similarly to the one presented in

Section 4.4.3. The evaluation procedure used in the experiment is described in Figure

4.2 and the manuals are listed in Table 4.8. All of them had been checked earlier for

Completeness and Correctness by Experts (that role was played by three researchers

and Ph.D. students) and it was executed as a one-person review (see Appendix A.4

for results of the Completeness and Correctness checks).

The data collected during the evaluation are summarized in Table 4.8. The average

speed of reading a manual by a Prospective User was about 4 pages per 10 min and

the average percentage of correct answers was about 81%. Table 4.9 contains data

concerning preparation of questions. There are two numbers referring to questions:

total number of questions and final number of questions. The first one describes total

number of questions proposed by the experts. Some of those questions overlapped,

so the final number of questions included in the Knowledge test was a bit smaller

(e.g. for Plagiarism.pl 31 questions have been proposed and 29 of them have been

included into the Knowledge test). The average speed of writing questions is about

6 questions per hour. One can use those data as reference values when organizing

one’s own DET evaluation.

4.6 Related work

One could consider the 265nm series of ISO/IEC standards [67, 68, 71, 74, 75] as

a quality model for user documentation as those standards present a number of

4.6. Related work 43

aspects concerning the quality of user documentation. Unfortunately, those aspects

do not constitute an orthogonal quality model. For example, completeness of infor-

mation contains error messages as its subcharacteristic. On the other hand, safety

is described as containing warnings and cautions. Thus, the scope of completeness

of information overlaps the scope of safety. Another example is Technical accuracy,

which is described as consistency with the product, and Navigation and display which

requires that all images or icons [. . .] are correctly mapped to the application – those

two characteristics overlap. A similar relation exists between Technical accuracy and

Accuracy of information, which – according to its description – should accurately re-

flect the functions of the software. Thus, the intention of the authors of the standards

was not to present an orthogonal quality model, but rather the way in which user

documentation should be assessed.

Markel [98] presented eight measures of excellence which are important in techni-

cal communication: honesty, clarity, accuracy, comprehensiveness, accessibility, con-

ciseness, professional appearance and correctness. Each item on the list is described,

and why it is important from the quality perspective is explained. Unfortunately,

there is no information on how to evaluate the presented measures. Moreover, some

of these measures overlap, i.e. both honesty and accuracy emphasize the importance

Table 4.8: Results of DET evaluation

User No. of No. of Average No. of Average percentage
documentation participants pages answer questions of correct answers

time [min]
Plagiarism.pl 16 13 39 29 82.97%
Deanery.XP 17 19 40 28 86.97%
Optivum Secretariat 17 25 61 30 76.47%
LangSystem 17 22 52 30 81.76%
Hermes 16 21 52 28 77.01%
Total 83 100 244 145

Table 4.9: Preparation of questions for DET evaluation

User No. of Final / Total time Average time
documentation experts total no. of of writing for one final

questions questions [min] question [min]
Plagiarism.pl 3 29/31 329 11.3
Deanery.XP 3 28/31 365 13.0
Optivum Secretariat 3 30/32 264 8.8
LangSystem 3 30/31 350 11.7
Hermes 3 28/30 224 7.7
Average 29/31 306.4 10.6

4.7. Conclusions 44

of not misleading the readers. Moreover, honesty is not a characteristic of a user

manual but rather a relation between a writer and his/her work (a reviewer can only

observe inconsistency between a user manual and the corresponding software but

is not able to say if those defects follow from bad will or whether they occurred by

chance).

Allwood et al. [14] described the process of assessing the usability of a user man-

ual by reading it and noting difficulties. During the evaluation, participants are asked

to rate, for each page of a user manual, its usability, comprehensibility, readability,

and how interesting and stimulating it is. Again, the orthogonality of the proposed

model is questionable as usability strongly depends on the comprehensibility of user

documentation. Moreover, if the proposed model is to be complete, usability should

cover operability. As operability depends on readability (if a user document is not

readable then it will take longer to get information from it, and thus its operability

will suffer), usability and readability overlap.

Other quality models considered in this paper are Ortega’s systemic quality model

and Steidl’s characteristics for code comments. They do not directly relate to user

documentation but contain quality characteristics that can be “translated” to the

context of user documentation. We used them to examine completeness of the COCA

model (see Section 4.3, justification for Claim 2).

4.7 Conclusions

This article presents the COCA quality model, which can be used to assess the quality

of user documentation. It consists of only four characteristics: Completeness, Op-

erability, Correctness, and Appearance. The model is claimed to be orthogonal and

complete, and justification for the claims are presented in Section 4.3. As quality

evaluation resembles measurement, the GQM approach [151] was used to define the

goal of evaluation, the questions about quality one should be interested in, and the

quality indicators which, when compared with the quality profile for a given area of

application, help to answer those questions. The empirical data (quality profile) have

been obtained by evaluating 9 user manuals available on the Polish market which

concern education-oriented software (see Table 4.6). The collected data are pretty

interesting. Although the evaluated user manuals concern commercial software, their

quality is not very high. For instance, only in 48.1% of the cases the Experts evaluated

the manuals as good or very good with respect to functional completeness of the

examined user documentation (question Q1 in Table 4.6), in 22.2% of the cases the

answer was weak or not-at-all.

4.7. Conclusions 45

Quality of user documentation can be evaluated with the COCA model using two

approaches: pure review based on Management Review of IEEE Std. 1028:2008 (see

Section 4.4.2), or mixed evaluation where Completeness, Correctness and Appearance

are evaluated using Management Review and Operability is evaluated experimentally

using the DET method proposed in Section 4.5. That method is based on questions

prepared by experts. The operability indicator is defined as the percentage of correct

answers given by a sample of prospective users. Empirical data concerning DET-

based evaluation show that, on average, there is about 1.5 questions per page of user

documentation (see Table 4.8) and, on average, it takes an expert about 10 minutes

to prepare one question. In the DET-based evaluation prospective users read a user

manual at the average speed of about 25 pages per hour and for documentation con-

cerning commercially available software the average percentage of correct answers is

between 77% and 87%.

Future work should mainly focus on further development of the quality profile, of

which an initial version is presented in Section 4.4.3 (Table 4.6) and Section 4.5.2 (the

rightmost column of Table 4.8). It would also be interesting to investigate Operability

indicators based on readability formulae such as SMOG [102] or the Fog Index [50]

(the Fog Index was used by Khamis to assess the quality of source code comments

[86]; a similar approach could be applied to user manuals).

Acknowledgements

This work has been supported by the Polish National Science Centre based on the

decisions DEC-2011/03/N/ST6/03016.

Chapter 5

Automatic explanation of field

syntax in web applications

Preface

This chapter contains the report: Bartosz Alchimowicz, Jerzy Nawrocki, Mirosław

Ochodek: Towards automatic explanation of field syntax in web applications, Politech-

nika Poznańska, RA-10/2014.

My contribution to this work included the following tasks: 1) co-design and

implementation of generation methods; 2) conducting the experimental evaluation.

Context: Users of web applications are often asked to enter texts into form fields with

special syntax (e.g. ISBN number) described by a regular expression. For instance,

in HTML5 there is the “input” tag, used to declare a form field, and it can have

the attribute “pattern” which contains a regular expression. Sometimes such fields

can pose a substantial challenge for an end-user who is an IT-layman. Thus, an

explanation of the syntax would be needed (in HTML5 it can be provided via the

“title” attribute). Unfortunately, writing good explanations (especially in multiple

languages) can be quite time consuming.

Objective: The aim of this work is to check whether it is possible to automatically

generate an explanation of form field syntax that would be no worse than a man-

made one.

Method: It has been assumed that a good explanation of form field syntax should

consist of three parts: narrative explanation (variants in multiple natural languages

should be available in interest of localizability), syntax diagram, and a set of correct

and erroneous examples of input text. For the sake of modifiability, a rule-based

domain specific language has been designed which resembles a compiler’s syntax-

directed definition. Using that language, one can specify the rules of generating

narrative descriptions in various natural languages (taking into account the inflection

46

5.1. Introduction 47

characteristic of Slavonic languages), rules of splitting a complex regular expres-

sion into a set of easy-to-comprehend subexpressions, and also rules of assigning

meaningful names to automatically extracted subexpressions.

As regards the generation of erroneous examples, a heuristic algorithm has been

proposed that produces easy-to-explain incorrect texts. The algorithm is based on

two mutations, removal and contamination, which destroy a regular expression in a

“controlled” way.

To check the quality of the proposed method of generating form field syntax

explanations, a controlled experiment has been conducted. A set of regular expres-

sions was selected and a group of 15 students of Software Engineering were asked

to prepare explanations for them. The same regular expressions were also used to

generate explanations using the proposed method. Next, 207 subjects were given a

set of exemplary input texts and syntax explanations. Their task was to mark input

texts as correct or incorrect. The score was the average percentage of correct marks.

Results: The average percentage of correct marks for the group using automatically

generated explanations was 84%, while for the subjects who were given man-made

explanations it was less than 79%.

Conclusion: It seems possible to automatically generate an explanation of form field

syntax that would be no worse than a man-made one. The proposed methods of

generating multiple-language narrative explanations and easy-to-explain erroneous

examples could be used to make a practical tool (possibly a web service) that would

generate explanations for HTML5/JavaScript regular expressions.

5.1 Introduction

The syntax of text fields is often not very well explained in applications. This is not a

problem for typical strings, like the user’s name or age. However, there are strings

that may by challenging for end-users, like ISBN, ISSN and others. To help users,

one can include an explanation of a field’s syntax in an application or place it in a

user manual. However, complex fields do not occur frequently which is why their

description is often omitted and users are left without any help. A solution to this

problem could be the automatic generation of an explanation of a field on the basis

of information available in the source code.

Such an explanation could prevent problems arising from a lack of information

needed by users. According to data presented by Markel, the average cost of one

support call in the year 2008 was above $32 [98]. Moreover, a user who cannot find

a solution to a problem searches for it among other users [111], which means that

in a company she/he disturbs other co-workers. Another argument for explaining

5.1. Introduction 48

field syntax is the recommendation of ISO/IEC Std. 26514:2008 [67], according to

which an explanation of a field should appear in the user documentation and in the

application.

In our research we assumed that in order to check the syntactical correctness

of a field’s input, a programmer should describe the field’s syntax with a regular

expression, and on the basis of the regular expression an explanation of the field’s

syntax is generated in an automatic way.

A regular expression is the most prevalent notation for the validation of input

strings and is widely used in computer languages (e.g. HTML5, Java, Perl, Python,

etc. [48]), lexical analyzers (e.g. Lex [93]) and other tools. Moreover, a number of

extensions were created (e.g. for the Perl language). There is also a standard for

describing regular expressions (see the POSIX documentation [147]).

If the input is syntactically incorrect, the application should support the end-user

and explain the structure of acceptable input. The simplest solution is just to show the

regular expression entered by the programmer. However, that could be unreadable

to the end users (as shown by Erwig and Gopinath [42], even programmers have

difficulty in understanding complex regular expressions). The need to explain regular

expressions was recognized by many authors, including Ranta [123], Erwing and

Gopinath [42], and Blackwell [20, 21]. Moreover, a number of tools were created

for that purpose, like YAPE [144], and RegExpert [26]. Unfortunately, none of the

proposed methods was aimed at explaining regular expressions to an IT-layman.

In this paper we describe the Field Explanation System which generates a field

explanation that takes a regular expression describing the syntax of the field as the

input. The generated explanation consists of three parts: a narrative explanation,

examples (positive and negative), and a visual representation. This paper extends the

previous research carried out by Alchimowicz and Nawrocki [9] (see Appendix C) that

focused on the visual representation of regular expressions using syntax diagrams.

It focuses on the generation of narrative explanations and also briefly discusses

explanation by examples.

The paper is organized as follows: In Section 5.2, the problem of automatic gen-

eration of a field explanation is defined. Section 5.3 presents templates used for

text generation. Section 5.4 introduces grammatical attributes. Section 5.5 describes

conditional templates. Section 5.6 shows how to cope with EBNF extensions which

result in repetitions of nonterminals in a syntax tree. Section 5.7 presents how to iden-

tify a regular expression that can lead to an empty. Section 5.8 introduces patterns

which allow to produce explanations better than those that can be obtained using

the standard rules. Section 5.9 focuses on the generation of referring expressions.

Section 5.10 presents how to assign easy-to-memorize names for parts of complex

5.2. Problem 49

regular expressions. Section 5.11 describes the generation of examples and the focus

is on generating erroneous ones. This is not a trivial task, if one expects to obtain

erroneous examples for which it is easy-to-explain what is wrong with them. Section

5.12 presents an empirical evaluation and Section 5.13 discusses related work. Finally,

a summary of the findings and conclusions can be found in Section 5.14.

5.2 Problem

As was stated in Section 5.1, we are interested in the automatic generation of expla-

nations of field syntax for fields that appear in web applications. To accomplish this

goal one must solve the following problem.

PROBLEM 1. Given a field description composed of a field name and its syntax

described by a regular expression, generate a field explanation explaining its syntax.

The generated explanation should be at least as helpful as explanations written by

humans.

REQUIREMENT 1. (Multilingualism) A generator of field explanations should be

multilingual, i.e. it should support the generation of field descriptions in various

natural languages.

JUSTIFICATION. English is a very popular language, but many web applications are

still used by people who would prefer to speak another language in their daily activi-

ties. Therefore, it would be useful if the generator supported many languages. The

current version of the system supports English and Polish.

ASSUMPTION 1. An explanation of a regular expression should consist of a dia-

grammatic representation (based on the concept of syntax diagrams [9]), a narrative

explanation, and a set of examples with correct and incorrect input. In the remaining

part of the paper this type of explanation is called a 3-fold explanation.

JUSTIFICATION. The pertinence of this assumption was somehow confirmed by em-

pirical evaluation of the presented method (see Sec. 5.12). Nevertheless, further

study would be necessary to investigate the importance of each part of the 3-fold

explanation.

For example, for the VAT field whose syntax is described by the following regular

expression:

VAT = [0-9]{3}-([0-9]{2}-){2}[0-9]{3}

one would get for the English language the 3-fold explanation presented in Fig. 5.1.

5.3. Syntax-Directed Flexible Templates 50

VAT is described by the following diagram:

VAT consists of 3 digits, a hyphen (-), two Ingredients and three digits.
An Ingredient consists of two digits and a hyphen (-).

Example Correct?
948-93-00-158 Yes
195-19-75-984 Yes
793-28-87-441 Yes
563-328 No (absence of Header)
23987-58-87-441 No (too long)

Figure 5.1: An example of a 3-fold explanation

5.3 Syntax-Directed Flexible Templates

As the input is an expression of a formal language, a generator of field explanations

is a kind of translator and generation rules can be described as syntax-directed

definitions [8]. The main difference between a compiler and an explanation generator

is the output: for a compiler it is another formal language while for an explanation

generator it is a natural language. Nevertheless, translation rules in both cases can

be described in a similar way, i.e. they can be based on production rules describing

the input. For the purpose of generation of field explanations, the use of a special

set of translation rules is proposed, called here flex-templates, where flex stands for

’flexible and extendible’. Explanation rules based on flex templates have syntax as

presented below. In the paper an EBNF-like notation is used [63], i.e. the right-hand

side of a production rule can contain a regular expression built over terminal and

nonterminal symbols of grammar rather than just a finite sequence of those symbols.

However, since none of the names of the nonterminals that appear in this paper has

a space inside, we decided to skip colons that in EBNF denote concatenation.

Rule = Production
(Lang ’:’ Template)+
(AttributEval)*
’;’ ;

Production = Parent ’=’ RHS ;

The nonterminal Rule represents a whole explanation rule. Each explanation

rule consists of a Production (where the production is a part of the grammar de-

scribing the syntax of regular expressions), a Template for each natural language,

Lang, served by those rules, and a possibly empty sequence of AttributEvals defin-

ing the evaluation of general-purpose attributes (those attributes are discussed in

5.3. Syntax-Directed Flexible Templates 51

Sec. 5.7 and—as they are optional—for the time being they will be neglected). Each

Production is a pair consisting of a parent nonterminal symbol, a Parent, and a

right-hand side, RHS, that is a nonempty sequence of simple right-hand sides or

repeatable phrases (SimpleRHS and RepPhrase respectively).

Parent = Nonterm ;
RHS = (SimpleRHS | RepPhrase)+ ;

Repeatable phrases (RepPhrase) will be discussed in the next section. A simple

right-hand side is either a terminal symbol or a nonterminal one (as in classical

context-free grammars):

SimpleRHS = (Term | Nonterm) ;

A nonterminal symbol is a sequence of letters (lower or upper case) and—for the

sake of readability—it is underlined. Here are a few examples of nonterminal symbols:

Regex, Component, Factor. Sometimes there is a need to make a distinction between

two or more occurrences of the nonterminal symbol in a production rule, to allow

referral to a particular occurrence in a template (this is discussed in detail in Sec.

5.6). Then one can augment a nonterminal symbol with a 1-digit suffix, e.g. Factor1,

Factor2 denote different occurrences of the nonterminal Factor.

Each natural language Lang is specified using ISO Standard 639-1 (e.g. English

is denoted as "EN", Polish as "PL" and so on). The advantage of this standard is the

fixed length of all the symbols (they are 2-character long). We call those symbols

’language symbols’ and denote them as LangSymbol. They are composed of upper

case letters. The language symbol is followed by a possibly empty list of synthesized

attributes, Syn—for the time being let us assume the list is empty (those attributes

are discussed later in this section):

Lang = LangSymbol ’(’ Syn? ’)’ ;

Template describes a template to be used for a given natural language. It repre-

sents a sequence of boilerplates (denoted here as Boilerplate), nonterminal gaps

(NontermGap), conditional fragments (CondFragment), and repeatable fragments

(RepFragment):

Template = (Boilerplate | NontermGap | CondFragment | RepFragment)+ ;

With the exception of boilerplates, all will be described later (Nonterminal gaps

in Sec. 5.4, conditional fragments in Sec. 5.5, and repeatable fragments in Sec. 5.6).

As regards boilerplates, roughly speaking they are a sequence of words of a given

5.4. Grammatical attributes 52

Zero= "0"
EN(): "null "

;

Figure 5.2: An extremely simple explanation rule.

natural language (a word is defined as a nonempty sequence of letters that is subject

to grammatical adjustment—this issue is discussed in Sec. 5.4) surrounded by strings

of any characters including letters, digits, colons, dots, space characters etc.

An extremely simple example of an explanation rule is given in Fig. 5.2. In

the Production part, the parent is nonterminal Zero, and SimpleRHS is the single-

character string "0" (it is derived from the terminal symbol Term). In Fig. 5.2 the only

natural language is British English (denoted by "EN()"), and the template consists

of one Boilerplate which is the string "null ". When "0" is encountered in the

input, the string "null " will be generated as (part of) the output.

5.4 Grammatical attributes

It is assumed that the final explanation will be based on a superposition of the

provided templates. Here ’superposition’ means that one template can be ’inserted’

into another using gaps marked with nonterminal symbols (the symbol NontermGap

represents those gaps in a template). Superposition is attractive, but it requires some

adjustment of the template that is to be inserted in a given place. That adjustment

must take into account the context where a given template is to be inserted. The

information about the context is passed into a given template through grammatical

attributes.

In general, there are two kinds of attributes: general-purpose attributes and

grammatical ones. Both of them must be declared in an appropriate way:

AtriDec = (GrAtriDec | GenAtriDec)* ;

General-purpose attributes are discussed in Sec. 5.7. In this section the focus is

on grammatical attributes.

Declaration of a grammatical attribute provides information about the possible

values of that attribute. As the set of those values is finite, declaration of a gram-

matical attribute, GrAtriDec, resembles the declaration of an enumeration type in

programming languages:

GrAtriDec = GrAtriName ’:’ GrAtriVal (’,’ GrAtriVal)* ’;’ ;

5.4. Grammatical attributes 53

GrAtriName is the name of a given grammatical attribute (it is a sequence of

lower case letters), and GrAtriVal is one of the possible values of that attribute

(only upper case letters and digits are allowed). The second part of a grammatical

attributes declaration is a flow description:

GrAtriFlow = LangSymbol ’:’ ’Nonterm ’ ’(’ Syn ’)’ ’<’ Inh ’;’ ;

Inh and Syn are lists of names of inherited and synthesized grammatical at-

tributes, respectively:

Inh = GrAtriName (’,’ GrAtriName)* ;
Syn = GrAtriName (’,’ GrAtriName)* ;

Inherited attributes are passed from a parent to its children and they are used to

transfer information about the context in which a given piece of text will be inserted

(that piece of text is to be adjusted accordingly). Synthesized attributes are passed

from a child to its parent and they convey information that allows adjustment of the

context. Examples of both types of adjustments will be presented later. Before that,

an example of attribute declaration will be presented. That example is based on the

following assumption:

ASSUMPTION 2. For the purpose of generating an explanation of a regular expression,

it is enough to take into account the grammatical number (singular or plural), the

grammatical gender (feminine, masculine or neuter), and six grammatical cases:

Nominative, Genitive, Dative, Accusative, Instrumental, and Locative [146].

JUSTIFICATION. As the purpose is to describe objects (i.e. strings of characters), one

can assume, without loss of generality, that the tense will always be present tense

and the grammatical person will be the third one. Putting the templates together can

require adjustment of the grammatical number of the nouns or noun phrases that

appear in the templates. Moreover, in some languages (e.g. in Slavonic languages

like Polish or Russian), the grammatical case of a noun or noun phrase influences

the ending of the noun (nouns are subject to inflection). For instance, in Polish,

the Nominative of "colon" is "dwukropek", and the Instrumental is "dwukropkiem".

Another linguistic phenomenon that must be taken into account is the grammatical

gender of the adjective inherited from the grammatical gender of the noun (or noun

phrase) described by that adjective. Like the inflection of nouns, there is inflection of

adjectives, i.e. the ending of an adjective depends on its grammatical gender (this

phenomenon appears, for instance, in Slavonic languages).

Taking into account Assumption 2, one could declare the set of grammatical

attributes as presented in Fig. 5.3 (the text enclosed between "/*" and "*/" is a

5.4. Grammatical attributes 54

/* Cases: */
c: N /* Nominativus */, G /* Genetivus */, D /* Dativus */,

A /* Accusativus */, I /* Instrumentalis */, L /* Locativus */;
/* Gender: */

g: F /* Feminine */, M /* Masculine */, T /* neuTer */;
/* Number: */

n: 1 /* Singular */, 2 /* Plural */;

PL: Nonterm(g) < n,c;
EN: Nonterm() < n;

Figure 5.3: An exemplary declaration of attributes and their flow.

comment). It seems good practice to have the names of attributes and their values

1-character long: they will be used as annotations and as such they should not

dominate the main text that is to be produced in the output.

The last two lines of Fig. 5.3 declare which of the declared attributes are synthe-

sized (gender for Polish and none for English) and which are inherited (number and

case for Polish, and only number for English). Using Nonterm in those declarations

means that every nonterminal symbol in a given language has those attributes.

Knowing how to declare grammatical attributes, let us return to boilerplates, as

attributes are used there. As has been already mentioned, a boilerplate contains

words of a given language and those words need to be adjusted using information

passed via grammatical attributes. The attributes used to adjust a particular word are

assigned to it by placing them next to the word in the superscript. They are preceded

by the redirection symbol "<". An example boilerplate using grammatical attributes

is presented below:

"nice child< n "

The final text depends on the value of the attribute n (grammatical number). If

n = ’2’ (i.e. the number is plural), the word "child" would be replaced by "children"

and the final text would be "nice children " (there is a dictionary which, given a

particular word and its grammatical attributes, returns the word in the right form).

Generally speaking, boilerplate syntax is defined as follows:

Boilerplate = ’"’ (Word ’<’ GrAttribute (’,’ GrAttribute)*

| AnyCharacter)+
’"’ ;

GrAttribute = (GrAtriName | GrAtriVal);

Although GrAtribute is defined as any name or value of a grammatical attribute,

annotating a word with a fixed value of a grammatical attribute makes no sense – one

can use a given word directly in the appropriate form (then such a word is treated as

5.4. Grammatical attributes 55

a sequence of AnyCharacters). As grammatical attributes are simply annotations to

a word and the word itself is more important than its annotation, the annotations are

specified in superscripts.

The second component of a template is a nonterminal gap (NontermGap). It is a

nonterminal augmented with information about inherited and synthesized attributes:

NontermGap = Nonterm’<’ GrAttribute (’,’ GrAttribute)*
’>’ GrAtriName (’,’ GrAtriName)*

Information about grammatical attributes inherited by a Nonterm is presented

in superscript and is preceded by ’<’. The list of inherited attributes can contain

an attribute value or name of a grammatical attribute, inherited from the parent of

a Nonterm or synthesized by a sibling of a Nonterm. Inherited attributes resemble

input procedure parameters in programming languages. Synthesized attributes are

written in subscript and are preceded by ’>’ (’<’ and ’>’ should be read as simplified

arrows). A synthesized attribute is similar to an output procedure parameter. Its value

is conveyed from the inside of a Nonterm to its environment via a name resembling

the name of an actual parameter.

In Fig. 5.4 there are three explanation rules for Polish (PL) and English (EN). The

first one contains templates with nonterminal gaps. The second rule contains the

keyword Text which represents the fragment of the input text that matches the right-

hand side of the production – in this case it will be a digit found in the input (Text

resembles the array yytext in YACC [78]). The Polish variant of the first explanation

rule contains the word ’opcjonalny’ (in English: ’optional’) which is followed by the

nonterminal gap Primary. When Factor is given n=’1’ (i.e. the grammatical number

is singular) and c=’G’ (i.e. the grammatical case is Genitive), those attributes are

assigned to the word ’opcjonalny’ and via the nonterminal gap Primary they are also

transferred to the word ’cyfra’ (in English ’digit’). As the Genitive of singular number

for ’cyfra’ is ’cyfry’, and the Genitive of singular number and feminine gender for

’opcjonalny’ is ’opcjonalnej’, one will get the following explanation in Polish for the

input ’0?’:

opcjonalnej cyfry 0

For English the explanation would be

optional digit 0

5.5. Conditional fragments 56

5.5 Conditional fragments

A conditional fragment (CondFragment) is either a single boilerplate or nonterminal

gap preceded by a condition. It can also be a nonempty sequence of boilerplates and

nonterminal gaps enclosed in brackets and preceded by a condition:

CondFragment = Condition ’?’ (Boilerplate | NontermGap)
| Condition ’?’ ’(’ (Boilerplate | NonTermGap)+ ’)’
;

A condition can describe a constraint imposed on the value of an attribute. Here

is an example of two alternative conditional fragments:

n=1 ? ("a sequence of " Factor< 2)
n=2 ? ("sequences , each composed of " Factor< 2)

If the grammatical number is singular (n equals 1), and assuming the explanation

system responds to the input 0?, according to the rules of Fig. 4 the generated

fragment of the explanation would be "a sequence of optional digits 0"; otherwise (i.e.

for the plural number) the generated text would be "sequences, each composed of

optional digits 0" (in both cases the underlined text marks the strings generated from

Factor< 2).

5.6 Extensible templates

To make explanation rules compact and more readable, we have decided to allow

repetitions within the right-hand side of a production (this concept is also present in

the EBNF notation [63]). As stated in Sec. 5.3, the right-hand side of a production can

Factor= Primary "?"
PL(g): "opcjonalny< n,c,g " Primary< n,c

> g
EN(): "optional< n " Primary< n

;
Primary= [0-9]

PL(F): "cyfra< n,c " Text
EN(): "digit< n " Text

;
Primary= "?"

PL(M): "znak< n,c zapytania "
EN(): "question mark< n "

;

Figure 5.4: Two explanation rules for Polish and English that uses grammatical at-
tributes.

5.6. Extensible templates 57

be a simple right-hand side (SimpleRHS) or a repeatable phrase (RepPhrase). Sim-

ple right-hand sides have already been discussed. A repeatable phrase, as the name

suggests, is a phrase that can be repeated several times – the possible number of rep-

etitions is specified as a range. Without loss of generality, one can reduce the number

of possible forms of range expressions to two: { Min, } and { Min, Max } . The

former represents a set of natural numbers from Min to infinity, and the latter – from

Min to Max. The syntax of a repeatable phrase can be presented as follows:

RepPhrase = Phrase ’{’ (Min ’,’ | Min ’,’ Max) ’}’
;

Phrase = Nonterm
| ’(’ Term* Nonterm Term* ’)’
;

An example production written in the format presented above is given below:

Regex = Component ("|" Component){0,}

Regex is an instance of a Parent. The right-hand side of the production consists

of one simple right-hand side (Component) and one repeatable phrase consisting

of the vertical bar character ("|") and the nonterminal Component. The phrase is

repeatable 0 or more times (the range expression is ’{0,}’). Taken together, Regex

describes a nonempty sequence of Components that are separated with ’|’.

Two popular shortcuts are allowed for a phrase p (those shortcuts are developed

into the full version during preprocessing):

p* = p {0, }

and

p+ = p {1, }

In symmetry with repeatable phrases in grammar productions, there are also re-

peatable fragments in a template (they have been mentioned in Sec. 5.3). Repeatable

fragments of a template are written using Kleene’s star (’*’) which means zero or more

repetitions:

RepFragment= ’(’ (Boilerplate | NontermGap | CondFragment)+ ’)’ ’*’ ;

If a nonterminal symbol occurs more than once in the right-hand side of a pro-

duction, then it should be appended with a digit (this has already been mentioned in

Sec. 5.3). Thanks to this, one can refer to a given occurrence of the nonterminal in

an unambiguous way. Let us consider, as an example, the following explanation rule:

5.7. General purpose attributes 58

Component= Factor1 Factor2* Factor3
EN(): n=1 ? "a sequence composed of "

n=2 ? "sequences , each composed of "
Factor1< 1 ", " (Factor2< 1 ", ")* "and " Factor3< 1

;

Assume the number (n) is singular (i.e. ’1’), and from Component a sequence of

two factors is derived, the first one matches ’1’ on the input, and the second one

matches ’3’ (Factor is defined as in Fig. 4). Then the repeatable fragment would

be reduced to an empty string and the above template would produce the following

fragment of explanation:

a sequence composed of digit 1 , and digit 3

(the space character before the colon would be removed later, during the so called

polishing phase, which is the last phase of generating a narrative explanation). If the

input was ’1’, ’2’, ’3’, the corresponding output could be

a sequence composed of digit 1 , digit 2 , and digit 3

5.7 General purpose attributes

For some regular expressions, the languages described by them can contain an empty

string. Using the already presented mechanisms, one would simply paraphrase a

regular expression in a natural language. As a result, the final explanation would

consist of sentences of the form "a possibly empty sequence of . . . " or "a nonempty

sequence of optional. . . ". All such explanations have two characteristics: 1) they

allow empty strings, and 2) they can be perfectly correct but not necessarily easy to

comprehend. For the sake of understandability, it would be better to write directly

that a given field can be left empty. For instance, one could generate an explanation

of the form

"You can leave the field empty or enter. . . ".

It is not difficult to decide if a regular expression defines language containing an

empty string. An exemplary set of rules is presented in Table 5.1.

To allow implementation of rules similar to those presented in Table 5.1, one can

use the general purpose attributes mentioned in Sec. 5.4, i.e. synthesized attributes

which are well-known in the compiler domain [8, 78]. Declaration of such attributes

has the following form:

5.7. General purpose attributes 59

Table 5.1: Exemplary rules of inference for checking if an empty string, ε, belongs to
language L(r) defined by a regular expression r .

Regular expression r ε in L(r)
r1∗ true
r1? true
r1+ iff ε in L(r1)
r1{a,b} iff (a = 0) or (ε in L(r1))
r1|..|rn iff there exists j : 1 ≤ j ≤ n •ε in L(r j)
r1..rn iff for every j : 1 ≤ j ≤ n • ε in L(r j)

GenAtriDec = ’@’ GenAtriName ’:’ TypeDec ’;’
;

TypeDec = ’Boolean ’
| ’Integer ’
| GenAtriVal (’,’ GenAtriVal)*
;

The name of a general purpose attribute, GenAtriName, is a sequence of letters

(lower or upper case) and digits. Boolean denotes the Boolean type which consists of

two values: true, and false. Such attributes can be manipulated with the Boolean

operators (they are encoded using the notation of the C language, i.e. ’&&’, ’||’, and

’!’). GenAtriVal stands for a general-purpose attribute value and its lexical structure

is the same as GenAtriName (obviously, each GenAtriVal must be unique). An

exemplary declaration of a general-purpose attribute is given below:

@Empty: Boolean ;

Evaluation of general-purpose attributes, AttributEval, mentioned in Sec. 5.3,

has the following syntax:

AttributEval = GenAtriName ’=’ Expression
;

Expression = ClasExp ’(’ Oper ClasExp ’)’ ’*’ (Oper ClasExp)?
| ClasExp
;

ClasExp denotes a classical expression returning a value that fits the declared

attribute type, and Oper is a classical operator appropriate for the attribute type (e.g.

’+’ for the Integer type or ’&&’ for the Boolean type). Every expression containing

the extension expression ’(..)*’ is evaluated from the leftmost son to the rightmost

one (i.e. the first one to the last one). Here is an example of a rule containing

evaluation of a general-purpose attribute:

5.8. Idiomatic patterns 60

Component= Factor1 Factor2* Factor3
EN(): n=1 ? "a sequence composed of "

n=2 ? "sequences , each composed of "
Factor1< 1 ", " (Factor2< 1 ", ")* "and " Factor3< 1

Empty= Factor1.Empty (&& Factor2.Empty)* && Factor3.Empty
;

It makes the Empty attribute of Component true if and only if the Empty attributes

of all the Factors have the value true (to be more precise, only the Factors that are

sons of that Component are checked here). When the value of the Empty attribute is

available, one can use it to generate the beginning of the sentence in two different

forms, depending on the value of Empty:

Syntax= Regex
EN(): Regex.Empty ?

("You can leave the field empty or enter " Regex< 1 ". ")
!Regex.Empty ?
("Enter " Regex< 1 ". ")

;

As the reader perhaps has already noticed, the main differences between general-

purpose attributes and grammatical ones are the following:

• General-purpose attributes are independent of a natural language, while gram-

matical attributes are strongly connected with a given language.

• The aim of grammatical attributes is to adjust some words into an appropriate

form. The general-purpose attributes work at a higher level – they are used to

select a sentence structure that would be the best from the understandability

point of view.

5.8 Idiomatic patterns

As mentioned in the previous section, the simple paraphrasing of a regular expression

in a natural language is in many cases not enough to produce an effective explanation.

Some problems concern a special characteristic of a regular expression, such as the

possibility of accepting an empty string. As shown in the previous section, those

cases can be treated with general-purpose attributes. Another sort of problem is

connected with the special structure of a regular expression, which is not appropriate

for direct paraphrasing in a natural language. Let us consider the following example:

Series = [0-9] ("," [0-9])+

5.8. Idiomatic patterns 61

When directly paraphrased using rules like those presented earlier, it could pro-

duce the following explanation:

Series is a sequence consisting of a decimal digit followed by a nonempty

sequence consisting of a sequence of comma and a decimal digit.

It is correct but not easy to understand. The explanation given below seems much

better:

Series is a sequence of at least two decimal digits separated with commas.

To implement that type of explanation, one can use idiomatic patterns, i.e. pat-

terns describing a special structure of a regular expression (or its fragment) that can

be better explained with an idiomatic phrase, i.e. a phrase different from the one that

can be obtained using the superposition of standard templates. Idiomatic patterns

have the following syntax:

IdiomPattern= CaseDesc
(Lang ’:’ Template)+

’;’
;

From the presented syntax it follows that an idiomatic pattern, IdiomPattern,

consists of a case description, CaseDesc (which is a counterpart of Production in

the explanation rule discussed in Sec. 5.3), and a nonempty sequence of templates,

one for each natural language, Lang, covered by the explanation rules. When a case

described by CaseDesc is discovered (at the implementation level the parse tree

is examined) a Template appropriate for a given language is used to replace the

standard explanation.

A case description consists of a primary condition and a secondary one:

CaseDesc= PrimaryCond ’&&’ SecondaryCond ;

Roughly speaking, the primary condition describes a context in which the sec-

ondary condition applies. More precisely, the primary condition is a nonempty

sequence of conditions imposed on what can be derived from a given nonterminal

symbol. The syntax of a primary condition is given below:

PrimaryCond= Nonterm ’=>’ ReMex
(’&&’ Nonterm ’=>’ ReMex)*
;

ReMex is a regular meta-expression describing a sentential form (i.e. a sequence

of terminal and nonterminal symbols) that can be directly derived from Nonterm (in

other words, ReMex describes the list of sons of Nonterm on the syntax tree):

5.8. Idiomatic patterns 62

ReMex= Component ("|" Component)* ;
Component= Factor Factor* ;

Factor= Primary ("+" | "*" | "?")? ;
Primary= Term | Nonterm | "(" MetaRex ")" | "." ;

A dot (".") stands for any (single) terminal or nonterminal symbol. The secondary

condition has the following syntax:

SecondaryCond= Nonterm ’==’ Nonterm ;

It means that a string of terminal symbols derived from the Nonterm on the left

of the symbol ’==’ must be equal to the string derived from the Nonterm on the right.

Assuming that S denotes the starting symbol of the grammar, r is the analyzed

regular expression, α, β, γ, δ, π, σ denote a possibly empty sequence of terminal and

nonterminal symbols (π stands for ’prefix’, and σ for ’suffix’). Moreover, assume that:

• =>∗ denotes reflexive and transitive closure of the derivation relation ’=>’,

• =>+ denotes transitive closure of the derivation relation ’=>’,

• α ˜ /r/ means that a sequence α matches (from its beginning to the end) a

regular expression r .

Then, the semantics of CaseDesc of the form

N0 => ReMex0

&& N1 => ReMex1 ... && Ni+1 => ReMex i+1 ... && Nk => ReMexk

&& M1 == M2

can be presented as in Table 5.2, rows 1-4.

Let us consider the following example. Assume that (a fragment of) a regular

expression’s language is described with the following productions:

Regex= Component ;
Component= Factor1 Factor2* Factor3 ;
Component= Factor ;

Factor= Primary "+" ;
Factor= Primary ;

Primary= "(" Regex ")" ;

To cope with cases like the one exemplified by Series, one could write the

following idiomatic pattern:

5.9. Auxiliary diagrams and referring expressions 63

Component1=> Factor1 Factor2
&& Factor2 => Primary "+"
&& Primary => "(" Regex ")"
&& Regex => Component2
&& Component2=> Factor3 Factor4
&& Factor1 == Factor4

EN(): "a sequence of at least two " Factor1< 2

"separated with " Factor3< 2

;

The above pattern looks for Components (i.e. fragments of a regular expression)

that have a special structure, namely r1(r2r1)+ (r1 corresponds to Factor1, and r2 to

Factor3). Then the standard explanation is replaced with a new one of the form:

a sequence of at least two r1 separated with r2

(r1 and r2 will be adjusted to the plural number).

5.9 Auxiliary diagrams and referring expressions

Some regular expressions are too complex to explain with one syntax diagram and

one sentence. Consider the following regular expression:

Index= [0 -9]+(\ +[0 -9]+)+

The corresponding diagram is presented in Fig. 5.5a and a 1-sentence explanation

would be something like the sentence given below (the idiomatic pattern presented

in the previous section has been applied):

Table 5.2: The formal meaning of various forms of case-description expressions. δ
is a nonempty sequence of terminal symbols, η is possibly an empty sequence of
terminal and nonterminal symbols. FISH and fish are sets of pairs [ρ,ν] where ρ is
a regular expression and ν is a name. L(r) denotes a language defined by a regular
expression r .

No. Case description Meaning
1 N0 => ReMex0 S =>+ π N0 σ => π δ0 σ =>∗ r ^ δ0 ∼ / ReMex0 /
2 && N1 => ReMex1 δ0 = α1 N1 β1 ^

π α1 N1 β1 σ => π α1 δ1 β1 σ =>∗ r ^ δ1 ∼ / ReMex1 /
3 && Ni+1 => ReMexi+1 αi δi βi = αi+1 Ni+1 βi+1 ^

π αi+1 Ni+1 βi+1 σ => π αi+1δi+1βi+1 σ =>∗ r ^ δi+1 ∼ / ReMexi+1 /
4 && M1 == M2 αk γk βk = γ1 M1 γ2 M2 γ3 ^

π γ1 M1 γ2 M2 γ3 σ =>+ π γ1 ∆ γ2 ∆ γ3 σ =>∗ r
5 && M => %FISH .* %fish αk δk βk = γ1 M γ2 ^

π γ1 M γ2 σ =>+ π γ1 η1 ϕ1 η2 ϕ2 η3 γ2 σ =>∗ r ^
[ρ1, ν1] in FISH ^ L(ϕ1) = L(ρ1) ^ [ρ2, ν2] in fish ^ L(ϕ2) = L(ρ2)

6 && M < %FISH αk δk βk = γ1 M γ2 ^
π γ1 M γ2 σ =>+ π γ1 ϕ γ2 σ =>∗ r ^
[ρ, ν] in FISH ^ L(ϕ) subset L(ρ)

5.9. Auxiliary diagrams and referring expressions 64

Index is a sequence of at least two nonempty sequences of decimal digits

separated with nonempty sequences of space characters.

It is not very easy to understand, mainly due to nested sequences (the word

’sequence’ appears three times). It would be much easier if the syntax description

was split into three regular expressions:

Number= [0 -9]+
Gap= \ +

Index= Number (Gap Number)+

The corresponding syntax diagrams are shown in Fig. 5.5b, c, d, and the narrative

explanation could be like the one given below:

Assume Number is a nonempty sequence of decimal digits, and Gap is a

nonempty sequence of space characters. Then Index is a sequence of at least

two Numbers separated with Gaps.

The diagrams of Fig. 5.5b and 5.5c are auxiliary diagrams – they illustrate a part AUXILIARY DIA-

GRAMof the regular expression and their aim is to make the whole explanation easier to

understand. Names assigned to auxiliary diagrams (Number and Gap) are so-called

referring expressions. In general, referring expression is "a description of an entity that REFERRING EX-

PRESSIONenables the hearer to identify that entity in a given context" [126]. One of the possible

forms of referring expressions is a proper name [90, 126]. As noticed by Krahmer and

Deemter, "proper names have limited applicability because many domain objects do

not have a name that is in common usage". In the context of syntax explanations

there are two options: a) a name can be given by a programmer, or b) a name can be

automatically created by a computer.

Some languages allow the naming of parts of a regular expression by a program-

mer (e.g. Lex [93]), and some others do not (e.g. HTML5). Even if a language allows

the use of names in regular expressions, it might be useful if a computer could sup-

port a programmer and the naming of some parts of a regular expression. The main

reason is the difference in the points of view: from the programmer’s point of view

a given expression can appear quite simple and she/he may not see a need to in-

troduce an auxiliary term, whereas for an inexperienced user it could be difficult to

comprehend. Thus, the following problem arises:

PROBLEM 2. How can we identify auxiliary diagrams and name them in an automatic

way?

One solution is to create a glossary of popular regular expressions such as Number

(i.e. a nonempty sequence of digits) or Name (a nonempty sequence of letters starting

5.9. Auxiliary diagrams and referring expressions 65

with a capital letter). Whenever a subexpression of the regular expression matches the

definition of a name, the regular expression is split into a part defining a given name

and the remaining part in which the name appears instead of the subexpression. The

definition of a glossary item resembles idiomatic patterns:

GlossaryItem= Nonterm ’=>+’ Term +
(Lang ’!’ Boilerplate)+

’;’
;

Here is an example of a glossary item definition:

Factor =>+ "[0-9]" "+"
PL(F)! "Liczba < n,c "
EN()! "Number < n "

;

In a similar way one can define Word, Name, Gap etc. It is important to correctly

split the right-hand side of the derivation symbol ("=>+") into a sequence of lexemes.

In the above example, presenting a right-hand side as "[0-9]+" is incorrect because

the same sequence with a white space character before ‘+’ would not be recognized

(i.e. the string "[0-9] +"). Similarly, presenting it as a sequence of "[", "0-9", "]",

and "+" would also be incorrect as it could match a single number as a sequence of

digits with the space characters inside (i.e. the regular expression "[0-9]+" would

match a set of strings different from "[0-9]+").

Unfortunately, in some cases a glossary is not enough. Assume a field X is de-

scribed with the following regular expression:

[0 -9.]+ \ + [0 -9.]+

The subexpression "\ +" can easily be recognized as Gap. Then the explanation

could be presented in the following way:

Assume Gap is a nonempty sequence of space characters. X is a sequence of

a nonempty sequence of digits or dots, a Gap, and a nonempty sequence of

digits or dots.

The fragment "a sequence of a nonempty sequence" can be a little bit confusing

for an inexperienced user. An alternative explanation could be the one given below:

Assume Extended Number is a nonempty sequence of digits or dots, and Gap

is a nonempty sequence of space characters. X is a sequence of an Extended

Number, a Gap, and an Extended Number.

The approach applied here is based on the following assumptions:

5.9. Auxiliary diagrams and referring expressions 66

• The user knows the Number category very well (if there is a doubt, one could

start the explanation with an additional statement such as "Usually number is

just a nonempty sequence of digits.").

• The expression "extended Z" is understood by the user as Z plus some additions.

The above description is a good illustration of our approach to identifying auxil-

iary diagrams (i.e. auxiliary subexpressions) and naming them. If the glossary does

not contain an exact match, a ’fuzzy’ match will be used instead, which identifies

a ’handle’. Handle is a glossary item which fuzzily matches a given subexpression

(in the above example the handle was Number). Then a new name (i.e. a referring

expression) is created with the help of some modifiers such as "extended", "pseudo",

or "reduced", depending on the type of fuzzy match ("extended" is used when a

given subexpression represents a superset of the language defined by the handle, and

"reduced" is used when it is the opposite). Another approach is based on identifying

a regular subexpression containing a handle and a character that taken together can

form a referring expression (then the name has the form "Z with Y "). To allow this,

the glossary is split into two parts: big fishes (denoted as %FISH) and small fishes

(denoted as %fish):

• %FISH – contains popular regular expressions that (usually) contain a repetition

operator such as ’+’ or ’*’ (e.g. Gap, Name, Number, Word etc.);

• %fish – is a set of popular regular expressions that (usually) contain just one

character (e.g. Colon, Dot, Hyphen, Semicolon etc.).

• Whether a given regular expression belongs to %FISH or %fish depends on the

programmer. The rules of extracting subexpressions and naming them have

the following syntax:

Auxiliary= PrimaryCond (’&&’ FinalCond)?
(Lang ’!’ NameAssign)+

’;’
;

FinalCond= Nonterm ’=>’ ’%FISH’ ’.*’ ’%fish’
| Nonterm ’=>’ ’%fish’ ’.*’ ’%FISH’
| Nonterm (’<’ | ’>’) ’%FISH’
;

NameAssign= Nonterm ’=’ (’%FISH’ | ’%fish’ | Boilerplate) {1,5}
;

PrimaryCond is described in the previous section. The meaning of a sequence

of a PrimaryCond and a FinalCond is given in Table 5.2, row 1-3, 5-6 (the case

5.10. Gordian knots of explanation 67

"Nonterm => %fish .* %FISH" is very similar to row 5 and "Nonterm > %FISH"

to row 6).

In NameAssign the name is assigned to the same Nonterm as in FinalCond. The

"longest" name consists of two fishes (one big and one small) and three boilerplates:

one in the middle and two as the prefix and suffix. Here is an example:

Factor => Primary ("+" | "*")
&& Primary => "(" Regex ")"
&& Regex => Component
&& Component => %FISH .* %fish

EN()! Component = %FISH "with " %fish
;

According to the presented example, whenever a Component is part of a repetition

(’+’ or ’*’) and contains a big fish (say Word) followed by a small fish (say Ampersand),

then such a Component will be classified as auxiliary and given an appropriate name

(in our case "Word with Ampersand").

5.10 Gordian knots of explanation

In some cases, pure regular expressions lead to unreadable descriptions. Assume,

for instance, that an Internet application contains a field in which the end-user is to

(a)
(b)

(c) (d)

Figure 5.5: Diagrammatic explanation of Index

Figure 5.6: Diagrammatic explanation of numbers between 0 and 255

5.10. Gordian knots of explanation 68

enter an IP address. As we know, IP address consists of four integers, each from the

range 0..255. One can describe such a number with the following regular expression

25[0 -5] | 2[0 -4][0 -9] | 1?[0 -9]?[0 -9]

and that expression can be visualized as in Figure 5.6. The problem is that the

diagrammatic explanation of Figure 5.6 is too complex to be helpful. It would be

much easier to figure out what is the acceptable input, if instead of Figure 5.6 the

following description was used:

Unfortunately, 0..255 is not a regular expression.

Another possible approach would be based on the idea of approximation: IP

address can be described just as a sequence of four integers instead of four bytes (i.e.

bytes are approximated to natural numbers) and it would be the application logic

(instead of the user interface) that is responsible for checking if all the four integers

are within the range 0..255. The advantage of this approach is a very simple regular

expression (i.e. [0-9]+) which results in a diagrammatic representation that is easy

to understand. Unfortunately, this approach also has an important disadvantage. As

was already mentioned, our explanation is three-fold and consists of a diagrammatic

representation, a narrative description, and a set of examples (see Figure 5.1). All

of them are generated in an automatic way. Thus, it is quite possible that for the

regular expression [0-9]+ the system would generate a number greater than 255

(e.g., 347), as an example of a correct input. Obviously, if the end-user entered such a

number into a given field, the application logic would reject it and that would be an

awkward situation for the end-user (the system rejects an input that is shown in the

user manual as a correct one).

Cases like the one described above are difficult and resemble the Gordian knot.

We tried some different solutions but none of them were satisfying. So, we decided

to apply a solution similar to Alexander’s sword, i.e. to create and maintain a ’black

list’ of regular expressions that are too difficult to explain with the earlier presented

approach – we call them Gordian Knots:

GordianKnot= Nonterm ’=’ Regex
(Lang ’:’ Template

’!’ Boilerplate
’@’ ’"’ AnyCharacter+ ’"’

)+ ;

5.11. Generation of examples 69

Regex is a regular expression which is difficult to explain, Template provides the

text to be used in the narrative explanation, Boilerplate provides the name that

will be used for this expression, and a sequence of AnyCharacters defines the text

that will be shown in the syntax diagrams. Here is an example:

Component= "25"[0-5] | "2"[0 -4][0 -9] | "1"?[0 -9]?[0 -9]
EN(): n==1 "a number from the range 0..255 "

n==2 "numbers from the range 0..255 "
! "Byte <n "
@ "0..255"
;

5.11 Generation of examples

As declared in Section 5.2, Assumption 1, each field explanation should be enriched

with a set of exemplary input strings. Such a set should contain correct and incorrect

inputs. Additionally, each incorrect string should be complete with a short description

explaining why it is considered erroneous (see Fig. 5.1). Thus, the following problem

arises:

PROBLEM 3. How to generate examples of incorrect input strings to be able to

explain what is wrong in the given incorrect input?

One possible solution is to find a regular expression rc that is a complement

of the original regular expression r , i.e. L(rc) = s : s 6∈ L(r). A standard approach for

converting r into rc is to transform r into a nondeterministic finite automaton (NFA),

then convert the NFA into a deterministic one (DFA), and once provided with the

DFA create rc . Knowing rc one can generate “erroneous” strings in the same way as

in the case of the original regular expression r . The disadvantage of that approach

is the difficulty in explaining why a given “erroneous” string is wrong. For example,

assume that the original expression is (aa | bb)*. Then its complement can be

expressed as [140]:

a(aa)* | b(bb)* | a(aa)*b(a|b)* | b(bb)*a(a|b)*

and one of the erroneous strings is aaabaa. It is easy to check that the string does

not belong to L(r) 1, but it is difficult to explain what is wrong in this string. Notice

that, in fact, a full complement of the original regular expression is not necessary—a

subset would do just as well. What we must provide is the ability to clearly say what

is wrong in a given erroneous string.

1One can use, for instance, Hovland’s algorithm [58] or a web browser complying with HTML5.

5.11. Generation of examples 70

Our idea is to use mutation operators that “destroy” the original regular expression

in a “controlled” way. The resulting regular expression describes only a subset of

erroneous strings, but what we get is the ease of explaining what is wrong. Two types

of mutations are proposed:

• Removal, i.e. omitting one of the factors of concatenation. An example is

replacing r1r2r3 with r1r3.

• Contamination, i.e. inserting a contamination into a sequence of concate-

nated regular expressions, e.g. replacing r1r2 with er1r2 or r1er2, where e is an

erroneous character playing the role of contamination.

For the sake of explainability, only regular expressions with one defect are taken

under consideration (i.e. either one contaminant is injected or one factor of con-

catenation is removed). Nevertheless, one original regular expression can result in a

set of “damaged” regular expressions. Each of them is used to generate a few erro-

neous strings (they should not be long, so that they remain understandable). Each

erroneous string is checked as to whether it satisfies the following conditions:

• Is it really outside of the language described by the original regular expression? It

can happen that the damage caused by contamination or removal is ineffective.

Let us consider the following regular expression:

[0 -9]+\.@+ | [0-1]@[a-z]*

The component [0-9]+\.@+ can be damaged by removing the period. This

results in the component [0-9]+@+ and one possible erroneous string is 1@.

But this string belongs to the language described by the second component, i.e.

[0-1]@[a-z]*. Thus, the string 1@ is in fact correct and the damage (in this

case, removal) was ineffective.

• Is it a new erroneous string that has not been previously discovered? To illustrate

the problem, let us assume that the original regular expression has the following

form:

[0 -9]+\.@+ | [0-1]@[a-z]+

If each component is used to generate erroneous strings separately, then after

removing the period from the first component, the result is [0-9]+@+ and the

string 1@ can be generated as an erroneous one. But the same string could

be generated if the factor [a-z]+ was removed in the second component.

5.11. Generation of examples 71

Thus, duplicates are possible and they must be eliminated from the final set of

examples (the same is true for positive examples).

Checking the above conditions is trivial, but designing the mutation operators is

not. Each of them is described in more detail below.

5.11.1 Removal

As mentioned earlier, only one factor of concatenation is removed at a time, for the

sake of explainability. Assume that each factor of a concatenation is either plain or

red (to make the paper readable for colorblind people, red factors are also under-

lined). A regular expression with red factors will be called “painted”. Painted regular

expressions are used in the following way:

When an erroneous string is generated, red factors are omitted but they are

used to explain what is missing.

Let us consider the following painted regular expression:

[0-9]+ \. [0 -9]+

Using that expression, one could generate the string “.01” and the following com-

ment:

A nonempty sequence of digits is missing in the beginning.

Templates for comments such as above can be described using the notation

introduced earlier:

Component= Factor1 Factor2* Factor3
UK(): Factor1.Red ? Factor1< 1 "is missing in the beginning. "

Factor3.Red ? Factor3< 1 "is missing in the end. "
;

Component= Factor1* Factor2 Factor3 Factor4+
UK(): Factor3.Red ? "After " Factor2< 1 ", " Factor3< 1 "is missing. "

;

Generating all painted regular expressions for a given component is trivial. For

instance, the component

[0 -9]+\.[0 -9]+

consists of three factors: [0-9]+, \., and [0-9]+. Thus, the regular expression above

would generate the following set of painted regular expressions:

5.11. Generation of examples 72

[0-9]+ \. [0 -9]+
[0-9]+ \. [0-9]+
[0-9]+ \. [0-9]+

If a given factor can lead to an empty string (see the rules presented in Sec. 5.7), it

makes no sense to paint it, because omitting that factor will not result in an erroneous

string.

5.11.2 Contamination

For the sake of simplicity, assume regular expressions consist only of the five op-

erations: alternative (r1|..|rn), concatenation (r1..rn), non-zero repetition (r +), any

repetition, also called Kleene’s star (r *), and option (r ?). Moreover, we allow brackets

and sets of characters ([c1c2..cn]).

Not every character can be an effective contamination. Let us consider once

again the regular expression [0-9]+\.[0-9]+. If a period is inserted at its end, the

resulting regular expression (i.e. [0-9]+\.[0-9]+\.) will produce strings outside

of the original language. But if in the same place a digit is inserted instead of a

period, the resulting regular expression (i.e. [0-9]+\.[0-9]+[0-9]) will describe

the same language (r +r = r + for any r). This is because some regular expression

like r + or r * can “swallow” some characters that are placed just before or after them.

A set of characters that can be swallowed by a regular expression or subexpression

will be called its menu. Some regular expressions swallow one set of contaminating

characters inserted in front of them, and another set of characters inserted after them.

Consider the following regular expression:

[A] ([0 -9]+ [a-z]+)+ [B]

The subexpression ([0-9]+[a-z]+)+ will swallow any digit placed after [A], but not

a letter, and it will swallow any letter placed before [B], but not a digit. Thus, each

swallower has its left and right menu. Obviously, it can happen that both of them

are the same. We are using the rules of computing left and right menus presented in

Table 5.3. These rules make use of the attribute Σ, which describes the alphabet of

a given subexpression (the rules of computing the alphabet of a subexpression are

given in Table 5.4).

Left and right menus are not enough. Let us consider another exemplary regular

expression:

[a-f]+ ([0-9]+ [a-z]+)+

5.11. Generation of examples 73

What contaminating character can be placed just after the opening bracket? Taking

into account only menus (in this example only the left menu of [0-9]+[a-z]+ mat-

ters), one could answer that it can be any character other than a digit. Obviously

it is not true: if a letter [a-f] was placed after the opening bracket, it would be

swallowed by [a-f]+ and the contamination would be ineffective. Therefore, aside

from left and right menus, one should also consider the left and right context of a

given subexpression. To compute left and right contexts, we propose using the rules

presented in Table 5.5. It is assumed that for the root regular expression, its left and

right contexts are empty sets of characters. After taking into account menus and

contexts, it will be clear that any character from the set [g-z] is a good candidate

for contaminating the above regular expression just after the opening bracket.

For a component of a regular expression c = f1.. f j .. fn there are n+1 positions

where a contaminating character σ can be placed:

c =σ0 f1σ1..σ j−1 f jσ j ..σn−1 fnσn

We have assumed that each contaminating character σ j must fulfill the following

constraints:

• σ0 6∈ c.LC ∧ σ0 6∈ f1.LM

Table 5.3: Computing left menu (LM) and right menu (RM).

Regular expression Left and right menu
r = c1|..|c j |..|cn r.LM =

⋃
j

c j .LM; r.RM =
⋃
j

c j .RM;

c = f1.. f j .. fn c.LM = f1.LM ∧ c.RM = fn .RM
f = p+ f.LM = f.RM = p.Σ
f = p∗ f.LM = f.RM = p.Σ
f = p? f.LM = p.LM ∧ f.RM = p.RM
p = (r) p.LM = r.LM ∧ p.RM = r.RM
p = [C har s] p.LM = p.RM = ;

Table 5.4: Computing the alphabet Σ of a regular subexpression.

Regular expression r Summation
r = c1|..|c j |..|cn r.Σ =

⋃
1≤ j≤n

c j .Σ

c = f1.. f j .. fn c.Σ =
⋃

1≤ j≤n
f j .Σ

f = p+ f.Σ = p.Σ
f = p∗ f.Σ = p.Σ
f = p? f.Σ = p.Σ
p = (r) p.Σ = r.Σ
p = [Chars] p.Σ = {Chars}

5.12. Experimental evaluation 74

• ∀
1≤ j<n

σ 6∈ f j .RM ∧ σ j 6∈ f j+1.LM

• σn 6∈ c.RC ∧ σn 6∈ fn .RM

To make generation of erroneous examples easier, we use the set of transformation

rules presented in Table 5.6. Using them provides a set of simple components for a

given regular expression (a simple component is a concatenation of sets of characters).

For instance, for the regular expression

[a-f]+ ([0-9]+ [a-z]+)+

one would get a set of simple components with contaminating characters containing

the following (the set of contaminating characters is given in red and it is underlined):

[a-f][a-f][g-z][0 -9][0 -9][a-z][a-z][0 -9][0 -9][a-z][a-z]

To generate an erroneous example, one can randomly choose any character from

each set being part of a simple component (for the above example it could be

aag00aa00aa). Knowing the contaminating character and its position, one can gen-

erate the following comment to an erroneous example of this sort:

This string is wrong because the character ’g’ is superfluous. If it is

removed, the string will be correct.

5.12 Experimental evaluation

It is important to investigate whether the generated explanations are easy to under-

stand by end-users of IT systems.

Table 5.5: Computing left context (LC) and right one (RC).

Regular expression r Left and right context
r = c1|..|c j |..|cn ∀

1≤ j≤n
c j .LC = r.LC;

∀
1≤ j≤n

c j .RC = r.RC;

c = f1.. f j .. fn f1.LC = c.LC; fn .RC = c.RC;
∀

1≤ j≤n
f j .LC = f j−1.RM;

∀
1≤ j≤n

f j .RC = f j+1.LM;

f = p+ p.LC = f.LC ∧ p.RC = f.RC
f = p∗ p.LC = f.LC ∧ p.RC = f.RC
f = p? p.LC = f.LC ∧ p.RC = f.RC
p = (r) r.LC = p.LC ∧ r.RC = p.RC
p = [C har s] –

5.12. Experimental evaluation 75

In order to explore this issue, we decided to conduct a controlled experiment, the

goal of which was to investigate whether generated fields explanations are at least as

easy to understand as explanations prepared by people.

5.12.1 Experiment design

The independent variable considered in the experiment was the approach to prepar-

ing explanations of fields, with two considered treatments: generating explanations

with the use of the prototype tool or preparing them by people. The dependent

variable was the understandability of the explanations. We assumed that the user

understands the explanation, if after reading the explanation, she/he is able to verify

the correctness of field inputs.

Objects of the experiment

In order to increase the realism of the study, we decided to select some real-life

examples of field definitions as objects of the experiment:

• Bank identifier — ISO/IEC 7812 Identification cards – Identification of issuers;

• Internet identifier — RFC 5322: Internet Message Format;

• Transmission identifier — IPv4 identifier RFC 791;

• HTTP identifier — RFC 3986: Uniform Resource Identifier (URI);

• Publication identifier — International Standard Book Number (ISBN).

At this stage we identified an important confounding factor, which was the quality

of the explanations provided by people (in terms of completeness and linguistic

correctness). In order to control this factor and increase the realism of the study, we

decided to ask fifteen 4th year students of Software Engineering at Poznan University

Table 5.6: Transforming regular expressions into simple components.

Regular expression r Transformation T(r)
r = c1|..|c j |..|cn T(r) = T(c j) (choose any)
c = f1.. f j .. fn T(c) = T(f1) .. T(f j) .. T(fn)
f = p+ T(f) = T(p) T(p)
f = p∗ T(f) = T(p)
f = p? T(f) = T(p)
p = (r) T(p) = T(r)
p = [C har s] T(p) = [Chars]

5.12. Experimental evaluation 76

of Technology to provide the field explanations. As a next step, we reviewed the

explanations and combined the most representative ones into two sets that were used

in the experiment: the best explanations (S1) and the average-quality explanations

(S2). The third set of field explanations used in the experiment contained the ones

generated by the prototype tool (S3).

Participants

In total, there were 207 participants in the experiment: P1 — 81 1st-year students

of Logistics, P2 — 67 1st-year students of Security Engineering, P3 — 49 3rd-year

students of Security Engineering, P4 — 10 2nd-year students of Electrocardiology.

Among each homogenous group of participants P1 to P4, participants were ran-

domly assigned to three groups: group G1, which was asked to assess the validity of

the exemplary input data based on the explanations from the set S1; group G2, which

was asked to use the set S2; and group G3, which was asked to use the set S3.

5.12.2 Operation of the experiment

The experiment was executed at the Poznan University of Technology in four inde-

pendent sessions.

Prepared instrumentation

Each participant in the experiment was provided with the handouts that contained

the description of the field-explanation notation; three examples of exemplary input

data as a warm-up task; and the description of the experiment tasks.

The description of a task consisted of the name of a field (e.g., bank identifier),

its explanation and the set of seven pieces of exemplary input data to be validated by

the particpants.

Execution

Each experimental session began with a 10-minute presentation explaining the goal

of the experiment to the participants.

During the execution of the experiment participants were asked to verify the

correctness of the provided exemplary input data (to classify them either as correct

or wrong). The whole process was supervised by a researcher who was not allowed

to provide any hints related to the solutions to the tasks. The participants had 80

minutes to acquaint themselves with the provided materials and solve the tasks.

5.12. Experimental evaluation 77

Data validation

After collecting the answer forms, we checked their completeness to find out whether

all of them had been filled in correctly.

5.12.3 Analysis and interpretation

Descriptive statistic

In the following step, the experiment data was analyzed in order to find and handle

any potentially outlying observations. Figure 5.7 presents the distributions of the

total number of correctly classified exemplary data by the participants belonging

to each of the groups. In addition, the descriptive statistics are presented in Table

5.7. We identified two potentially outlying observations, which were investigated

separately. However, in the course of the analysis we did not find any evidence that

would allow us to reject them from the analysis.

20
25

30
35

P1−P4

N
um

be
r

of
 c

or
re

ct
 a

ns
w

er
s

[0
−

35
]

G1 G2 G3

●

●

20
25

30
35

P1

N
um

be
r

of
 c

or
re

ct
 a

ns
w

er
s

[0
−

35
]

G1 G2 G3

20
25

30
35

P2

N
um

be
r

of
 c

or
re

ct
 a

ns
w

er
s

[0
−

35
]

G1 G2 G3

20
25

30
35

P3

N
um

be
r

of
 c

or
re

ct
 a

ns
w

er
s

[0
−

35
]

G1 G2 G3

20
25

30
35

P4

N
um

be
r

of
 c

or
re

ct
 a

ns
w

er
s

[0
−

35
]

G1 G2 G3

Figure 5.7: Distributions of the number of correctly classified examples (P1–P4: all
participants; P1: Logistics; P2 and P3: Security Engineering; P4: Electrocardiology).

In order to select an appropriate statistical test, we investigated whether the sam-

ples come from normally distributed populations. After analyzing the Q-Q plots we

suspected that the assumption about samples normality might be violated. However

5.12. Experimental evaluation 78

Table 5.7: Descriptive statistics (P1–P4: all participants; P1: Logistics; P2 and P3:
Security Engineering; P4: Electrocardiology).

P1–P4 P1 P2 P3 P4
G1 G2 G3 G1 G2 G3 G1 G2 G3 G1 G2 G3 G1 G2 G3

N 69.0 71.0 67.0 28.0 28.0 25.0 22.0 23.0 22.0 16.0 17.0 16.0 3.0 3.0 4.0
Min 20.0 22.0 21.0 21.0 25.0 21.0 20.0 23.0 21.0 24.0 22.0 22.0 26.0 24.0 28.0

1st Qu. 25.0 26.0 27.0 25.8 27.0 29.0 24.0 25.0 25.3 25.8 25.0 27.8 26.5 24.5 31.0
Median 27.0 27.0 30.0 28.0 28.0 30.0 26.0 27.0 27.5 28.5 27.0 28.5 27.0 25.0 33.0
Mean 27.4 27.1 29.4 28.0 28.2 30.2 25.8 26.5 27.9 28.1 26.7 29.4 27.3 25.3 32.0

3rd Qu. 29.0 29.0 32.0 31.0 29.0 32.0 28.0 28.0 31.0 30.0 28.0 31.3 28.0 26.0 34.0
Max 33.0 31.0 35.0 33.0 31.0 35.0 32.0 29.0 33.0 33.0 31.0 35.0 29.0 27.0 34.0

this suspicion was not confirmed by the Shapiro-Wilk test [136] with the assumed

significance level 0.052. Nevertheless, we decided to use non-parametric statistical

tests.

Hypotheses testing

In order to compare the levels of understandability of generated field explanations

with the best and average field explanations prepared by people, the following hy-

potheses were formulated. The null hypothesis stated that there was no difference

with respect to the total number of correctly classified examples of fields input data

(all the participants were considered, i.e., P1–P4):

H0 : θG1 = θG2 = θG3 (5.1)

The alternative hypothesis was that the median number of correctly classified

exemplary input data was not equal in the case of at least two groups:

H1 : Not H0 (5.2)

The observed normalized effect size3, expressed as Cohen’s d coefficient [30], was

between “medium and “large”4 for groups G1–G3, G2–G3 (the observed values of d

were 0.60 and 0.78). The observed effect size between groups G1 and G2 was very

“small” (d = 0.08).

To test the hypotheses we used the Kruskal-Wallis test [91], which is a non-

parametric version of the well-known ANOVA test. The significance level α was

2G1: W = 0.9707, p-value = 0.1046; G2: W = 0.966, p-value = 0.05143; W = 0.9653, p-value = 0.05847.
3Please note that the retrospectively calculated effect size only approximates the to real effect size

in the populations from which the samples were drawn.
4According to Cohen [30] effect size is perceived as “small” if the value of d is equal to 0.2, as

“medium” if the value of d is equal to 0.5, and as “large” if d is equal to 0.8.

5.12. Experimental evaluation 79

set to 0.05. The obtained value of the χ2 statistics was equal to 20.495 (df=2). This al-

lowed us to reject the null hypothesis with a significance level less than the assumed

0.05 (p-value = 3.545× 10−5). Therefore, we concluded that there is a significant

difference between the median numbers of correctly classified example data for at

least two groups.

As the next step of the analysis, we performed the post-hoc pairwise comparison

of subgroups according to the procedure proposed by Conover [32]. For each pair

of samples, two values were calculated: the difference between mean ranks, and the

critical difference of the mean ranks. If the difference between the mean ranks is

greater than the calculated critical value, the difference is indicated as significant.

According to the results of the analysis, presented in Table 5.8, the differences be-

tween the median number of correctly classified input data examples seemed to be

significant for the comparisons between groups G1–G3 and G2–G3.

Table 5.8: The post-hoc analysis [32] of Kruskal-Wallis test (in each cell, row vs.
column: difference of the mean ranks; the critical difference of the mean ranks — in
brackets; * denotes a statistically significant difference).

G1 G2 G3

G1
G2 -5.75 (19.04)
G3 36.85* (19.32) 42.60* (19.18)

Interpretation

The goal of the experiment was to investigate whether the prototype tool was able

to generate explanations of fields that are at least as easy to understand as those

prepared by people. The results of the experiment indicated that the generated expla-

nations helped participants (people with limited IT knowledge) to more accurately

assess the validity of exemplary data. In fact, this is the result one may expect; taking

into account the fact that field explanations generated by the prototype tool contain

additional information, such as syntax diagrams and examples. However, it shows

that the three-part explanation of fields is usable and does not overwhelm the reader

with information.

5.12.4 Threats to validity

In order to correctly draw conclusions from the results of the experiment, some

threats to validity need to be discussed. We classified them into four groups: construct

validity, internal validity, external validity and conclusion validity.

5.12. Experimental evaluation 80

Construct validity

Construct validity discusses, for instance, whether the selected metrics really measure

the phenomena being investigated in the study.

In the experiment, the main threat to construct validity relates to the metric that

was used to measure the understandability of field explanations. We believe that a

user has to understand the explanation of the field in order to assess its correctness.

However, we are not able to prove that the metric measures all of the aspects of

understandability.

Internal validity

Internal validity refers to any factors (other than the independent variable) that

could affect the dependent variable and were not controlled by researchers. One of

such factors could be the experience of the participants. In the experiment we had

different groups of participants (students of different majors). We assumed that the

level of knowledge related to IT systems could differ between the groups, therefore

we decided to perform a stratified assignment—to randomly assign participants to

treatments within each of the groups individually (P1 to P4), instead of doing it once

for the whole group of participants.

The second threat relates to the types of fields used in the experiment. In order

to make the results of the experiment more realistic, we decided to include real-

life examples of fields as objects of the study. However, we cannot be sure that

some of the participants did not rely on their experience rather than on the provided

explanations while performing the tasks. In order to mitigate this problem we decided

to name the fields in such a way that participants were not sure if the patterns actually

represented what they may suspect. For instance, a field named bank identifier was

in fact representing a credit card number. The impact of the potential problem was

also reduced by the random assignment of the participants to the treatments.

The third problem relates to the quality of field explanations prepared by people.

We wanted to avoid preparing the explanation ourselves, because it could constitute

a serious threat to the validity of the experiment. To mitigate the problem we asked

M.Sc. Software Engineering students to prepare the descriptions.

External validity

External validity concerns all the issues that could affect the possibility of generalizing

the results of the study to the wider population.

In the conducted experiment, the main threat to external validity relates to the

selection of participants. Although the participants were potential users of IT systems,

5.13. Related work 81

they did not represent all the possible classes of end-users. However, we believe that

the results could be generalized to the population of typical users of IT systems with

further or higher education.

The second threat relates to how well the fields used in the experiment correspond

to real-life cases. If we had prepared artificial examples of fields we would have

potentially limited the possibility of generalizing the results. Therefore, we decided

to only include real-life patterns that were formally defined by third parties (e.g.,

ISO/IEC standards, RFCs).

Conclusion validity

The threats to conclusion validity comprise all problems related to the proper usage

of methods and the tools used to draw conclusions from the data.

In the experiment we decided to use a non-parametric test because we suspected

that the assumption about the normally distributed population could be violated.

The second threat relates to the power of the tests. The sample size of 207 par-

ticipants (67 to 71 per treatment) was sufficient to obtain valid results of statistical

tests.

5.13 Related work

The correctness of data entered into web forms can be checked in a number of ways.

A programmer can write a function which takes a string as a parameter and analyze

its content. However, writing a function for each data type can be a time consuming

task and it is not cost-effective—this is why web frameworks which support data

validation are often used (e.g. in Django, one can create a form which generates an

HTML code and also supports a data check [54]). However, frameworks are often

general purpose and do not support all types of fields. In such cases, one can use

topes [133] or regular expressions [48]. A tope is a user-defined abstraction of a

string that allows one to determine whether a text is valid, invalid or questionable

(it is possibly valid, but double-checking is recommended). This approach can be

useful to end-user programmers but may not match up to professional programmers’

expectations, e.g. acceptance of a questionable string that is incorrect may cause

inconsistency in data. Regular expressions may be harder to create and maintain, but

they are free from this disadvantage. There are also a number of tools that support

work with regular expressions (like GraphRex [35] and RegViz [17]], including tools

that use visual programming language to facilitate work [47]. Regular expressions are

also more widespread than topes. We decided to focus on regular expressions.

5.13. Related work 82

Different computer languages use various versions of regular expressions. It was

decided to use a version from Lex [93], since it is supported by most languages (like

Java, Python and Perl).

To explain a regular expression to end-users one can use YAPE [144]. For example,

[A-Z]{2}([0-9]X)? is explained in the following way:

NODE EXPLANATION

(?-imsx: group , but do not capture (case -sensitive)

(with ^ and $ matching normally) (with . not
matching \n) (matching whitespace and #
normally):

[A-Z]{2} any character of: ’A’ to ’Z’ (2 times)

(group and capture to \1 (optional

(matching the most amount possible)):

[0-9] any character of: ’0’ to ’9’

X ’X’

)? end of \1 (NOTE: because you are using a
quantifier on this capture , only the LAST
repetition of the captured pattern will be
stored in \1)

) end of grouping

Such an explanation is precise, but uses technical vocabulary (e.g. group, quan-

tifier) and (e.g. ?-imsx:, \1)—this may be helpful to programmers, but hard to

understand for non-specialists.

A more user-friendly approach was proposed by Ranta [123]. In the paper, one

can read the following explanation of a vowel: A vowel is a symbol from the list ’a’, ’e’, ’i’,

’o’, ’u’, ’y’. [123] (regular expression: [aeiouy]), which looks more reader-friendly than

the output from YAPE. Unfortunately, as the author stated, a complex input can result

in a hard to read explanation and in order to improve understandability one needs

to manually divide the expression into smaller parts and manually assign names

to them—automatic division and assignment of names is not supported. Another

disadvantage concerns the form of presentation, it is limited to text only.

One could try to combine Ranta’s approach with a graphical representation of

regular expressions, which can be obtained (for example) from tools like Graph-

Rex [35] or RegViz [17]. Unfortunately, both of them are dedicated to professionals

and showing their output to end-users is questionable. RegViz5 is dedicated to

5http://regviz.org/

5.13. Related work 83

debugging regular expressions, thus their presentation is enriched with information

which may be confusing for end-users. GraphRex is a plugin for the Eclipse integrated

development environment. It uses a limited number of elements to visualize a regular

expression and, as a consequence, different parts of a regular expression can be

presented in a similar way (e.g. allowed characters and their regularity of occurrence

are drawn a in similar way)—this may be problematic, not only for end-users, but

also for inexperienced programmers.

A different approach is used in RegExpert [26]. This tool takes a regular expression,

transforms it into a nondeterministic finite automata with epsilon transitions (NFA-

epsilon), and generates a state diagram. On the diagram, characters that can be

typed are drawn on arrows which connect states (each state has a label, a letter q

with a number), while repetition and optionality are obtained with additional arrows.

According to Budiselic et al., these tools make the learning process entertaining and

simple for students; unfortunately, in the case of people who are IT-laymen, it may

be too complicated. There is one additional problem, generated diagrams are space

consuming and using them may significantly increase the size of user documentation.

A different approach to visualisation was proposed by Blackwell [20, 21]. He com-

pared four notations that describe regular expressions: a regular expression itself, a

text, a declarative graphic (graphical notation without arrows that connects elements,

items are drawn from left to right) and an ordered evaluation graphic (graphical nota-

tion with arrows that connect elements, items are drawn from top to bottom). His

studies show that the last form results in the lowest number of misunderstandings.

However, his proposal has two disadvantages. Firstly, the proposed notation is space

consuming and a complicated regular expression may be hard to fit in a user manual

(this fact was also noticed by the author). Secondly, the proposed notation can be

misleading. During our preliminary studies we noticed that redundant information

on diagrams should be used with caution. For example, Blackwell presented “any one

of {3,5,6}” as an explanation of [356] regular expressions; since only part any one of

is in a different font, some users may treat brackets and a comma as valid characters.

Erging and Gopinath proposed an explanation which consists of three elements:

a regular expression, a structure (identification of commonalities among subexpres-

sions, e.g. the regular expression [oO][nN] describes the word on written with letters

of any case) and a format (detection of separators, e.g. dashes in a date) [42]. These

elements form an explanation for programmers who would like to understand and

reuse regular expressions in an easy and fast way, though non-professionals may not

find the required explanation. This paper also mentions the decomposition of regular

expressions, and the division into subexpressions and assignment of names is done

here manually.

5.14. Conclusions 84

5.14 Conclusions

The goal of this work was to investigate whether it is possible to automatically gener-

ate a 3-fold explanation of form field syntax that would be no worse than a man-made

one.

It has been assumed that the 3-fold explanation should consist of three parts:

narrative explanation, syntax diagram, and a set of correct and erroneous examples

of input text. The generation of the 3-fold explanation is driven by rules written in

a specially designed domain-specific language (DSL), which resembles a compiler’s

syntax-directed definition. The proposed DSL allows extracting subexpressions from

a complex regular expression. An easy-to-memorize name can be automatically as-

signed to each subexpression. Moreover, conditional fragments, detection of patterns

and repetition in regular expressions (like allowance of empty string), and approxi-

mation of a regular expression are also supported. The resultant description can be

multilingual and can be customized, e.g. a linguist can add new descriptions or add

rules for a new language.

Each field explanation is enriched with a set of correct and erroneous strings. To

generate erroneous strings, a part of a regular expression can be removed or a regular

expression can be contaminated in a “controlled” way—using a heuristic algorithm.

To investigate whether generated explanations are no worse then explanations

prepared by people, a prototype tool was created and a controlled experiment was

conducted. Five regular expressions were selected and a group of 15 Software Engi-

neering students were asked to prepare explanations for them. The results indicate

that the 3-fold explanation helps users with limited IT knowledge assess the validity

of strings that can be entered into a field. The empirical data have been obtained

from the evaluation of fields by 207 participants. In the experiment, 84% of correct

answers have been obtained for generated field explanations and less than 79% for

man-made descriptions.

Acknowledgements

This work has been supported by the Polish National Science Centre based on the

decisions DEC-2011/03/N/ST6/03016.

Chapter 6

Compiling software artifacts to

generate user manuals

Preface

This chapter contains the report: Bartosz Alchimowicz, Jerzy Nawrocki, Sylwia

Kopczyńska, Reusing software artifacts for the automatic generation of user manuals,

Politechnika Poznańska, RA-13/2014.

My contribution to this work included the following tasks: 1) co-design and im-

plementation of generation methods; 2) conducting the exploratory studies and the

experimental evaluation; 3) analysis and interpretation of the results of the experi-

ments.

Context: According to Novick and Ward, end-users are often dissatisfied with the

quality of user manuals. This can lead to financial loss. For example, a user who

tries to solve a problem by asking the vendor for help is absorbed by issues with no

business value, instead of performing assigned tasks. Situations like this increase

support costs, reducing the vendor’s income as well. A high quality user manual

would be beneficial here. Unfortunately, creating such a document is an expensive

and time-consuming task.

Objective: The aim of this work is to check whether it is possible to automatically

generate a user manual that would be no worse than a corresponding handmade

manual.

Method: To generate a user manual automatically, one needs input data. An analysis

of project documentation showed that a business case, a software requirement speci-

fication (SRS), and acceptance tests are often used in a software development project.

It was assumed that SRS includes functional requirements, non-functional require-

ments, and technical constraints, and that functional requirements are defined using

use cases.

85

6.1. Introduction 86

A literature review and an analysis of manuals was carried out to determine the

content of a generated user manual. Two variants of user manuals were proposed:

naive and complete. The former can be created using only existing information, while

the latter requires generating new content.

Two methods of generating additional content were proposed, the first being to

add requirements concerning the operating environment and the second to generate

examples of interaction between a user and a system, exemplary usages for short.

The generation of exemplary usages is based on acceptance tests. Two metrics were

proposed to select the most representative test cases: “widget coverage” to select a

test which covers the highest number of web elements, and “event coverage” to select

tests which cover the highest number of events in use cases. Each exemplary usage

is enriched with an explanation and screenshots of a working application (or a GUI

mock-up).

To discover potential flaws in generated materials, two exploratory studies were

conducted. Next, a manual for a commercial system Plagiat.pl was generated and

then evaluated with the COCA quality model and the Documentation Evaluation Test.

For that purpose, the business case and the software requirements specification was

re-engineered based on the application and the original user manual. The gener-

ated user manual was in the English language, but the participants were fluent in

Polish only—thus, the generated manual was translated into Polish. Both exploratory

studies included brainstorming sessions with 11 participants, while the controlled

experiment included 3 experts and 16 students.

Results: The user manual generated for the Plagiat.pl system is no worse than the

corresponding commercial manual written by humans, with respect to all the 6 COCA

quality criteria. In the case of the DET method, the number of correct answers was

85% for the generated manual and 83% for the original one.

Conclusion: It seems that the automatic generation of a user manual of no worse

quality than a corresponding manual written by humans is possible. The methods

proposed in this work can be used to create a tool which can automatically gener-

ate a user manual for web applications on the basis of a business case, a software

requirements specification (which includes use cases), acceptance tests, and working

software (or GUI mock-ups).

6.1 Introduction

Writing a high quality user manual is an expensive and time-consuming task [128,

145]. According to Sun Technical Publications, 3-5 hours are needed to write one

page of a manual [145]. However, due to the common tendency to minimize costs,

6.1. Introduction 87

it may be hard to devote so much time solely to creating a manual, and this may

affect the quality of documents. Furthermore, this task distracts from other activities

[128]. For example, in some companies, user manuals are written by a development

team [67], i.e. people who often would prefer to be writing code or performing tests,

rather than writing texts which describe software. Thus, it is not surprising that

such a task is often considered as undesirable and given little attention. Problems

with writing user manuals are noticeable even in projects which use agile software

development. Since such approaches often assume changes in the already created

code, a development team may also have to modify documentation multiple times

(to reflect changes). Unfortunately, frequent changes to an unreleased document can

give the impression that this work is unnecessary, even if a client is paying for it.

User manuals can be created by technical writers. Unfortunately, hiring new

employees does not mean that they can do this task themselves. Technical writers

still need to be in contact with a development team and occupy their time, since they

are the best source of information (e.g. without support from a development team

it may happen that technical writers are not aware of how a given piece of software

works, whether a new feature has been added, etc.)

The presented issues can lead to a low quality user manual. For example, a

document can lack an explanation of available functionality, screenshots can be

inconsistent with an application, vocabulary can be hard to understand, etc.—this

can lead to dissatisfaction among readers [110, 111]. Moreover, a user may treat

software as defective, not the manual. Consequently, savings made on a user manual

may be illusory, a vendor can gain a bad reputation and/or a company can be exposed

to additional expenses (e.g. higher costs of technical support [137]).

To reduce costs and improve the quality of a user manual, one can consider

automatic generation. The benefits of generated documentation were noticed by

Reiter et al. [128]. They claim that an automatic approach can reduce the costs

of creation and maintenance of documentation, provide consistency between the

product and its description, ensure compliance with standards, create explanations

in many languages, adapt the complexity of a description to a target audience, and

present information in many forms (e.g., text and graphics). However, one needs to

create and maintain a project database with all the information required to generate

new content.

Regarding the possibilities and limitations in the area of user manual generation,

the following questions arise:

QUESTION 1. To what extent is it possible to generate a user manual on the basis of

the artifacts available in a software project?

6.2. Content of a generated user manual 88

QUESTION 2. To what extent does a user manual, automatically generated on the

basis of the artifacts available in a software project, meet the quality requirements

established by the COCA quality model and the Documentation Evaluation Test?

JUSTIFICATION. Whether a user manual is written by a human or generated by soft-

ware, it needs to fulfil quality criteria. To compare the quality of a generated user

manual with a corresponding manual written by a human, we decided to use the

COCA quality model and the DET method [10]. The COCA quality model allows one

to evaluate a manual from the viewpoint of four orthogonal characteristics: complete-

ness, operability, correctness and appearance. The DET is an additional approach

which focuses on operability.

In this paper, we propose a method for automatic generation of a user manual

on the basis of the artifacts available in a software project. We describe how a

project database is created and use it to generate a user manual (or parts of another

document). We limit the research focus to manuals for web applications which are

dedicated to people whose IT knowledge and experience is limited.

The goal of this paper can be summarized in the following statement:

GOAL. Design a set of methods which allow one to generate a user manual for a web

application on the basis of existing artifacts dedicated to people who are IT-laymen.

This paper presents the initial work and is organized as follows. Section 6.2

discusses the content of a generated user manual. Section 6.3 presents documents

which are commonly created in software projects. Section 6.4 briefly explains the

generation process. Section 6.5 explains how to generate a user manual using software

documentation only. Section 6.6 shows how requirements concerning the operating

environment can be described. Section 6.7 focuses on the generation of exemplary

usages and Section 6.8 shows how to cope with terms in a user manual. Section

6.9 presents the results of an early evaluation. Section 6.10 discusses related work.

Finally, Section 6.11 concludes the paper.

6.2 Content of a generated user manual

In the context of the research goal presented in Section 6.1, the following issue can

be addressed:

ISSUE 1. What kind of information should be included in a user manual and how

should this information be organized?

To refer to a chapter in a user manual, the term component will be used, as

proposed in ISO/IEC Std 26514:2008 [67].

6.2. Content of a generated user manual 89

6.2.1 Components of a user manual

To determine the content and structure of a user manual, an analysis of relevant

literature and manuals was carried out. The literature review included research

papers (including: [110, 111, 129]), guidelines (including: [34, 37, 145]), and standards

(including: [22, 67, 68, 71, 74, 75]). The analysis of user manuals covered 9 documents

used to create a COCA quality profile [10].

It was decided that a generated user manual should contain the following compo-

nents:

• Cover—allows a reader to identify a user manual. The front cover can contain

the name of an application and its version, the version of the user manual,

the issuing organization, etc. The back cover can present the International

Standard Book Number (ISBN) or other useful information.

• Table of contents—lists items with a corresponding page number. There can

be many types of lists (e.g. a list of chapters, figures, tables, keywords, etc.).

• Warning and Notices—presents legal information, warnings, cautions, etc.

• Conventions—describes the conventions used in a user manual.

• Introduction—presents the concept and the idea behind the application, espe-

cially what kind of problem exists and how the software solves it.

• Requirements concerning the operating environment—lists the requirements

that a user needs to fulfil in order to use the application (e.g. type and version

of web browser).

• Information objects—presents data that a user creates, retrieves, updates or

deletes using the described application.

• Tasks—lists available goals and describes how to achieve them using the ap-

plication. Each goal is described by a procedure which needs to be followed

and a description of events which can occur (i.e. procedures which describe

special cases, e.g. how to deal with errors). If it is possible, an exemplary usage

is presented. Goals are grouped by an actor who plays the main role (the one

who performs a given task). Additionally, there is a description of the main

actor.

• Glossary—lists and explains terms used in an application.

6.2. Content of a generated user manual 90

Component
Variant

Naive user manual Complete user manual
Cover � �
Table of contents � �
Warning and Notices � �
Conventions � �
Introduction � �
Requirements concerning operating environment — �
Information objects � �
Tasks:

Actor � �
Scenarios � �
Examples — �

Glossary — �

Table 6.1: Proposed variants of a user manual

6.2.2 Variants of a user manual

Using the components in Section 6.2.1, one can create many variants of a user manual

(e.g. to adjust content to a target audience). We propose two versions: complete user COMPLETE

USER MANUALmanual (which uses all the components in Section 6.2.1) and naive user manual

(which seems to be the smallest usable set of components)—see Table 6.1. NAIVE USER

MANUAL

6.2.3 Completeness of selected components

To ensure that all information required by readers is within the scope of the generated

user manual, a comparison with the recommendation of ISO/IEC Std 26514:2008

(also known as IEEE Std 26514-2010)1 [67] and guidelines presented in the book

Read Me First! by Sun Technical Publishing [145] was carried out. ISO Std 26514

describes various types of manuals (e.g. paper and electronic versions, instructional

and reference modes)—we used a paper-based instructional-mode user manual for

comparison. Sun’s guidelines present variants with one and many chapters—we used

a version with many chapters. We selected these variants, since they are often used

in user manuals dedicated to IT-laymen.

The results of the comparison are presented in Table 6.2. There are differences

in the scope of the listed components and their names, however, all required and

recommended components are supported by complete user manual. When it comes

to optional components, there are 3 items which are unsupported (i.e. Appendixes,

Bibliography, and Revision history). However, if such information exists (in the data

source) it can be reused.

1This standard supersedes a well known IEEE Std 1063-2001 [22]

6.3. Universal artifacts of software projects 91

ISO/IEC Std 26514:2008 [67] Sun Technical Publishing [145] Component of Section 6.2.1
Required and recommended
Identification data Title page Cover
Identification data Legal notice Warning and Notices
Table of contents Table of contents Table of contents
Introduction Preface Introduction
Information for use of the documentation Preface Conventions
Concept of operations Preface Introduction
Procedures (content of a) Chapter Tasks (Scenarios)
Error messages and problem resolution Tasks (Examples)
Glossary Glossary
Index Index Table of contents
Optional
List of illustrations List of figures Table of contents

List of tables Table of contents
List of examples Table of contents
Chapter table of contents Table of contents
Appendixes —
Glossary Glossary

Related information sources Bibliography —
Revision history —

Table 6.2: Comparison of components listed by ISO/IEC Std 26514:2008 (paper based,
instructional mode) [67] and Sun Technical Publishing (version with multiple chap-
ters) [145], with components selected for a complete user manual.

6.3 Universal artifacts of software projects

Instead of requiring specified data (to generate a user manual), we propose reusing

existing artifacts; thus we consider the following issue:

ISSUE 2. What kind of artifacts are commonly available in a software project?

There is a certain body of information which seems to be used quite often, re-

gardless of the methodology used in a project [45, 66, 135, 148]:

• Business Case,

• Software Requirements Specification, and

• Acceptance Tests.

A Business Case presents the justification for initiating a project. For example, a

project which uses PRINCE2 methodology has a document which covers: an executive

summary, reasons, business options, expected benefits and drawbacks, timescale,

costs, investment appraisal, major risks [148].

Software Requirements Specification (SRS) describes the software to be developed.

It can be created according to IEEE standards (i.e. IEEE Std 830:1998 and its successor

ISO/IEC/IEEE Std 29148:2011 [61, 72]), a product backlog, or any other form. SRS

often includes Functional Requirements, Non-functional Requirements, and Technical

6.4. Generation of a user manual 92

Constraints—each of them can be organized in many ways, but natural language

seems the most popular mode (e.g. use cases or user stories).

Functional Requirements describe the functions an application should support,

while Non-Functional Requirements describe “how” the system should provide these

functions and what its constraints are (e.g. taking into account the minimal system re-

source utilization requirements, one can decide whether the system is useful for them

or not). Technical Constraints are requirements which affect software architecture

[73].

The goal of Acceptance Tests is to ensure that the software meets the acceptance

criteria [70, 114]. The creation of automatic acceptance tests for web applications can

be problematic at the early stages of a project, thus, one could create tests using a

GUI mock-up (a layout of a web application) [114, 115].

Additionally, some documents may contain a glossary, which can be reused as

well.

6.4 Generation of a user manual

In addition to the Issue 2, one also needs to consider the following issue:

ISSUE 3. What kind of data are required to generate a user manual and where can

these data be found?

6.4.1 Design assumptions

The following assumptions have been made concerning artifacts:

ASSUMPTION 1. The following artifacts are available: 1) Business Case, 2) Software

Requirements Specification, 3) Acceptance Tests, and 4) an interactive mock-up or a

running application.

Artifacts can vary between vendors and methodologies (e.g. due to tailoring),

thus, it is important to clarify their content:

ASSUMPTION 2. Functional requirements are defined in use cases [29] using Formal

USE cases notation (FUSE) [108].

JUSTIFICATION. Functional requirements can be represented in many forms, espe-

cially as use cases or user stories [7, 31, 76]. Both representations are written using

natural language (which allow functionality to be described in an easy to understand

way), however, use cases seem to be more suitable for automatic analysis [113]. FUSE

notation allows us to organize the structure of use cases.

6.4. Generation of a user manual 93

ASSUMPTION 3. Acceptance tests are defined using Test Description Language (TDL)

[114] and GUI mock-ups are defined using ScreenSpec [115].

JUSTIFICATION. ScreenSpec notation allows one to define GUI mock-ups, which can

be used as screenshots in a manual (such images can be replaced when a working

application is available). To capture screens one needs to run an application—this

can be done thanks to acceptance tests. TDL allows one to define acceptance tests

and connect them to use cases, which allows us to see what a test is responsible for

(coverage of tests can be checked as well). Moreover, GUI elements defined using

ScreenSpec can be referenced by TDL and FUSE [114].

ASSUMPTION 4. Non-functional requirements (NFR) are defined using Non-funct-

ional Requirement Templates (NoRTs) [89] and Technical Constraints (TC) are defined

using Technical Constraint Templates (TeCTs).

JUSTIFICATION. Use of the catalogue of NoRTs to define NFRs ensures the complete-

ness of such requirements. TeCTs use the same approach.

To focus on the goal of Section 6.1, we also assume:

ASSUMPTION 5. All artifacts are up-to-date, well written and follow guidelines.

JUSTIFICATION. The goal is to generate a user manual, not to analyze the quality of

information stored in artifacts. For example, we assume that all acceptance tests are

passed, business objects and actors are defined, etc.

6.4.2 Project database

Information from artifacts is used to construct a project database (which is further

used to generate a user manual). The following types of data are stored:

• fixed—pieces of information created once (by a human) and reused each time FIXED TYPE

a manual is generated (stored in configuration files);

• imported—existing data from artifacts, reused without any modification; IMPORTED

TYPE

• generated—new content generated on the basis of existing data (see sections GENERATED

TYPE6.6, 6.7, and 6.8).

By using data from artifacts and configuration files, one can fill a project database.

Table 6.3 summarizes the variables available in a project database and their origin. A

full description of the project database is presented in Appendix B.1.

6.5. Naive user manual 94

Variable Description Artifact Type
name Name of an application SRS Imported
version Version of an application SRS Imported
problem Problem description Business case Imported
scope Description of how a given problem is solved SRS Imported
ucs Use cases SRS Imported
nfrs Non-Functional Requirements SRS Imported
tcs Technical Constraints SRS Imported
bos Business Objects SRS Imported
actors Actors SRS Imported
tests Acceptance Tests SRS Imported
glossary Glossary SRS or other document Imported
wans Warnings and notices Configuration file Fixed
convs Conventions used in a manual Configuration file Fixed

Table 6.3: Project database

6.4.3 Templates

A special type of fixed element is a template (a template can be a file or value of TEMPLATE

a variable). It organizes the structure of a user manual by defining where to put a

given component and how to create it (using fixed, imported and generated elements).

The content of a user manual is defined in document template; it includes other

templates which can generate the contents of components (included templates can

be understood as boilerplates presented in Chapter 5).

Each template is defined using notation supported by the jinja2 engine [132] (its

syntax is similar to Django and other popular frameworks used in web development

[57]). A template can contain text (which is copied without any changes), enter data

from a project data base (variables are accessible by using object project and a dot

notation; references needs to be entered in double braces, e.g. to access the name

of an application one needs to type {{ project.name }}), execute an expression

(in curly-percent syntax, e.g., {% for uc in project.ucs %}), include a template

(e.g., {% include "toc.txt" %}), etc. A detailed description is available at jinja2’s

web page [132].

The output from jinja2 is provided in Latex format [94]. We decided to generate

content for Latex, since it simplifies typesetting and allows us to automatically create

a table of contents and other lists of elements.

A part of an exemplary document template is presented in Figure 6.1. Each

template can be modified to provide more suitable explanations.

6.5 Naive user manual

Fixed and imported data allow one to generate a naive user manual presented in

Section 6.2 (see Table 6.4). In this approach, one can copy scenarios from use cases

6.5. Naive user manual 95

\documentclass[final ,a4paper ,11pt ,oneside]{ memoir}
\begin{document}
{% include "frontcover.txt" %}
{% include "toc.txt" %}
{% include "introduction.txt" %}
...
\end{document}

Figure 6.1: Part of an exemplary document template

Component Variable
Artifact

Configuration Business Software Requirements
file case Specification

Cover name �
version �

Table of contents N/A
Warning and Notices wans �
Conventions convs �
Introduction problem �

scope �
actors �
ucs �

Information objects bos �
Tasks:

Actor actors �
Scenarios ucs �

Table 6.4: Naive user manual using a project database of Section 6.3 (some variables
are used to create many components).

to describe tasks. However, it seems naive to base an explanation of an application

only on scenarios from use cases, especially as a well written use case has neither

references to GUI elements nor exemplary data. This concern was confirmed in

exploratory studies (an unstructured brainstorming meeting with 3 subjects), i.e.

participants expressed their dissatisfaction concerning the presented user manual

and addressed many issues, e.g.:

• Presentation of a procedure gives only an overview of a task, a set of examples

would be more beneficial.

• There are neither screenshots of an application nor exemplary data in an expla-

nation of the procedure.

• The order in which tasks are presented varies from the order in which users

perform tasks.

However, the biggest concern was about web page address: the user manual did not

provide this information, it was not even present in the project database.

6.6. Requirements concerning the operating environment 96

6.6 Requirements concerning the operating environment

In the context of the weaknesses of naive user manual (of Section 6.5) we considered

the following issue:

ISSUE 4. Where can one find a web page address?

Moreover, a complete user manual needs to present requirements concerning the

operating environment, thus, the following issue can be considered as well:

ISSUE 5. Where can one obtain requirements regarding users’ computers and users’

education (knowledge, skills, etc)?

To handle these issues, non-functional requirements and technical constraints are

of value. These requirements are often defined using natural language, however, one

can use a catalogue of Non-Functional Requirements Templates (NoRTs) dedicated to

the elicitation and specification of NFRs, proposed by Kopczyńska and Nawrocki [89].

One can browse the catalogue, choose an appropriate NoRT, fill in the NoRT and, as

a result, an NFR is created. We decided to employ the method, but in the reverse

order. Since NoRTs are well-structured, it is possible to automatically recognize which

template is used and then extract information. The same approach can be used

with technical constraints (TC). According to our knowledge, there is no catalogue of

technical constraint templates (TeCTs), as was proposed for NoRTs.

The whole process is presented in Fig. 6.2. We analyze the given NFRs and TCs in

the following way:

1. Identify—identify which NoRT or which TeCT is used,

2. Extract data—extract values of parameters from NFRs or TCs,

3. Process data—pre-process parameters (a set value of additional parameters, if

required).

An exemplary analysis of an NFR is presented in Fig. 6.3.

The collected data can be used to generate content for a user manual. If some

data are missing (e.g. there is no NFR with a web page address), the generation

process can be aborted with an error message.

Appendix B.2 lists NoRTs and TeCTs considered as valuable for a user manual.

6.7. Exemplary usages 97

Non-
functional

Requirements

Technical
Constraints

NoRTs

IDENTIFY, EXTRACT,
PROCESS

TeCTs

GENERATE

Templates

Requirements
concering
operating

environemnt

Figure 6.2: Data analysis and generation of the Requirements concerning the operating
environment component.

Figure 6.3: Exemplary analysis of an NFR with a web page address.

6.7 Exemplary usages

According to the participants in the exploratory studies (see Section 6.5), the descrip-

tion of tasks should be enriched with examples. Such examples should present how

to accomplish a task by presenting an interaction between a user and a system using

screenshots and real data. We will use the term exemplary usage to refer to such an

explanation. Exemplary usages are often written by humans, however, it is tempting

to check whether it is possible to generate them. This section discusses the following

issue:

ISSUE 6. How can we generate an exemplary usage of a web application, which

presents the interaction between a user and a system, using screenshots, exemplary

data and a narrative explanation?

Acceptance tests contain exemplary data (which can be used to run an applica-

tion to collect screenshots and provide exemplary data) and use cases describe the

6.7. Exemplary usages 98

intentions behind a user’s actions. By using these data one should be able to generate

an exemplary usage.

We decided that the main ingredient of exemplary usages are screenshots. Each

captured image is preceded by a brief description and followed by the activities

required to carry on a task. A part of an example is presented in Figure 6.4. The

appearance of screenshots depends on whether a working application or GUI mock-

ups are available.

The browser should look like this:

Name

Surname

Password

Email

Add

file:///home/perf/Desktop/ss.html

1 of 1 26/01/15 14:49

To register a new user click button

Name

Surname

Password

Email

Add

file:///home/perf/Desktop/ss.html

1 of 1 26/01/15 14:49

.

Figure 6.4: A simple example of a user’s interaction with an enriched system.

6.7.1 Find relationships between data

There can be many test cases for one use case, thus one needs to select the most

appropriate acceptance test. Unfortunately, at this stage there are no relationships

between data in a project database. This concerns not only references to use cases

in test cases, but also actors, mock-ups, etc. Hence, the following issues need to be

solved first:

ISSUE 7. Find relationships between use cases, test cases and mock-ups.

ISSUE 8. Find references to actors and business cases in use cases.

ISSUE 9. Find test cases suitable for exemplary usages.

Notation used to store functional requirements, acceptance tests and GUI mock-

ups (i.e. FUSE, TDL and ScreenSpec) assumes that identifiers are consistent between

artifacts [114], thus, to find relationships one needs to browse labels and search for

matches. A simple example is given in Figure 6.5. (this example is based on Admission

System version 2.0F (quantitative version) from UCDB [12]).

A more complicated task is to find references to actors and business objects in

use case steps. Simple text comparison is not enough here, since words in sentences

may be written in a number of linguistic forms (e.g. singular or plural form) and

6.7. Exemplary usages 99

TESTCASE MOD2_UC1 .1 Create a new admission
SETUP

RUNTEST Login
TESTSTEP MOD2_UC1 .1(StartView):

CLICK AddNewAdmission
TESTSTEP MOD2_UC1 .2(NewAdmissionFormView):

...

Acceptance Tests (TDL)

ID: MOD2_UC1
Title: Create a new admission
Main scenario:
1. Administrator chooses the creating new admission option [StartView].
2. System presents the new -admission form [NewAdmissionFormView].
...

Use case (FUSE)

SCREEN StartView:
...
AddNewAddmission(BUTTON)
...

SCREEN NewAdmissionFormView:
Name(EDIT_BOX)
Surname(EDIT_BOX)
Password(EDIT_BOX)
Email(EDIT_BOX)
Save(BUTTON)

Mockup (ScreenSpec)

Figure 6.5: Exemplary relationship between different data sources (selected fragments,
the presented use case is from UCDB [12].

multiple words may be used to refer to an item (e.g. text New admission form may be

used as a name for a business object). To find matches, we decided to use natural

language understanding tools. First, using the Standford toolkit [96], we carry out a

linguistic analysis of a step (i.e. segmentation, tokenization, part-of-speech tagging,

lemmatization, and parsing). Next, using a step constructed from lemmas (words in

their base form) and maximum matching algorithm [36], we search for references

(this algorithm allows us to find multiword expressions). When a connection is found,

the structure of a step is modified to reflect a reference.

When only a working application is available, it is necessary to reconstruct GUI

mock-ups, as they are used to store screenshots and the widget’s type. An initial

structure of mock-ups is created on the basis of TDL and clarified while screenshots

are captured (see Appendix B.1 for more details).

6.7.2 Selection of acceptance tests

To select a proper acceptance test, one needs to solve the following issue:

ISSUE 10. How to decide which acceptance test is the most suitable as the basis for

an exemplary usage?

6.7. Exemplary usages 100

We decided to design metrics widget coverage and event coverage which will

indicate the most suitable variant.

Widget coverage is computed for test cases which test the main scenario. Here, the

number of web elements used in a test case is counted (one can count the percentage

of used widgets, but that needs the total number of the web element—value which

is not present when GUI mock-ups are unavailable). Thanks to preliminary studies,

we have concluded that an example with the highest number of tested widgets is the

most suitable for readers (as one of the participants stated, this allows one to check

everything, not only the less problematic items).

Metric Event coverage allows to select the minimum number of test cases which

cover the highest number of events (i.e. the minimal covering suites [53]). First, the

total number of events in a use case is counted, and for each test case a vector with

the exact number of zeros is assigned. Next, the content of each test case is analyzed:

if an event is checked then a value 1 is assigned to an index which represents a given

event in a vector. Finally, test cases which allow one to present all events are chosen.

For example, if there are two events, a vector [0, 0] is assigned to each test case. For

three test cases one can have the following vectors: [1, 0], [0, 1], [1, 1]. The

last variant covers all events, thus, it is used in a user manual. If there is no variant

that covers all events, a number of tests are used.

6.7.3 Planning generation of an exemplary usage

The next challenge is connected with this issue:

ISSUE 11. How can we generate an exemplary usage for selected acceptance tests?

To describe the content of acceptance tests, one needs to know the intentions

behind them and these can be found in use cases [29]. First, we search for activities

in use case steps, next we plan an explanation.

Activities in use case steps

An activity allows us to identify the process triggered by an actor in a use case step.

An example of a process may be data provision and the corresponding activity is

ENTER. A list of supported activities (with exemplary steps) is presented in Table 6.5

(this list is based on research presented by Ochodek et al. [112, 113] and Jurkiewicz

[83]). There is one additional activity WAIT which is used to tag situations in which

an actor waits for a system to perform a task.

To detect an activity, a list of words which can be used to trigger a process was

prepared (the same approach was used in the presented literature). For example,

6.7. Exemplary usages 101

Table 6.5: Exemplary activity types [83, 112, 113].

Activity type Exemplary step
ADD Author adds new comment.
CONFIRM Author confirms the modifications.
DELETE Author delete the comment.
DISPLAY System displays available comments.
ENTER Author enters data.
FINISH Author finishes the task.
READ Author browses posted comments.
SELECT Author selects type of the movie.
UPDATE Author updates the comment.
WAIT Author waits for the email with results of analysis.
VALIDATE System validates the comment.

Candidate opens system main page

actor activity matter
(SELECT)

(a)

Administrator provides basic information concerning the admission and

actor activity matter

(ENTER)

confirms provided data .

activity matter

(CONFIRM)

(b)

Figure 6.6: Annotated step with one activity (a) and two activities (b).

to detect an activity ENTER a system can search for the following words: enter, type,

provide, etc.

After finding activities, a system searches for additional information which can

be used while generating an explanation. As a result, each use case step is enriched

with three additional variables: actor (which is a reference to an Actor), activity

(which contains name of an activity), and matter (with supplementary information).

Examples of annotated steps are provided in Figure 6.6.

Templates

To plan an exemplary usage intermediate templates are first selected. They are not

evaluated, but merged into one template. Next, a test case is executed and the

data required by intermediate templates are collected (e.g. screenshots). Finally, the

resultant template is evaluated and the output is put into a user manual.

To select intermediate templates, a simple domain specification language was

6.7. Exemplary usages 102

Plan = Rule+
Rule = Statement+, "{", Template , "}";
Statement = ["(", Condition , ")"], Actor , Activities , TestSteps;
Activities = "<", Activity , [Quantity], {",", Activity , [Quantity]}, ">";
TestSteps = "[", Step , [Quantity], {",", Step , [Quantity]}, "]";

Figure 6.7: Domain Specification Language for template selection (in EBNF).

designed (see Figure 6.7, with grammar in EBNF [63]). This notation allows us to

create a set of rules, and each rule consists of a set of statements and an intermediate

template used for generation. A statement describes the relationship between actors,

activities and test steps, while the associated template defines how to explain this

situation.

Statement consists of a name of an actor (part Actor); an activity found in a use

case step (Activities; a comma separated list of activities of Table 6.5) and a list

of test steps used to check a given use case step (Tests; a comma separated list of

commands used in test steps, e.g., CLICK, SET). For example, the statement

Student < SELECT > [CLICK] { ... }

means that if there is a use case step with an actor Student who triggers an activity

SELECT by CLICKing a widget, then a given template is used.

There are three additional facilities:

• If there is no need to precisely define the name of a command in a test step, a

keyword ANY can be used (it represents any user action or any assertion).

• In the case of many activities or many commands, one can use a part Quantity,

which enables one to define the number of occurrence (it supports quantifiers

used in regular expressions, i.e. +, *, {n,m}, etc.).

• To refer to any actor other than a system, one can type ANY_USER as the actor’s

name.

For identical statements (and the need to use different templates), a Condition

can be added—it allows one to decide whether to use a template on the basis of data

in a project database. The syntax for conditions is similar to C language (including

&& and ||). Issues concerning data access are described below.

To specify an interaction between many actors, one can type multiple statements,

e.g.:

System < DISPLAY > [ANY*]
User < ENTER , CONFIRM > [SET+; CLICK]

6.7. Exemplary usages 103

User < SELECT > [CLICK] {
The browser should look like this:
{{ $1.tests [0]. screen ["pre "]| screen }}
Select {{ $1.ucstep.matter }} by clicking
{{ $1.tests [0]. component.screen ["pre "]| screen(’inline ’) }}.

}

Figure 6.8: A simple example of a rule for generating exemplary usage.

A statement is followed by an intermediate template (it is put in braces, i.e. {}).

Figure 6.8 presents an example of a statement and a template (explained in the

following section). Strings after the pipe character (|) are filters, specially designed

functions which simplify the design of templates. To access data from a given use

case step and a test case, a special variable was introduced. It starts with a dollar sign

($) and is followed by the number of a statement ($1 represents the first statement).

This variable has the following variables:

• actor—information about an actor (see Actor in Appendix B.1);

• activity—name of an activity (see Figure 6.5);

• ucstep—access to a step in a use case (see UseCase in Appendix B.1);

• teststeps—access to test steps (square brackets used to access a given action

or assertion (see Series in Appendix B.1);

Variables ucstep and teststeps both have an additional variable parent, which

allows access to a use case and a test case. Additionally, ucstep has variable matter

(see Section 6.7.3).

While checking the statement in a rule, the longest match is used.

6.7.4 Generating an exemplary usage

Narrative description is generated using template approach [104, 126], which assumes

the existence of a pattern with gaps that need to be filled-in (e.g. by using data from

a project database). Since all input data are linguistically consistent, one can create

patterns which fit their grammatical form—no linguistic transformation is required

(see the assumptions of Section 6.4). For example, using the use case step from Figure

6.6(a), the template of Figure 6.8, and a test step CLICK OPEN, one can generate the

following output (the screen inside the template is replaced by to reduce its

size):

The browser should look like this:

Select system main page by clicking OPEN.

6.8. Glossary 104

During our preliminary studies, it occurred that sometimes it is necessary to add

an article or adjust the grammatical form of a word. This is not a hard task, but

it complicates templates. To facilitate this, we added the filters article and dict.

The former allows us to determine the indefinite article (it checks whether a word

is countable and adds a proper article). While the latter allows us to change the

grammatical form of a word or a phrase. For example, in the case of a template

{{ word|dict(pos=’verb’, number=’singular’, person=first’) }}

and variable word with value be a string am is returned.

6.8 Glossary

A glossary in a generated user manual can contain terms from artifacts and field

explanations [13]. However, project documentation can contain terms which are not

dedicated to end-users (e.g. some of them may be to technical), thus we need to

solve the following issue:

ISSUE 12. How can we list in a glossary only those entries which are used in a user

manual?

To remove redundant items, we generate a document without a glossary, perform

an NLU process so that the user manual is constructed from lemmas and use a

maximum matching algorithm to search for terms. When all redundant terms are

removed, a user manual with a tailored glossary can be generated.

6.9 Early evaluation

To evaluate the quality of a complete user manual generated with methods introduced

in sections 6.6, 6.7, and 6.8, we carried out an exploratory study to eliminate possible

weaknesses2, implemented a prototype, generated a user manual and conducted an

experimental evaluation.

6.9.1 Exploratory study

The study was conducted in two stages. At the beginning of the first stage we prepared

three variants of the following components: Introduction, Requirements, Information

objects, and Tasks3. Next, we organized meetings and discussed our propositions.

There were four meetings, to which we invited two programmers (people with 1-3

2Naive user manual had its own exploratory study
3We focused on these components, since others are fully customizable.

6.9. Early evaluation 105

Table 6.6: Assignment of components in the preliminary study (abbr. P stands for
programmers, U for IT-laymen; size in number of pages).

Component
Stage 1 Stage 2

P1 U1 P2 U2 Time Size P3 U3 P4 U4 Time Size
Introduction � � 20 min 3*1 pages � � 10 min 1 page
Requirements � � 20 min 3*1 pages � � 10 min 1 page
Information objects � � 20 min 3*1 pages � � 10 min 1 page
Tasks � � 40 min 3*2 pages � � 20 min 2 pages

years of commercial experience in software development, the average age was 28)

and two IT-laymen (i.e. people who use a computer during their daily activities,

but do not have any technical education, the average age was 41). There was one

appointment per participant (we decided to organize separate meeting due to the

age gap).

Each meeting had the following goal4:

GOAL. Analyze two sets of components which can be used to create a user manual

(each set contains three variants of a component) for the purpose of designing one

suitable version with respect to web applications from the point of view of programmers

and IT-laymen in the context of brainstorming.

Each meeting was organized according to the following agenda: 1) Present the

goal of the meeting and the agenda, 2) Read, discuss and improve the first set of

components, 3) Read, discuss and improve the second set of components. While

discussing each set of components, first we presented three variants of components

and allowed a particular time to read them, then we started a discussion in the form of

brainstorming (e.g. a participant could select the most suitable version, recommend

improvements or propose a new version). Table 6.6 presents the organization of the

preliminary study (how components were assigned to participants).

After conducting all the meetings, we designed a new version of each component

and started the second stage. This time, we presented one variant of each component

and asked participants to improve it. The goal of the meeting was as follows:

GOAL. Analyze two different components which can be used to create a user manual

with respect to web applications from the view point of programmers and IT-laymen

in the context of brainstorming.

Observations and improvements for both stages are discussed in Section 6.9.2.

4The goal is created using the GQM approach [16]. However, questions and metrics were omitted
since we used brainstorming sessions.

6.9. Early evaluation 106

6.9.2 Improvements

To increase the readability of a generated user manual, a number of improvements

were proposed:

OBSERVATION 1. The generated user manual can contain screenshots of a web

application (which, e.g. present exemplary data or expected output). Unfortunately,

some images can be very large and may not fit a page. Such a images can be resized,

but this can result in them being unreadable.

SOLUTION 1. To get a good fit and readable content, a filter screen was introduced

which allows us to crop an image to a desirable size (a predefined value). To prevent

the removal of elements which are important to readers (e.g. fields which are filled

in), localization of used web elements is stored—this allows us to determine which

parts of a web page can be safely removed.

Filter screen allows us to put an image in the middle of a page and inline an

image in a text (screen(’inline’)).

OBSERVATION 2. A web application can have a number of clickable elements. While

reading a user manual, it may be difficult to find a required item on a screenshot.

SOLUTION 2. An element on a screenshot can be marked by a frame, or a pointer

can be drawn on a margin (e.g. in the form of a dot or an arrow). Moreover, one

can decide how to visualize clickable elements in a text description, i.e. whether to

include a button label, text from the alt tag (in the case of clickable images) or to

include a screenshot of an element.

OBSERVATION 3. Modification of some input fields in an application may be impos-

sible or not recommended (e.g. in the case of pre-filled widgets).

SOLUTION 3. Fields which a user should not modify can be presented in a different

colour.

OBSERVATION 4. The order of use cases in project documentation may not be similar

to the order in which users performs tasks.

SOLUTION 4. Users’ tasks are sorted according to their occurrence in use cases with

the level set to Business.

OBSERVATION 5. It is impossible to refer to elements in a user manual by page

number.

SOLUTION 5. To point out the description of other elements in a user manual, a filter

page was introduced. It allows us to postpone page numbering, e.g. one can refer to

a business object in the following way “see page {{ project.bos["Admission

Form"]|page}}” and after Latex processing, a text see page 12 can be generated.

6.9. Early evaluation 107

Currently, the following elements can be referenced by a page number: informa-

tion objects, actors, use cases, nfrs, and the terms in a glossary.

6.9.3 Empirical evaluation

A user manual for the Plagiat.pl [122] application was generated (see Appendix B.3)

and evaluated using the COCA quality model and the Documentation Evaluation Test

(DET)—methods designed to evaluate the quality of a user manual [10]. Plagiat.pl is

an application which allows one to detect plagiarism in different types of document,

e.g. an M.Sc. thesis.

Before generating a user manual, required artifacts were created on the basis of

our experience with the Plagiat.pl application (including use cases and acceptance

tests). When it was possible, we tried to reuse content from the original manual. The

generated user manual was in the English language, but since most participants were

speakers of Polish only, we decided to translate it manually into Polish. Moreover,

while creating the COCA quality profile, a Polish manual was used as well.

Participants

The generated user manual was evaluated by 3 Experts, the same experts who checked

a corresponding version created by humans [10]. There were 16 prospective users, all

in their first year of study at university, on the computer science programme. All of

them declared that they were unfamiliar with the Plagiat.pl application.

Experiment

The assessment was performed according to the procedure proposed by Alchimowicz

and Nawrocki [10]. First we carried out an evaluation with the Experts to check the

completeness and correctness of the user manual. This was done by asking three

questions, originally introduced by the COCA quality model. The questions asked

to the Experts and their answers are presented in Table 6.7 (questions Q1, Q2, and

Q5; additional data from a quality profile are provided for comparison [10]). The

following answers were available for each question: Not at all, Weak, Hard to say,

Good enough, and Very good. To simplify data presentation, Not at all and Weak

are collated in the column “–”, and the results for Good enough and Very good are

in column “+”. Column Hard to say is abbreviated as ?. Raw data are presented in

Appendix B.6.

Since the results of the Experts were no worse than the data in the profile, we

continued the procedure and evaluated the manual from the Prospective Users’

standpoint. First, according to the DET method, each prospective user was asked to

6.9. Early evaluation 108

find an answer to a question and note the number of the page which presents the

answer (or a mark that she/he was unable to find it5). For that purpose, 29 questions

asked while evaluating the human version of the manual were used [10].

Next, using questions from the COCA quality model, completeness, operability,

and appearance were evaluated (questions Q3, Q4, and Q6 of Table 6.7).

Interpretation

The answers provided by the Experts in both variants are similar. This is not surpris-

ing, since the generated variant is based on an original version (questions Q1, Q2,

and Q5).

Prospective Users were able to find 85.13% of the correct answers (the results for

the DET method are in Table 6.8) which is a better result than the original version and

the quality profile (by 2.16% and 4.09% respectively). The average time was about 10%

higher when compared with the human made version. However, the difference seems

negligible. In the case of the COCA quality model and Prospective Users (questions

Q3, Q4, and Q6 of Table 6.7). The percentage of positive answers (column “+”) for all

characteristics is higher than positive answers for the human-made version. However,

when compared to the quality profile, results for completeness (question Q3) and

operability (question Q4) are slightly lower (2% and 2.1% respectively). In the case

of appearance (question Q6), the results are better for the generated version, when

compared with the human-made version and the quality profile.

The presented results come from an early evaluation. To decide whether the

generated manual is better than the hand made one, more experiments are required.

In the case of DET, we observed a small difference between the mean numbers of

correctly answered questions in favour of the group assessing the generated Plagiat.pl

user manual (around 2%). Our hypothesis was that the generated manual is no worse

than the one created manually, therefore we decided to use the Wilcoxon rank-sum

statistical test to investigate this hypothesis6. As a result, we were not able to reject

the null hypothesis about the equality of median numbers of correctly answered

questions (two-tailed test, α=0.05, p-value=0.75). Of course, the fact that we were

not able to reject the null hypothesis does not confirm that such a difference does

not exist between the populations. However, taking into account the fact that the

5Correct answers without the page number or an incorrect page number were counted as incorrect
answers.

6We decided to use a non-parametric statistical test, because we suspected that the assumption
about sample normality might be violated (obtained Shapiro-Wilk tests p-values were equal to 0.38 and
0.03).

6.9. Early evaluation 109

Table 6.7: COCA quality characteristics of the user manual for Plagiat.pl.

Id Characteristics Quality profile Human made Generated
and the associated question – ? + – ? + – ? +

Completeness responsible: Expert
Q1 To what extent does the user

documentation cover all the
functionality provided by the
system with the needed level of
detail?

22.22% 29.63% 48.15% 0.00% 33.33% 66.67% 0.00% 33.33% 66.67%

Q2 To what extent does the user
documentation provide infor-
mation which is helpful in
deciding whether the system
is appropriate for the needs of
prospective users?

3.70% 11.11% 85.19% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00%

responsible: Prospective User
Q3 To what extent does the user

documentation contain infor-
mation about how to use it with
effectiveness and efficiency?

15.60% 7.40% 77.00% 25.00% 6.25% 68.75% 12.50% 12.50% 75.00%

Operability responsible: Prospective User
Q4 To what extent is the user docu-

mentation easy to use and help-
ful when operating the system
documented by it?

8.20% 14.90% 77.10% 31.25% 12.50% 56.25% 0.00% 25.00% 75.00%

Correctness responsible: Expert
Q5 To what extent does the user

documentation provide correct
descriptions with the needed de-
gree of precision?

18.52% 25.93% 55.56% 0.00% 33.33% 66.67% 0.00% 33.33% 66.67%

Appearance responsible: Prospective User
Q6 To what extent is the informa-

tion contained in the user doc-
umentation presented in an aes-
thetic way?

13.60% 12.20% 74.30% 31.25% 12.50% 56.25% 12.50% 6.25% 81.25%

observed normalized effect size7, expressed as Cohen’s d coefficient [30], was between

“small” and “medium”8 (d = 0.29) it would be difficult to detect the difference in the

experiment if it truly existed between the populations (post-hoc power 1-β was equal

to 0.11). Concluding, in our opinion it seems that it is unlikely that the true difference

in the median numbers of correctly answered questions is higher for the population

of participants assessing the original, manually created, Plagiat.pl user manual.

Documents concerning the evaluation required by the COCA quality model and

the DET method are available in appendix (Evaluation Mandate is available in Ap-

pendix B.4 and Evaluation Form in B.5).

7Please note that the retrospectively calculated effect size only approximates the real effect size in
the populations from which the samples were drawn.

8According to Cohen [30] effect size is perceived as “small” if the value of d is equal to 0.2, as
“medium” if the value of d is equal to 0.5, and as “large” if d is equal to 0.8.

6.9. Early evaluation 110

Table 6.8: DET operability of the user manual for Plagiat.pl.

Profile
Version

Human made Generated
Number of participants 148 16 16
Average time of searching all answers 49 min 39 min 42 min
Percentage of correct answers 81.04% 82.97% 85.13%

Threats to validity

To ensure that the correct conclusions are drawn from the results of the experiment,

some threats to validity need to be discussed. We have classified them into two

groups: internal validity and external validity.

Internal validity refers to factors in an experiment which were not fully controlled

by the researchers and could affect the results.

Variation in the knowledge and experience of the participants is one of such

threats. To mitigate this issue, the experiment was carried out with participants with

levels of IT knowledge and experience similar to the participants who took part in

the creation of quality profiles for the COCA quality model and DET method.

The next threat to validity is related to the fact that input artifacts used to generate

user documentation for the Plagiat.pl system were reverse-engineered based on an

existing, working application. As a result, the artifacts could differ from the ones

that were developed internally by the company. An additional issue is that authors

may have unintentionally introduced changes which made the generation of user

documentation easier than it would have been in the case of original documents.

In this context, however, it is important to emphasize our previous assumptions

(see assumptions in Section 6.4) that all the required artifacts are available, and they

contain all the information required to generate user documentation.

The necessity of translating the generated user manual into Polish is a threat as

well. To prevent making unintentional improvements, the English templates were

translated into Polish and then verified by a professional translator in order to check

if they correspond to the originals.

External validity refers to any factors which could affect the possibility to general-

ize the results of the experiment to the wider population.

Here, the threats to validity concern representativeness of the sample, i.e. partic-

ipants did not represent all the potential end-users in the target audience and the

sample size was relatively small, there were only 16 Prospective Users. Nevertheless,

it is important to emphasize that Plagiat.pl is mainly used by universities to find

plagiarism in theses, thus students seems to be a good group to generalize the results

to the population of typical users.

6.10. Related work 111

6.10 Related work

Most research focuses on generating content for technicians and experts. For example,

a project dedicated to helping engineers is presented by PLANDoc by McKeown et

al. [101]. It creates a summary of telephone network planning based on an output

from dedicated planning software. The main purpose of this project is to provide

the formal documentation required by auditors and public regulators. Unfortunately,

educational purposes are not the main goal here. However, as the authors claim, the

resultant description can be used to train new planning engineers.

An attempt to create an online help system was made by Reiter et al., who de-

signed a tool which generates short messages used in an online help system for

equipment for testing circuit boards [128]. As in the case of PLANDoc, the tool is

designed for technical staff only. Moreover, a set of short messages can be considered

as a complete user manual.

Another approach is DRAFTER, which was designed to create drafts of instructions

(i.e. a description which tells you how to perform a task) on the basis of a domain

knowledge base [118]. The knowledge base consists of (among other things) actions,

steps, objects, and a set of relations between them [118]. Data are added manually, but

there is a possibility to import GUI mock-ups. The content of instructions is set by a

technical writer, who defines the input for a text generator by filling patterns with

data from a knowledge base. The paper presents an example of a pattern [person]

schedule [appointment], which can be used to construct an input reader schedule

arbitrary appointment, which can be further used to generate different variants of

sentences, e.g. Schedule the appointment [118]. There are other tools which challenge

the generation of instructions, e.g. AGILE [52] and Isolde [119]. Although these

tools represent an interesting approach, they are insufficient for creating a complete

user manual. Moreover, it seems that some of the information, which is provided

manually, can be imported from documentation available in a project, especially

from acceptance tests.

6.11 Conclusions

The goal of this work was to investigate whether it is possible to automatically gener-

ate a user manual that would be no worse than a corresponding handmade manual.

This work describes initial research. It is assumed that the generation of a user

manual is based on a business case, a software requirements specification (SRS),

acceptance tests, and a working application (or GUI mock-ups). It was also assumed

that SRS includes functional requirements (defined using use cases), non-functional

6.11. Conclusions 112

requirements (defined using the Non-functional Requirement Template), and techni-

cal constraints (defined using the Technical Constraints Template).

The structure of the generated user manual is based on a literature study. Two

variants of user manuals were proposed:

• naive—which can be created using only information found in listed artifacts,

and

• complete–which requires existing content and generated content (this variant

is compliant with ISO Std 26514:2008 [67] and guidelines recommended by Sun

Technical Publications [145]).

To generate additional content, two methods were proposed:

• generating requirements concerning the operating environment—on the basis

of non-functional requirements and technical constraints, and

• generating exemplary usages—on the basis of acceptance tests, use cases, and

a working application (or GUI mock-ups).

An exemplary usage is generated on the basis of acceptance tests. To select the

most representative one, two metrics were proposed:

• widget coverage—which measures GUI elements referred to by a test case,

• event coverage—which measures events (in use cases) checked by a test case.

Each exemplary usage is enriched with descriptions and screenshots (collected while

running an acceptance test).

A user manual for a commercial application, Plagiat.pl, was generated and evalu-

ated in a controlled experiment using the COCA quality model and the Documen-

tation Evaluation Test. The results show that the quality of the generated manual is

no worse than the corresponding commercial handmade user manual for any of the

COCA criteria. The number of correct answers measured using DET method was 85%

for the generated manual and 83% for the original one. To check whether a generated

manual is no worse in other cases, additional experiments are required.

It seems, that the proposed methods can be used to create a tool which can

automatically generate a user manual for web applications on the basis of a business

case, software requirements specification, acceptance tests, and working software (or

GUI mock-ups).

6.11. Conclusions 113

Acknowledgements

This work has been partially supported by the Polish National Science Center based

on the decisions DEC-2011/03/N/ST6/03016.

Chapter 7

Conclusions

The aim of this thesis was to investigate the possibility of the automatic generation of

user documentation (which comprises user manuals and field explanations) whose

quality is no worse than that of the content created by a human. The achieved results

confirm that it is possible to generate documentation for web applications with such

quality.

More precisely, the following conclusions can be drawn from the research pre-

sented in this thesis:

CONCLUSION 1. The quality of commercial manuals is not very high.

COMMENT. None of the commercial user manuals used to create the COCA quality

profile (Chapter 4) received 100% of very good answers on any of the questions

used to evaluate quality characteristics. 29% of prospective users gave question Q4

the answer very good, and this is the highest result for any question (question Q4

concerns operability, see Table 4.6). Moreover, only 55% of prospective users gave

question Q2 the answer good enough (this question concerns completeness). When

the answer good enough and very good are aggregated as positive answers, Q2 is the

highest scoring question with 85% of positive answers. When it comes to the DET

method (see Chapter 4), the percentage of correct answers is between 77% and 87%,

and the average value is about 81%.

CONCLUSION 2. Using a regular expression as input, one can generate a 3-fold

field explanation—which consists of a narrative explanation, diagrams, and a set

of examples—whose quality is no worse than the corresponding description written by

a human.

COMMENT. We proposed a number of methods which analyze a regular expression

and generate an easy-to-understand explanation (see Chapter 5). The proposed

114

Conclusions 115

methods were evaluated experimentally by checking 5 exemplary fields commonly

used in web applications. In the conducted experiments, field explanations generated

by the prototype tool received 84% of correct answers, while those written by humans

received between 77% and 78%.

CONCLUSION 3. One can automatically generate a user manual on the basis of a

business case, a software requirements specification (which includes use cases), accep-

tance tests, and working software (or GUI mock-ups), with quality no worse than a

corresponding user manual created by humans.

COMMENT. The experiment, based on the commercial system Plagiat.pl and the set

of generation methods proposed in Chapter 6, shows that the generated manual is no

worse than its commercial counterpart. More precisely, in the mentioned experiment,

the generated manual was no worse than “hand-made” one for any of the COCA

criteria. The DET method has also confirmed that the generated user manual is no

worse than the one written by a human: the percentage of correct answers for the

generated version was 85%, while for the hand-made it was 83%.

CONCLUSION 4. Good quality business case, use cases, and acceptance test scripts can

be used to automatically generate user manuals, and thus can contribute to decreasing

overall development costs.

COMMENT. The automatic generation of manuals is not limited to educational

objectives only. Berry et al. states that a user manual can be used as a software

requirements specification [19]. Thus, a generated user manual can be used as an

additional artifact useful from the point of view of quality assurance.

Appendix A

COCA quality model for user

documentation

A.1 Evaluation mandate – an example

ID EM20130610

Software ROPS: Registration and evaluation of curricula

Documentation name User Manual

Documentation version 20130206

Filename ROPS-UserManual-20130206.pdf
Evaluation deadline 12 June 2013

Purpose Acceptance or rejection of the user documentation

Scope Whole document

Evaluation approach Individual review + evaluation form EF20130610

Evaluation grades

Final grades:

• accept

• accept with minor revision – necessary modifications are very easy to introduce and no other evaluation

meeting is necessary

• accept with major revision – identified defects are not easy to fix and a new version should go through

another evaluation procedure

• reject – quality of the submitted documentation is unacceptable and other corrective actions concerning

the staff or process of writing must be taken

Standard answers to questions (5-level Lickert):

• Not at all (N for short)

• Weak (w)

116

A.2. Evaluation form for Prospective Users – an example 117

• Hard to say (?)

• Good enough (g)

• Very good (VG)

Selection of quality questions

Question Expert
Prosp.

user

Completeness

To what extent does the user documentation cover all the functionality provided by the

system with the needed level of detail?
�

To what extent does the user documentation provide information which is helpful in decid-

ing whether the system is appropriate for the needs of prospective users? �
To what extent does the user documentation contain information about how to use it with

effectiveness and efficiency?
�

Operability

To what extent is the user documentation easy to use and helpful when operating the sys-

tem documented by it?
�

Correctness

To what extent does the user documentation provide correct descriptions with the needed

degree of precision?
�

Appearance

To what extent is the information contained in the user documentation presented in an

aesthetic way?
�

A.2 Evaluation form for Prospective Users – an example

ID EM20130610

Software ROPS: Registration and evaluation of curricula

Documentation name User Manual

Documentation version 20130206

Filename ROPS-UserManual-20130206.pdf
Evaluation deadline 12 June 2013

Name and surname Eva Smith

Question N w ? g VG

Completeness

To what extent does the user documentation contain information about how to

use it with effectiveness and efficiency?

Operability

To what extent is the user documentation easy to use and helpful when operating

the system documented by it?

Appearance

To what extent is the information contained in the user documentation presented

in an aesthetic way?

Comments and remarks:
Id Place Char. Description Type Priority

A.3. Evaluation report – an example 118

A.3 Evaluation report – an example

ID EA20130611

Software ROPS: Registration and evaluation of curricula

Documentation name User Manual

Documentation version 20130206

Filename ROPS-UserManual-20130206.pdf
Evaluation deadline 12 June 2013

Evaluation date 11 June 2013

Purpose Acceptance of rejection of the user documentation

Scope Whole document

Evaluation approach Individual review + evaluation form EF20130610

Results

Final grade reject

Question N w ? g VG

Completeness responsible: Expert (1)

To what extent does the user documentation cover all the

functionality provided by the system with the needed level

of detail?

ROPS 0.0% 0.0% 0.0% 0.0% 100.0%

Profile 3.7% 18.5% 29.6% 44.4% 3.7%

To what extent does the user documentation provide

information which is helpful in deciding whether the

system is appropriate for the needs of prospective users?

ROPS 0.0% 0.0% 0.0% 100.0% 0.0%

Profile 0.0% 3.7% 11.1% 55.6% 29.6%

responsible: Prospective User (3)

To what extent does the user documentation contain

information about how to use it with effectiveness and

efficiency?

ROPS 0.0% 0.0% 33.3% 66.7% 0.0%

Profile 6.1% 9.5% 7.4% 50.0% 27.0%

Operability responsible: Prospective User (3)

To what extent is the user documentation easy to use and

helpful when operating the system documented by it?

ROPS 33.3% 33.3% 33.3% 0.0% 0.0%

Profile 1.4% 6.8% 14.9% 48.0% 29.1%

Correctness responsible: Expert (1)

To what extent does the user documentation provide

correct descriptions with the needed degree of precision?

ROPS 0.0% 0.0% 0.0% 100.0% 0.0%

Profile 0.0% 18.5% 25.9% 44.4% 11.1%

Appearance responsible: Prospective User (3)

To what extent is the information contained in the user

documentation presented in an aesthetic way?

ROPS 0.0% 0.0% 33.3% 66.7% 0.0%

Profile 1.4% 12.2% 12.2% 49.3% 25.0%

Comments and remarks

Id Place Char. Description Author Type Priority

1 p. 1 Coml. Data about user documentation (name, version, etc.) are missing. E1 missing major

2 all Coml. No page number. E1 missing major

3 p. 3 Coml. Role Guest is not described. E1 missing major

4 p. 3 Coml. Abbr. OEK and KRK are not explained. E1, P2 missing major

Evaluation team

Decision Maker Jerzy Nawrocki

Review Leader Bartosz Alchimowicz

Experts (1) E1 - John Smith

Prospective Users (3) P1 - Eva Smith, P2 - Adam Smith, P3 - Peter Smith

A.4. Evaluation report for profile 119

A.4 Evaluation report for profile

Purpose data collection

Evaluation approach individual review + evaluation form

Results

Software N w ? g VG

Completeness responsible: Expert

To what extent does the user documentation cover all the

functionality provided by the system with the needed level

of detail?

Plagiarism.pl 0 0 1 1 1

Deanery.XP 0 0 1 2 0

Optivum Secr. 0 1 2 0 0

nSzkoła 0 2 0 1 0

Secr. DDJ 0 0 1 2 0

LangSystem 1 1 1 0 0

SchoolMgr. 0 0 1 2 0

Hermes 0 1 1 1 0

E-oceny 0 0 0 3 0

To what extent does the user documentation provide

information which is helpful in deciding whether the

system is appropriate for the needs of prospective users?

Plagiarism.pl 0 0 0 1 2

Deanery.XP 0 0 1 2 0

Optivum Secr. 0 0 1 2 0

nSzkoła 0 0 1 2 0

Secr. DDJ 0 0 0 2 1

LangSystem 0 1 0 1 1

SchoolMgr. 0 0 0 1 2

Hermes 0 0 0 3 0

E-oceny 0 0 0 1 2

responsible: Prospective User

To what extent does the user documentation contain

information about how to use it with effectiveness and

efficiency?

Plagiarism.pl 3 1 1 11 0

Deanery.XP 3 3 1 8 2

Optivum Secr. 2 4 3 8 0

nSzkoła 0 1 1 11 3

Secr. DDJ 0 1 2 6 7

LangSystem 1 2 1 7 6

SchoolMgr. 0 2 2 8 5

Hermes 0 0 0 8 8

E-oceny 0 0 0 7 9

Operability responsible: Prospective User

To what extent is the user documentation easy to use and

helpful when operating the system documented by it?

Plagiarism.pl 0 5 2 7 2

Deanery.XP 0 0 2 9 6

Optivum Secr. 2 2 2 6 5

nSzkoła 0 1 2 10 3

Secr. DDJ 0 1 4 8 3

LangSystem 0 0 2 12 3

SchoolMgr. 0 0 3 7 7

Hermes 0 0 3 7 6

E-oceny 0 1 2 5 8

Correctness responsible: Expert

A.4. Evaluation report for profile 120

To what extent does the user documentation provide

correct descriptions with the needed degree of precision?

Plagiarism.pl 0 0 1 1 1

Deanery.XP 0 0 0 2 1

Optivum Secr. 0 2 1 0 0

nSzkoła 0 1 0 2 0

Secr. DDJ 0 0 0 2 1

LangSystem 0 1 2 0 0

SchoolMgr. 0 0 1 2 0

Hermes 0 0 1 2 0

E-oceny 0 1 1 1 0

Appearance responsible: Prospective User

To what extent is the information contained in the user

documentation presented in an aesthetic way?

Plagiarism.pl 2 3 2 9 0

Deanery.XP 0 4 2 10 1

Optivum Secr. 0 4 1 10 2

nSzkoła 0 1 0 8 7

Secr. DDJ 0 2 3 6 5

LangSystem 0 3 3 6 5

SchoolMgr. 0 0 4 11 2

Hermes 0 1 3 5 7

E-oceny 0 0 0 8 8

Evaluation team

System Review Leader Experts Prospective Users

Plagiarism.pl 1 3 16

Deanery.XP 1 3 17

Optivum Secretariat 1 3 17

nSzkoła 1 3 16

Secretariat DDJ 1 3 16

LangSystem 1 3 17

SchoolManager 1 3 17

Hermes 1 3 16

E-oceny 1 3 16

Appendix B

Compiling software artifacts to

generate user manuals

B.1 Project database

Information is stored in a project database as variables. For example, variable name contains the name of an appli-

cation and variable version stores the software version.

B.1.1 Business Case

The problem description from Business Case is assigned to variable problem.

B.1.2 Software requirement Specification

The description of how an application solves a problem presented in Business Case is put into variable scope.

Functional requirements

Since many forms of use cases are used [33, 60, 77], we proposed a new generic model (see Figure B.1). It is based

on the Use Cases Database (UCDB), UCWorkbench, and FUSE [11, 12, 108]. In comparison to the listed models,

our version additionally supports the 1) type of actor (human or external system) and how they use the available

data (if an actor reads and/or provides data), and 2) a list of fields in business objects.

Initially each step contains a string from input data and there are no relationships between use cases, actors,

and business objects—a data analysis is required to find them.

Use cases are assigned to variable ucs. Further, use cases are accompanied by business objects (bos), and a

list of actors (actors).

A use case (UseCase) consists of an id, a title, a main actor (variable mainActor), there are also secondary

actors (secondaryActors), a priority, and a main scenario (a list of steps).

An actor (Actor) consists of an id, a name, a type (whether it is a human or a system) and a direction (what

an actor does with business objects).

A business object (BusinessObject) consists of a name and a description. It is possible to list and describe

all fields which form a given business object.

A step (Step) consists of an id, the content of a step (text), and optional events. Variable mockup is a

reference to GUI mock-ups.

121

B.1. Project database 122

Figure B.1: UML model of functional requirements expressed as use cases

Variables actors, ucs, and bos are collections. To access an element, one can enter its index (e.g., actors[0])

or its label (e.g., actors["Student"]). Iteration over collections is available as well.

Non-functional requirements and technical constraints

See Appendix B.2

GUI mock-ups

One GUI mock-up (layout of one web page) is represented by one screen defined in ScreenSpec [115]. Each screen

consists of a number of components (see class ScreenSpec in UML class diagram in Figure B.2, presented together

with acceptance tests). A component can be a widget or a collection of components. HTML widgets are represented

using class Simple. Each widget has an id (in variable label), values, and a type1. For example, to define a

button with the id btn and description Save, it is required to use class Simple with variable label set to btn,

values set to Save, and type set to BUTTON. Collections of widgets are represented by a Group, which consists of

a list of components.

For more details about ScreenSpec and GUI mock-ups please refer to paper by Olek et. al (see [115]).

1Typeless elements are achieved by setting type to NONE.

B.1. Project database 123

Figure B.2: Simplified UML model of acceptance tests (defined using TDL) and GUI
mock-ups (ScreenSpec)

B.1.3 Acceptance tests

The structure of acceptance tests is based on the Test Description Language introduced by Olek et. al [114]. This

language allows defining a number of test steps (user actions and/or assertions) and grouping them by use case

steps. For example, for step User provides data about an order one can provide a number of test steps which interact

with a system (one test step fills one field in a form, presses one button, etc.).

UML class diagram of acceptance tests is presented in Figure B.2. Each test case (class TestCase) has an id,

title, and a group of steps (series). A test step can be an action (UserAction) or an assertion2 (Assertion). A

test case can be connected with a GUI mock-up3 (via variable component in a Step) and a use case (via variable

ucstep in Series). Additionally, each test case can be categorized (by setting its type) and selected to be used

to generate a user manual example (usable set to True)—this requires analysis of information stored in a project

database. While running a test step it is possible to collect screen shots. One can view a captured web page before

and after a test step is executed (screen[“pre”] and screen[“post”] respectively).

All test cases are accessible through variable tests. Tests dedicated to a particular use case are in variable

tests of the given use case (see Figure B.1).

For more details about TDL please refer to the publication by Olek et. al (see [114]).

B.1.4 Glossary

A term in the glossary consists of a name and a description. Terms are accessible via variable glossary (which

is a collection).

2Currently only basic assertions are supported.
3This gives access to a type of widget and access to its screen shot.

B.2. Non-functional Requirement Templates and Technical Constraint Templates 124

B.2 Non-functional Requirement Templates and Technical

Constraint Templates

Abbreviations:

• NFR—Non-Functional Requirement

• NoRT—Non-functional Requirement Template

• TC—Technical Constraint

• TeCT—Technical Constraints Template

• UM—User Manual

B.2.1 Cover

ID NoRT32

NoRT ’The user manual’ [’for’ <actors:actor>] ’shall comply with’
<template:text> [’and shall be delivered in’ <format:text>].

NFR example The user manual for Student shall comply with generic template and be delivered in a pdf file.

Parameters actors – a list of actors (each actor needs to be defined in SRS, optional)

template – a name or a reference to a template for generating of a user manual

format – the format/type of the target file of a user manual (optional)

UM template User manual %
{% if project.nfrs [32] %}%
{% if project.nfrs [32]. actors|length == 1 %}%
for {{ project.nfrs [32]. actors [0] }}
{% else %}%
the following users:
\begin{itemize}
{% for actor in project.nfrs [32]. actors %}
\item {{actor }}
{% endfor %}
\end{itemize}
{% endif %}
{% endif %}

UM example User manual for Student

Comments length is a built-in filter which counts the number of elements in a list

B.2.2 Introduction

Web page address

ID NoRT123

NoRT ’System shall be available at’ <webaddress:url> [’(’ <IP address:text>
’)’].

NFR example System shall be available at http://example.com.

Parameters webaddress – a URL of the system

ip – IP address of a web application (optional)

UM template {% if project.nfrs [123] %}
\subsection{Address of the web page}
Web page is available at {{ project.nfrs [123]. webaddres }}
{% if project.nfrs [123]. ip %}({{ project.nfrs [123]. ip }}){% endif %}.
{% endif %}

UM example The application is available at http://example.com.

http://example.com
http://example.com

B.2. Non-functional Requirement Templates and Technical Constraint Templates 125

B.2.3 Requirements concerning operating environment

Environment

ID NoRT16

NoRT ’The minimal required amount of resources is:’ <resource type:text>’,’
(’no less then’ | ’more than’ | ’equal to’) <amount and unit:text>.

NFR example The minimal required amount of resources is: RAM, no less than 512MB; processor, more

than 2.6GHz .

Parameters resources – a list of resources

each item in the resources list contains the following attributes:

type – the type of the resource

relation sign – one symbol from the following list: ==, <, >, <=, >=

amount – the amount of resources

unit – the unit of measurement

Preprocessing Additionally, there is a computed attribute:

similar – if all resources have the same relation sign, the similar attribute is set to this

sign, otherwise this attribute is set to False
UM example User’s computer should be equipped with a minimum of:

- 512 MB RAM memory

- 2.6 GHz processor

ID NoRT29

NoRT ’The workstation of (<actor:actor> | user) shall have the following
protections:’ <protection mechanism:text>.

NFR example The workstation of user shall have the following protections: an anti-virus software installed

with an up-to-date virus database.

Parameters protection mechanizms – a list of required protections

UM example It is recommended that the user’s computer is protected with an up-to-date anti-virus software

installed with an up-to-date virus database.

ID NoRT66

NoRT ’The following’ <type:text> ’of environments should be supported:’
<name:text> [<version/id:text>] [by <vendor:text>].

NFR example The following environments should be supported: browser Firefox 17 and newer, Chrome 34

and newer, IE 8 and newer by Microsoft.

Parameters type – the type of the environment, for our scope only Internet browsers are analyzed, hence

it is set to browser

software – a list of supported browsers

each item in software list contains the following details about a browser:

name – name

version – version (optional)

later – True, if newer (later) versions are to be supported (optional)

vendor – vendor (optional)

UM example To run the application, one of the following web browsers is required: FireFox, version 17 or

newer; Chrome, version 34 or newer; Internet Explorer, version 8 or newer.

B.3. The user manual generated for the Plagiat.pl web application 126

ID NoRT124

NoRT ’The system shall run on displays with’ (’minimum’ | ’recommended’ |
’exactly’) <resolutions:text>.

NFR example The system shall run on displays with the minimum resolution of 1024x768.

Parameters minimum – minimum screen resolution

recommended – recommended screen resolution

exact – exact screen resolution (other attributes are ignored)

UM example The recommended screen resolution is no less than 1024x768.

ID TeCT1

TC ’To use the system one’ (’needs to’ | ’is recommended to’) ’have
installed’ [<type of environment:text>] <vendor:text> <environment
name:text> <version/id:text>, [’or newer’] .

TC example To use the system one needs to have Flash Player v.11.0 or newer.

Parameters required – a list of additional required applications

recommended – a list of additional recommended applications

each item in the required and the recommended lists contains the following details about the

application:

name – its name

version – its version (optional)

later – True, if later versions are also supported (optional)

vendor – its vendor (optional)

UM example It is required to additionally install: Flash Player, version 11 or newer.

Knowledge and experience

ID NoRT58

NoRT ’To operate the system one needs to possess the following knowledge and
skills:’ <name:text>, ’certificate of’ <exam name:text>.

NFR example To operate the system one needs to possess the following knowledge and skills: ECDL.

Parameters knowledge – a list of abilities

each item in the knowledge list contains the following attributes:

name – the name of an ability or skill

exam name – the name of a certificate

UM example To use the application one needs to know how to use a web browser.

B.3 The user manual generated for the Plagiat.pl web

application

This section contains the user manual generated for the commercial application Plagiat.pl. The following data were

used:

B.3. The user manual generated for the Plagiat.pl web application 127

Component Variable Data type

Artifact

Configuration Business Software Requirement

file case Specification

Cover name Imported �
version Imported �

Table of contents N/A

Conventions convs Fixed �
Introduction:

Problem description problem Imported �
System description scope Imported �

actors ImportedA) �
ucs Imported �

Web page nfrs Generated �
Requirements concerning operating nfrs Generated �
environment adets Generated �
Information objects bos Imported �
Tasks:

Actor actors Imported �
Scenarios ucs Imported �
Examples examples Generated �

Glossary glossary Imported �

Notes:

A) Context diagram is generated

Plagiat.pl

User Manual

Version 2012

Contents

1 Using the manual 2

2 Introduction 2
2.1 Problem description . 2
2.2 System description . 2
2.3 Website . 2

3 Requirements concering the operating environemnt 3

4 Information objects 3

5 Tasks 6
User . 6

Register in the system . 6
Login to the system . 7
Check a document . 8
Purchase tokens . 10
View a similarity report . 11
Update User data . 12

6 Glossary 13

The following document contains quotes from Instrukcja Użytkownika Indywidualnego dla Internetowego
Systemu Antyplagiatowego Plagiat.pl which are not sourced as they appear within the text. This is done to
more accurately reflect the user manual format in research conducted at the Poznań University of Technology.

Instrukcja Użytkownika Indywidualnego dla Internetowego Systemu Antyplagiatowego Plagiat.pl is property
of Plagiat.pl LLC.

1

1 Using the manual

The following manual concerns the usage of the Plagiat.pl system in its 2012 version.
In order to make the information more understandable to new users of the system, the manual has been

divided into several parts. The most important segments are:
• introduction, which describes the program’s uses;
• requirements, which outlines necessary conditions for using the program;
• information objects, which aims to acquaint the user with data stored and processed by the system;
• supported goals, which provides step-by-step instructions for using the software to carry out particular

tasks.
Certain conventions have been adopted to aid ease of description. Seeing as more than one person can work

at the same task, the word role is proposed in place of user. This term can mean all program users that perform
the same, or similar, actions. To make the manual more accessible, all tasks have been categorized according
to the role they play within the system (chapter Tasks).

2 Introduction

2.1 Problem description
In order to obtain a vocational or academic degree, a tertiary-level student is obliged to submit a diploma
project, typically in the form of a written dissertation.

The purpose of a diploma project is to prove that the author (or authors, in group projects) possesses the
necessary knowledge, skills and competence within their chosen subject; as such, it should be verified to be an
original and independent creation. Unfortunately the multitude of available material makes effective “manual”
authentication unfeasible, if not impossible. A computer system capable of automatic analyses of this sort would
be a significant advantage.

2.2 System description
The Plagiat.pl system identifies borrowings in the analyzed text. The results of this analysis are placed in a
Similarity report, which contains five Similarity coefficients. Each of these indicates the amount of borrowings
found in the text, be it from the Internet, the Database of Legal Acts or other sources (e.g. other academic
theses).

Plagiat.pl does not determine whether or not the document is plagiarism – the decision must be made by a
person with the authority to do so (such as the thesis Supervisor), and the generated Similarity Report merely
provides supportive information.

The following roles use the system:

Supported goals are described in section Tasks.
A typical script for using the system is as follows:
1. User creates an account by filling out and submitting the Registration form (p. 6)
2. User logs into the system (p. 7)
3. User adds Document to be checked (p. 8)
4. User purchases Tokens (p. 10)
5. User views Similarity report (p. 11)
The system also allows:
• Modification of User data (p. 12)

2.3 Website
The application is available at http://www.plagiat.pl

2

3 Requirements concering the operating environemnt

Browser
To run the application, one of the following web browsers is required:

• FireFox, version 17 or newer
• Chrome, version 34 or newer
• Internet Explorer, version 8 or newer

Additional software
It is recommended to additionally install:

• Flash Player, version 11 or newer

Screen resolution
The recommended screen resolution is no less than 1024x768.

Hardware requirements
The user’s computer should be equipped with, at minimum:

• 512 MB RAM memory
• 2.6 GHz processor

4 Information objects

User data

Information about the User.
This object contains the following elements:
• Name
• Surname
• Login (e-mail)
• Registration date
• Position
• Telephone number
• Agreement to receive e-mails with similarity reports
• Agreement to receive e-mails with the bulletin
• Agreement to receive e-mails with the newsletter
• Password – the password must be at least 8 characters long and contain at least 2 digits

Document

The text to be checked (e.g. Master’s thesis).
A document to be checked can be submitted in one of two ways:
• pasting the content into the program (copy and paste),
• uploading the content in a file.
Maximum file size is 20 MB.
Accepted file formats: doc, docx, rtf, odt.
Documents up to 500 characters can be checked free of charge.

Code

A series of characters that the User receives (in a text message) after using the SMS Premium service to
purchase Tokens.

To receive a Code, the user sends a text message to 79068, putting AP.PLGT in the content. The code must
then be entered into a form to exchange it for tokens.

A code purchased through SMS Premium expires after 2 weeks.

3

Warning: if anything other than AP.PLGT makes it into the content of the text message, the fee will be
lost.

See also: Token

Registration form

A form containing all the data necessary to create an account.
If the User wishes not to provide some of the information, the word “ERSATZ” can be entered into the

chosen fields as a placeholder.
The minimum required input is an e-mail address. It is necessary to check boxes marking acceptance of

the Terms and Conditions, becoming acquainted with the Protection of Personal Data policy and agreement to
processing personal information.

This object includes the following elements:
• Name
• Surname
• E-mail address – required
• Firm
• Telephone number
• Agreement to receive the bulletin
• Request for information about the Plagiat.pl system
• Declaration of agreement to Terms and Conditions – required
• Agreement to processing personal data as well as the tenets of the Protection of Personal Data policy –

required
• Agreement to process personal data for commercial purposes

Document submission form

Form used to submit text for analysis.
The object possesses the following elements:
• Upload method (File Upload or Copy and Paste)
• Document specification

Document list

List containing the results of anti-plagiarism analyses. It is the User ’s default view.
This object possesses the following elements:
• Title
• Similarity coefficient 1 – see Glossary
• Similarity coefficient 2 – see Glossary
• Similarity coefficient 3 – see Glossary
• Similarity coefficient 4 – see Glossary
• Similarity coefficient 5 – see Glossary
• Status – whether or not the analysis is completed and the Similarity report available
• Similarity report

Document specification

This object possesses the following elements:
• Author
• Title
• Skip the following websites – list of Internet sites to be ignored during the document analysis
• Text

4

Similarity report

A Similarity report provides information about the borrowings identified in the analyzed text.
The waiting period for a Similarity report is usually under 24 hours.
The user is notified about the availability of the report (after the document analysis is completed) via e-mail.
Plagiat.pl informs of similarities by use of the following:
• green color – borrowings from Internet sources
• blue background – borrowings from the Database of Legal Acts
The report comes in two varieties:
• Full similarity report
• Short similarity report

Short similarity report

The short version of the report contains Similarity coefficients (1-5) and a list of similar documents.
This object possesses the following elements:
• Similarity coefficient 1 – see Glossary
• Similarity coefficient 2 – see Glossary
• Similarity coefficient 3 – see Glossary
• Similarity coefficient 4 – see Glossary
• Similarity coefficient 5 – see Glossary
• Documents containing similar fragments: from the Database of Legal Acts
• Documents containing similar fragments: from the Internet
See also: Similarity report

Full similarity report

The full version of the similarity report contains Similarity coefficients (1-5), a list of similar documents, and
the text of the document with marked fragments which were found in Internet sources and the Database of
Legal Acts.

This object possesses the following elements:
• Title – the title of the text
• Author – the author of the document
• Date of the report – date and time of generating the report
• Similarity coefficient 1 – see Glossary
• Similarity coefficient 2 – see Glossary
• Similarity coefficient 3 – see Glossary
• Similarity coefficient 4 – see Glossary
• Similarity coefficient 5 – see Glossary
• Phrase length for Similarity coefficient 2
• Number of words
• Number of characters
• Skipped URL addresses – a list of website addresses
• Longest fragments identified as similar
• Documents containing similar fragments: from the Database of Legal Acts
• Documents containing similar fragments: from the Internet
See also: Similarity report

Terms and Conditions

Rules and regulations of using the Plagiat.pl system.
Software such as Adobe Reader is necessary to view the Terms and Conditions.

5

Token

Tokens are used to pay for text analyses. One token allows for checking up to 20,000 characters of text. Checking
a further fragment of text, up to 20,000 characters, requires spending an additional token.

Information about the required number of tokens appears a document is submitted for analysis. One page
of text typically contains around 2000 characters, so one token should allow checking about 10 pages.

Tokens can be purchased using several payment methods: credit card, DOTPAY, PayPal, SMS Premium
code, postal money order and bank transfer.

Documents up to 500 characters long can be checked free of charge.

5 Tasks

User

A user is the person submitting documents to analyze and check for unauthorized borrowings.

Register in the system

The script of performing this activity is as follows:
1. User chooses the account creation option
2. System presents the Registration form
3. User fills in all necessary information and submits the form
4. System informs of successful account creation
5. System sends a message with the login details

The following exceptions may occur during this activity:
In step 3:

Terms and Conditions not accepted
1. System informs of the requirement to accept the Terms and Conditions, necessary to create an account
2. Go to step 3

In step 3:
Data in form incomplete
1. System informs of the requirement to provide all necessary information or use the placeholder ERSATZ
2. Go to step 3

X Example

• The browser should look like this:

Click

6

• System presents the Registration form

Fill in the necessary information (an example is provided in the illustration) and confirm it by clicking
.

• System informs of successful account creation

• System sends a message with the login details

Login to the system

Before proceeding, make sure you have completed:
• Creating an account (p. 6)

The script of performing this activity is as follows:
1. User chooses the log in option
2. System presents the Log in form
3. User provides and confirms log in data
4. System presents a list of documents submitted for analysis

7

The following exceptions may occur during this activity:

In step 3:
Provided information is incomplete
1. System informs of the requirement to provide complete information
2. Go to step 3

X Example

• The browser should look like this:

Type user information into the login and password fields (example data in the illustration is obscured),
then click .

• System presents a list of documents submitted for analysis

Check a document

Before proceeding, make sure you have completed:
• Logging into the system (p. 7)

The script of performing this activity is as follows:
1. User chooses the upload document for analysis option
2. System presents the Document upload form
3. User chooses a document upload method (copy and paste or file upload)
4. System presents the Document specification form
5. User provides and submits data
6. System presents a list of Documents to be checked

8

7. User chooses Documents to be checked
8. System informs of initiating the analysis of a chosen Document
9. System informs of completing the analysis of a chosen Document

The following exceptions may occur during this activity:
In step 5:

File size exceeded
1. System informs that a document exceeds the maximum file size
2. Go to step 5

In step 7:
Insufficient tokens
1. System informs that the user lacks tokens necessary to check Document
2. User purchases additional Tokens (see p. 10)
3. Go to step 7

In step 7:
User decides to change Document check order
1. User removes all Documents from the list
2. User re-uploads all Documents in the appropriate order
3. Go to step 8

X Example

• The browser should look like this:

Choose the upload document option by clicking .
• System presents the Document upload form

Choose the copy and paste method by clicking .

9

• System presents the Document specification form

Fill in the necessary information (an example is provided in the above illustration) and confirm it by
clicking .

• System presents the list of Documents to be checked

Choose an element and click .
• System informs of initiating the analysis of a chosen Document

Click .
• System informs of completing the analysis of a chosen Document

10

Purchase tokens

Before proceeding, make sure you have completed:
• Logging into the system (p. 7)

The script of performing this activity is as follows:
1. User chooses the token purchase option
2. System presents the Token purchase form
3. User chooses a payment method
4. User chooses tokens to purchase and confirms the choice
5. System requests payment
6. User carries out payment
7. System informs that tokens are available

This activity may also be performed differently:
In step 3:

User chooses SMS Premium
1. System provides text message content and the number to send it to
2. User sends text message
3. User receives text message with Code
4. User enters Code
5. System informs of additional Tokens
6. Finish

View a similarity report

Before proceeding, make sure you have completed:
• Checking a document (p. 8)

The script of performing this activity is as follows:
1. User chooses the option to view the Document list
2. System presents the Document list
3. User chooses Full similarity report for a chosen Document
4. System presents the Full similarity report
5. User views the Full similarity report

This activity may also be performed differently:
In step 3:

User chooses Short similarity report
1. User chooses Short similarity report for a chosen Document
2. System presents the Short similarity report
3. User views the Short similarity report
4. Finish

11

X Example

• The browser should look like this:

Click
• System presents the Full similarity report

Update User data

Before proceeding, make sure you have completed:
• Logging into the system (p. 7)

The script of performing this activity is as follows:
1. User chooses the modify User data option
2. System presents the User data
3. User chooses the edit User data option
4. System enables the modification of User data
5. User enters and confirms changes
6. System saves the changes

The following exceptions may occur during this activity:
In step 3:

Provided information is incomplete
1. System informs of the requirement to provide complete information
2. Go to step 5.

12

6 Glossary

? Alert

Information within the Similarity report indicating the presence of non-Latin characters. The Alert is meant
to bring possible unwarranted use of non-Latin characters to the supervisor’s attention, as they may be an
attempt to falsify coefficient values in the Similarity report. Documents with an Alert are highlighted yellow on
the Document list, and the corresponding Similarity report is marked with an exclamation point.

? Similarity report

A document generated by the Plagiat.pl system, containing information about borrowings identified in the
analyzed text.

? Similarity coefficient 1

Value (expressed in percents) expressing the ratio of borrowings found in Internet sources, consisting of at
least five words. Exceeding the accepted values of Similarity coefficient 1 may indicate overuse of borrowings
(content authored by other persons). Taking into account the fact that many fixed phrases consisting of five or
more words are commonly in use, exceeding the value of Similarity coefficient 1 can only be taken as a general
pointer to the possibility of copied material, and as a rule requires further verification by an authorized person
(e.g. supervisor).

The limit/maximum value of Similarity coefficient 1 recommended by Plagiat.pl is 50%.

? Similarity coefficient 2

Value (expressed in percents) expressing the ratio of borrowings found in Internet sources, consisting of at
least twenty five words. Exceeding the accepted values of Similarity coefficient 2 is a strong indication of the
student’s overuse of unauthorized borrowings. Identical phrases of over 25 words are practically nonexistent
in common language, and exposing them in a document is reliable evidence of borrowing. Every instance of
an exposed borrowing requires verification by an authorized person (e.g. supervisor), as it can also be a valid
reference to other authors (e.g. in a properly marked quote).

The limit/maximum value of Similarity coefficient 2 recommended by Plagiat.pl is 5%.

? Similarity coefficient 3

A percentile value calculated analogously to Similarity coefficient 1, but also including fragments found by the
Plagiat.pl system in the Database of Legal Acts.

? Similarity coefficient 4

A percentile value calculated analogously to Similarity coefficient 2, but also including all those phrases of 25
words or more found by the Plagiat.pl system in the Database of Legal Acts.

? Similarity coefficient 5

A percentile value indicating what portion of the analyzed document consists purely of legal phrases consisting
of 8 words or more found in the Database of Legal Acts.

13

B.4. Evaluation mandate 141

B.4 Evaluation mandate

Software Plagiat.pl

Documentation name User Manual

Documentation version 20140609

Filename DU-20140609-meet-du-example-plagiat.pl.pdf
Evaluation deadline 25 June 2014

Purpose Data collection

Scope Whole document

Evaluation approach Evaluation form EF20140609

Evaluation grades

Standard answers to questions (5-level Lickert): Not at all (N for short); Weak (w); Hard to say (?); Good enough (g);

Very good (VG).

Selection of quality questions

Id Question Expert
Prospective

user

Completeness

Q1 To what extent does the user documentation cover all the functionality pro-

vided by the system with the needed level of detail?
�

Q2 To what extent does the user documentation provide information which is help-

ful in deciding whether the system is appropriate for the needs of prospective

users?

�

Q3 To what extent does the user documentation contain information about how

to use it with effectiveness and efficiency?
�

Operability

Q4 To what extent is the user documentation easy to use and helpful when operat-

ing the system documented by it?
�

Correctness

Q5 To what extent does the user documentation provide correct descriptions with

the needed degree of precision?
�

Appearance

Q6 To what extent is the information contained in the user documentation pre-

sented in an aesthetic way?
�

B.5 Evaluation form for Prospective User (simplified)

ID EF20140609

Software Plagiat.pl

Documentation name User Manual

Documentation version 20140609

Filename DU-20140609-meet-du-example-plagiat.pl.pdf
Evaluation deadline 25 June 2014

B.6. Evaluation report 142

COCA

Question N w ? g VG

Completeness

To what extent does the user documentation contain information about how to

use it with effectiveness and efficiency?

Operability

To what extent is the user documentation easy to use and helpful when operating

the system documented by it?

Appearance

To what extent is the information contained in the user documentation presented

in an aesthetic way?

DET

One examplary question. Originally there are 29 questions in Polish language.

Question no 2

The following items are included into a similarity report:

Choose one of the proposed answers: Correct?

A) Info about whether a given document is plagiarised

B) Similarity coefficients and a list of similar documents

C) Similarity coefficients, a list of similar documents and whether a given document is plagiarised

D) Similarity coefficients, a list of similar documents and fragments of the document which

have been found in another document

The answer is in the user documentation on page:

I could not find the answer:

B.6 Evaluation report

Purpose data collection

Evaluation approach evaluation form

B.6. Evaluation report 143

Results

COCA

Id Characteristics and the associated question N w ? g VG

Completeness responsible: Expert

Q1 To what extent does the user documentation cover all the func-

tionality provided by the system with the needed level of de-

tail?

0 0 1 1 1

Q2 To what extent does the user documentation provide informa-

tion which is helpful in deciding whether the system is appro-

priate for the needs of prospective users?

0 0 0 1 2

responsible: Prospective User

Q3 To what extent does the user documentation contain informa-

tion about how to use it with effectiveness and efficiency?

0 2 2 12 0

Operability responsible: Prospective User

Q4 To what extent is the user documentation easy to use and help-

ful when operating the system documented by it?

0 0 4 10 2

Correctness responsible: Expert

Q5 To what extent does the user documentation provide correct

descriptions with the needed degree of precision?

0 0 1 1 1

Appearance responsible: Prospective User

Q6 To what extent is the information contained in the user docu-

mentation presented in an aesthetic way?

0 2 1 8 5

DET

Average time of searching an answer 42 min

Percentage of correct answers 85.13%

Evaluation team

System Review Leader Experts Prospective Users

Plagiat.pl - generated 1 3 16

Appendix C

Generating Syntax Diagrams from

Regular Expressions

Preface

This appendix contains the paper: Bartosz Alchimowicz and Jerzy Nawrocki: Gen-

erating Syntax Diagrams from Regular Expressions, Foundations of Computing and

Decision Sciences, 36(2), pp. 81–97, 2011. My contribution to this paper included the

following tasks: 1) co-design of visual representation; 2) design and implementation

of the prototype tool; 3) early evaluation.

The goal of this appendix is to present how syntax diagrams are generated on the

basis of regular expressions.

C.1 Introduction

Most of web applications require an input data for proper operation. Those data

have often a form of a string that users have to enter into a field. But some strings

are meaningless as they are syntactically incorrect. In some cases it is not obvious

why a given string is incorrect. A well written user-manual with an explanation of the

fields might be helpful in such a case, but so difficult fields do not happen frequently,

thus user-manual writers often skip explanation of the fields. This approach makes

end-users left without any help and they must solve such problems on their own. A

solution might be to supplement user-manual with required explanation, but this

requires additional time and costs. Another solution could be to present regular

expression used for data validation. Unfortunately regular expressions have a form

similar to source code and they may be incomprehensible to end-users. An alternative

144

C.2. Overview of the proposed automatic explanation system 145

solution is to automatically generate such an explanation from a regular expression.

Hence a question arise, if it is possible to automatically generate a user-friendly

explanation of a field syntax.

An example of a tool created to explain regular expression is YAPE [144]. Unfortu-

nately, since this tool is created for software developers it presents only a description

of meta-characters used in a regular expression, not the strings themselves. For

IT-layman such a description is (almost) useless. Another solution is presented by

Ranta [123]. It uses a Xerox Finite State Tool to generate a verbal explanation of a

regular expressions. The weakness of the tool is that an explanation is limited to just

verbal description - no visual description nor examples are generated.

The paper is organized as follows. In Section C.2 a proposition of an automatic

explanation system is presented. Section C.3 describes regular expressions. Next,

in Section C.4, a proposition of a visual representation is presented, by describing

syntax diagrams and augmented extensions. Then, in Section C.5, generation process

of a field explanation is outlined. In Sections C.6 an early evaluation is described.

Finally, in Section C.7, the most important findings are discussed.

C.2 Overview of the proposed automatic explanation system

Figure C.1 presents a schema of the proposed automatic explanation system. The

input consists of two items: a regular expression used by a programmer for string

validation and a field name. As an output one obtains:

• verbal explanation (similar to one provided by Ranta),

• examples,

• visual representation.

Figure C.1: Black box schema of the proposed automatic explanation system

Verbal explanation provides a description of a field in a natural language. It is the

most popular way of knowledge representation and it is widely used in user manuals.

C.2. Overview of the proposed automatic explanation system 146

This description is supplemented by a number of examples, presenting correct and

incorrect strings. The third element of a field explanation is a visual representation of

all the correct strings as syntax diagrams. It seems that such diagrams are a natural

choice for presenting syntax of any kinds of strings, including strings entered by users

into fields of web applications. Other possible option could be UML, but it is too

complicated and could overwhelm prospective end-users – for this reason it has been

rejected. All three parts, i.e. verbal explanation, examples, and syntax diagrams form

so-called three-part explanation of the language defined by a regular expression.

A simple example is presented in Figure C.2 and C.3. Syntax of a field called

Credit Card, is represented as a regular expression (see Figure C.2) and on this basis

a field explanation is generated (see Figure C.3).

CreditCard = ˆ4[0-9]{12}([0-9]{3})?$

Figure C.2: Input to the generator

Credit Card is described in following diagram:

It consists of digit 4, followed by 12 digits and followed by optional three digits.

Example Correct?
4056324648328 Yes
4295324322567 Yes
4056324648328123 Yes
056324648328 No (absence of digit 4)
40566236489281234 No (too long)

Figure C.3: Field explanation

The three-part explanation starts with a short introduction, which contains a field

name. This is followed by a syntax diagram. Next, one can found a verbal explanation

of the elements used in the diagram. At the end there is a table with examples of

correct and incorrect input. In case of incorrect string a short justification is given in

brackets. For the sake of readability names of fields (or subfields) are in bold.

In the subsequent sections a focus will be on presenting how to generate syntax

diagrams from regular expressions.

C.3. Describing field syntax with regular expressions 147

C.3 Describing field syntax with regular expressions

Regular expressions have been invented by Stephan Kleene [88] and they have be-

come quite popular. They have been incorporated into some programming languages

(e.g. Perl [48]) and compiler generators, like Lex [93]. Later on they have been stan-

dardized by POSIX [147]. It was decided to use the Lex version of regular expressions.

Consequently, meta-characters presented in Table C.1 are used.

Regular expressions can contain also names of other regular expressions. The

resulting regular expression is obtained by superposition, i.e. by replacing a name

with a regular expression corresponding to it. Here is a simple example. Assume the

following definitions are given:

name = [a-zA-Z]+

ListOfNames = {name}(, {name})*

Then the ListOfNames is equivalent to the following regular expression:

[a-zA-Z]+(, [a-zA-Z]+)*

Table C.1: Meta-characters used by the explanation system

Meta character Description
. any character
[] character class
[ˆ] exclusive character class
ˆ start of a line
$ end of a line
() groups
? optional
* optional sequence
+ non-empty sequence
{m} sequence consisting of m elements
{m,} sequence consisting of at least m elements
{m,n} sequence consisting of m to n elements
| alternative

C.4 Explaining regular languages with syntax diagrams

C.4.1 Classical syntax diagrams

Syntax diagrams are known since long ago. They have been used in 1973 by Niklaus

Wirth to described syntax diagrams of the Pascal programming language [154]. We

use them to graphically represent syntax of a field of web application.

C.4. Explaining regular languages with syntax diagrams 148

A syntax diagram is a directed graph. Nodes of such a graph can be terminal

(representing simple strings) or non-terminal (those represent more complicated

strings which are described with a separate regular expression).

Figure C.4 contains a syntax diagram, that presents simple regular expression

fl(i|a)p (it describes two words: flip or flap). All nodes on that diagram are

terminal ones.

Figure C.4: Simple syntax diagram

Figure C.5 presents a syntax diagram with a non-terminal. The name of the non-

terminal is Options. Assume that Figure C.4 presents the string associated with this

non-terminal. Then the following strings would correspond to the diagram of Fig-

ure C.5: "My favorite word is: flip." and "My favorite word is: flap.".

Figure C.5: Syntax diagram with non-terminal

Since syntax diagrams does not support all meta-characters presented in Table

C.1, a number of extensions were introduced.

C.4.2 Extended syntax diagrams

Range of characters

Regular expressions allow to specify a range of characters. For example, if a user is

required to type in a decimal digit into a field, syntax of such a field can be described

as [0-9]. The question arises how to represent this on a syntax diagram. It was

decided to represent a range of characters (e.g. [0-9]) as a node in inverse colours

and to separate the first and last element of the range with double dot. An example

presented in Figure C.6 describes a set of strings with letter A followed by a decimal

digit (here are correct strings: A0, A1, A2, . . .).

Figure C.6: A syntax diagram with a range of characters

C.4. Explaining regular languages with syntax diagrams 149

Bound repetitions

Regular expressions support bound repetitions. Bound repetitions have the following

form: r{m,n}. It means that string represented by r can be repeated m times, or m+1

times, or . . . , up to n times. For example [a-c]{2,3} requires a string consisting of

letters a, b, c and there are from 2 to 3 such letters (e.g. aa, ab, ac, aaa, aab, . . .).

That regular expression could be represented by a syntax diagram in Figure C.7. This

approach has the following weakness: if n >> m then such a diagram would be huge.

To solve this problem it is proposed to put the expressions m..n above the re-

peated element. Using this notation the diagram in Figure C.7 would be compressed

to the one in Figure C.8.

Figure C.7: Syntax diagram for a regular expression [a-c]{2,3}

Figure C.8: New syntax diagram for a regular expression [a-c]{2,3}

Alternative element selection

Alternative element selection is a shorthand for diagrams representing a number

of options. Let us consider a diagram with options presented in Figure C.9. Using

alternative element selection the same diagram could be replaced by one of Figure

C.10. The advantage of this extension is ease of specifying quantity for repetition in a

way presented in Figure C.8.

Space character

Space is a non-visible character and its presence may be ambiguous for readers.

Those situations often take place when the space is the last character or the only one

in a terminal. For example, Figure C.11 presents the following regular expression "

|msg " (for better space recognitions the expression was placed in quotes).

To solve this problem the space character is replaced by a visible representation.

In case of one character in a terminal the word space in italics is used. When the

space is the last character in a string it is replaced by symbol . A new version of the

discussed diagram is presented in Figure C.12.

C.5. Generation of a syntax diagram 150

Figure C.9: Visual representation of [-a-z0-9$@]

Figure C.10: Alternate visual representation of [-a-z0-9$@]

Figure C.11: Syntax diagram with the spaces character

Figure C.12: New space representation

C.5 Generation of a syntax diagram

C.5.1 Overview of the generator

The purpose of the generator presented in Figure C.1 is to provide a three-part

explanation. One of the parts is visual representation. The generator of the visual

representation (i.e. generator of syntax diagrams) consists of the following units (see

Figure C.13):

• Expression parser,

• Decorator,

• Explanation planner,

• Generator of referring expressions,

• Surface producer.

The purpose of expression parsing is to generate a parse tree of an expression

being explained. The tree is next decorated with attributes that are used by the expla-

C.5. Generation of a syntax diagram 151

nation planner. The planner decides about layout of the diagram to be generated. If,

according to planner’s decisions, a regular expression is to be explained with more

than one diagram there must be a reference from one diagram to another. That

reference will have a form of a name: an auxiliary diagram will be given a name and

that name appear on the master diagram marking a place in which the auxiliary dia-

gram could be inserted (it resembles superposition of regular expressions mentioned

in Section C.3). The problem is how to choose a name that would be appropriate

for the end-user (i.e. the reader). That is the mission of the generator of referring

expressions. When layout prepared by the explanation planner is ready and – in case

of a set of diagrams – the diagrams are connected with names somehow meaningful

to the reader, the only task is to draw the diagrams and that is performed by the

surface producer.

Each of the elements presented in Figure C.13 is described more deeply in subse-

quent subsections.

Figure C.13: Schema of the proposed field explanation generator

C.5.2 Expression parser

Input to the generator of syntax diagrams consists of three parts (e.g. Figure C.14):

• name of the described field,

• predefined names for auxiliary diagrams (optional),

• regular expression describing syntax of the field.

Second part is used to provide additional information to the generator. It may con-

tains parts of a regular expression with names assigned to them. Those names will be

used as referring names for auxiliary diagrams. The generator expects that the name

C.5. Generation of a syntax diagram 152

of the described field and a regular expression describing its syntax are the last line

of input, while the preceding lines contained predefined names.

The expression parser takes a regular expression as its input and generates a

parse tree. Each node represents a small part of a regular expression and contains

information about its type and attributes. For example, for character class [A-Z]

the corresponding node would be InCharClass and the node would contain no

attribute. This node would have one child, its node type would be Range and it

would contain two attributes min and max, which describe the range of characters.

Figures C.15 and C.17 present examples of parse trees. The first figure contains

parse tree for character class [A-Z] and the second one shows parse tree generated

for input data from Figure C.14.

Tables C.2 and C.3 contain information about the nodes that may appear in a

parse tree. Table C.2 contains parts of a regular expression with node types used to

represent them. Table C.3 presents attributes which are used by the nodes (if the

attribute is used, a letter ’X’ is placed). Additionally, information about the type of

attribute is provided in the table’s header (VDM notation is used for this purpose). If

the types of an attribute vary between the nodes (e.g. value) the column is divided

into multiple parts to represent all possible types.

ElementType = [A-Z][0-9]{2}
ElementID = {ElementType}-[0-9]{5}-[0-9]{5}

Figure C.14: An example of input date to the generator

Figure C.15: Simple parse tree

The definition of the NodeType used in Table C.3 is presented in Figure C.16.

To simplify the notation two artificial nodes were added. The first one is called

CharClass and is used to represent nodes connected with character classes (i.e.

InCharClass and ExCharClass). The second one is Quantity and it may be used

instead of nodes designed to represent quantity nodes, like AtLeastQuantity and

ExactQuantity.

The information stored in Table C.3 allow to construct a record in VDM. For

example Char consists of attributes value and length, thus the declaration of this

C.5. Generation of a syntax diagram 153

Quantity = OptionQuantity | OptionSeqQuantity | SeqQuantity |
ExactQuantity | AtLeastQuantity | RangeQuantity;

CharClass = InCharClass | ExCharClass;
NodeType = Concat | Char | Range | String | CharClass | ReStart |

ReEnd | Quantity;

Figure C.16: VDM definition of the NodeType

node would be the following:

Char :: value : char

length : N

Figure C.17: Parse tree for a regular expression from Figure C.14

C.5.3 Decorator

The purpose of the decoration is to compute attributes. The attributes provide

information which will help to determine the layout of diagrams.

The following attributes of nodes are computed in the decoration stage:

• duplicated – true, if the content of a node occurs more then ones,

• length – number of characters required to present a node in a syntax diagram

(including children).

C.5. Generation of a syntax diagram 154

Table C.2: Node types supported be the generator

Regular expression Node type
concatenation Concat
character Char
range Range
string String
[] InCharClass
[ˆ] ExCharClass
ˆ ReStart
$ ReEnd
? OptionQuantity
* OptionSeqQuantity
+ SeqQuantity
{m} ExactQuantity
{m,} AtLeastQuantity
{m,n} RangeQuantity

Table C.3: Attributes supported by the generator

Attributes

value:

min:

max:

length:
N

duplicate:
B

autonomous:
B

internal:
B

name:char ∗
size:

N

children:NodeType ∗

NodeType char

char ∗
N char

N char

N

Concat X X X X X X X
Char X X
Range X X X X X
String X X
CharClass X X X X X X X
ReStart X
ReEnd X
OptionQuantity X X X X X X X
OptionSeqQuantity X X X X X X X
SeqQuantity X X X X X X X
ExactQuantity X X X X X X X X
AtLeastQuantity X X X X X X X X
RangeQuantity X X X X X X X X X

C.5. Generation of a syntax diagram 155

Duplication detection is similar to common expression elimination presented by

Aho et al.[8] which uses hash table to store information about the nodes. Inside this

data structure a well know key and value are used. For the purpose of key, a regular

expression represented by the nodes is used. Inside the value, a list of references to

similar nodes is stored. To find duplicates, the nodes in parse tree are visited using

the post-order walk. When a node that supports duplicated attribute is found its

presence is noted in the hash table. After the walk ends, the analysis of collected

information begins. If a node have duplicates (more then one reference stored in the

value) all references in parent nodes are replaced to the first occurrence of the node

and attribute duplicated is set to true. If there are no duplicates, the attribute

duplicated is set to false.

Attribute length is computed bottom-up, also using post-order walk. Table C.4

presents the way of its computation, for this purpose the VDM notation was used.

Figure C.18 presents an example of decorated tree from Figure C.14. Nodes were

decorated with attributes. Dotted arrows shows the references to the existing node.

Moreover, all the nodes which contain children (e.g. InCharClass, Concat) are

provided with one additional attribute. This attribute is called size and it defines

number of children. For example, the root node in Figure C.18 contains 5 children,

thus attribute size=5 (since it is not a decorated attribute it is not placed in the

figure).

Table C.4: Computation of the length attribute

Node type Length

Concat

Concat.length := len Concat.name;
if Concat.length = 0 then

for node in Concat.children do
Concat.length := Concat.length + node.length;

Char Char.length := 1;
Range Range.length := 3;
String String.length := len String.value;

CharClass

CharClass.length := 0;
for node in CharClass.children do

CharClass.length := CharClass.length + node.length;
CharClass.length := CharClass.length + CharClass.size-1;

ReStart ReStart.length := 0;
ReEnd ReEnd.length := 0;

Quantity
Quantity.length := Quantity.children(1).length;
there is only one child in Quantity node

C.5. Generation of a syntax diagram 156

C.5.4 Explanation planner

The layout of the diagrams is determined by the following two attributes:

• autonomous – true, if the node (together with its children) could be repre-

sented as a separate diagram (internal or external, default: false),

• internal – true, if the separate diagram could be represented inside the

parent diagram, it is used only when the autonomous attribute is set to true

(default: false).

The above attributes are computed by a set of rules (similar to YACC). Each rule

is build from two sections: a grammar rule and an action. The first one defines a

sequence of nodes in a parse tree. When the sequence is matched the corresponding

action is invoked. Figure C.19 presents a simple example of a rule. In this example

the grammar rule is the following string: Concat : CharClass (two node types

separated by a colon). The action is placed in curly brackets and it contains an action

to invoke. If the ordering restrictions are not important then instead of a node type

an asterisk sign can by used (see Figure C.20).

Figure C.18: An example of a decorated parse tree

C.5. Generation of a syntax diagram 157

Figure C.20 presents the default set of rules provided with the generator. They are

kept in a separate file and can be modified if required.

To simplify the notation it is possible to use two artificial nodes introduced in

Section C.5.2 and provide information about expected quantity. In case of the node

AtLeastQuantity{0,} it is possible to change its type to OptionQuantity (see the

ending of rules in Figure C.20).

Concat : CharClass
{ if (CharClass.size > 2) { CharClass.autonomous = true } }

Figure C.19: An example of a planner rule

Quantity : CharClass
{ if (CharClass.size > 1) { Quantity.autonomous = true } }

Quantity : Concat
{ if (Concat.size > 1) { Concat.autonomous = true } }

Concat : CharClass
{ if (CharClass.duplicated == true and CharClass.size != 1)

{ CharClass.autonomous = true }
}

* : Concat
{ if (Concat.length > 40) { Concat.autonomous = true } }

Alterantion : Concat { Concat.autonomous = true }
Concat : Alterantion { Concat.autonomous = true }
Concat : CharClass

{ if (CharClass.size > 2) { CharClass.autonomous = true } }
* : Concat

{ if (Concat.duplicated == false and Concat.size <= 5
and Concat.autonomous == true)

{ Concat.internal = true }
}

* : AtLeastQuantity{0,}
{ AtLeastQuantity = OptionQuantity }

}

Figure C.20: Default rules in planner unit

C.5.5 Generator of referring expressions

The purpose of generator of referring expressions is to provide meaningful referential

names for auxiliary diagrams. This goal is achieved by a set of encoded rules which

try to guess the most suitable name.

C.5. Generation of a syntax diagram 158

The generator is equipped with a set of predefined names. Those names can be

divided into the following categories:

• auxiliary diagrams at the beginning: e.g. Beginning, Header;

• auxiliary diagrams at the end: e.g. Ending, Footer;

• auxiliary diagrams that are used only once: e.g. Ingredient.

When generating a referring expression only a category of a referring expression is

known, not a particular word. That word is draw from a category randomly.

Additionally to presented categories there are two additional mechanisms. The

first one tries to generate a name by analyzing the content of a regular expression.

This solution works only for character class [a-z] concatenated with additional

characters. For example [a-z]+\. may by referenced by using "Word with a dot". The

last mechanisms name auxiliary diagrams using pattern "Part" with a unique upper

case letter, e.g. PartA, PartB, etc.

If the results are not satisfactory, then names in referring expressions may be

overwritten by providing more meaningful names in an input to the generator (see

Section C.5.2).

C.5.6 Surface producer

When layout of master and auxiliary diagrams is ready, and reference names are

provided syntax diagrams generation may commence.

Figure C.22 presents an example of a syntax diagram which contains a web page

address. This diagram was generated from an input data presented in Figure C.21.

The name of a master diagram is "HTTP Identifier". Inside this diagram there are two

auxiliary diagrams: "Word with a dot" and "Ending" (both names were provided by

the generator of referring expressions).

HTTPIdentifier = http[s]?://([a-z]+)̇+[a-z]2,(:[0-9]+)?[/]?

Figure C.21: Input data for a HTTP Identifier

C.6. Early evaluation 159

Figure C.22: A syntax diagrams of a HTTP Identifier

C.6 Early evaluation

To check the efficiency of the syntax diagrams an experiment was performed. For that

purpose a survey with an explanation of diagram notation and test questions was

prepared. There were prepared three diagrams with nine questions (three questions

per syntax diagram).

In the experiment 56 students participated, all from a non-computer science

faculty. The results show that 82.34% of answers were correct, which means that

after short introduction users can understand the syntax diagrams without major

problems.

C.7 Conclusions

The problem described in the article concerns automatic generation of syntax di-

agrams that can explain a regular expression in an ease to understand way (that

the end-user could read and understand what should be typed into a field in a web

application). As it was mentioned in the beginning of the article this is only a sub

part of a bigger work, which purpose is to automatically generate a three-part expla-

nation comprising verbal explanation, examples and visual representation. We have

described an experiment concerning automatic generation of syntax diagrams from

regular expressions and the results of early evaluation are promising.

Acknowledgement

This paper was financially supported by "Scholarship support for Ph.D. students

specializing in majors strategic for Wielkopolska’s development", Sub-measure 8.2.2

Human Capital Operational Programme, co-financed by European Union under the

European Social Fund.

Bibliography

[1] OpenNLP. URL http://opennlp.apache.org. [Online; accessed 17 August 2014].

[2] Stanford Parser: A statistical parser, . URL http://nlp.stanford.edu/software/lex-parser.
shtml. [Online; accessed 17 August 2014].

[3] Stanford Log-linear Part-Of-Speech Tagger, . URL http://nlp.stanford.edu/software/
tagger.shtml. [Online; accessed 17 August 2014].

[4] Stanford Tokenizer, . URL http://nlp.stanford.edu/software/tokenizer.shtml. [Online;
accessed 17 August 2014].

[5] Common European Framework of Reference for Languages: Learning, Teaching, Assessment. Ap-
plied Linguistics Non Series. Cambridge University Press, 2001. ISBN 9780521005319.

[6] John Aberdeen, John Burger, David Day, Lynette Hirschman, Patricia Robinson, and Marc Vilain.
MITRE: description of the Alembic system used for MUC-6. In Proceedings of the 6th conference
on Message understanding, pages 141–155. Association for Computational Linguistics, 1995.

[7] Steve Adolph and Paul Bramble. Patterns for Effective Use Cases. Addison Wesley, Boston, 2002.
ISBN 978-0201721843.

[8] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2006.
ISBN 0321486811.

[9] Bartosz Alchimowicz and Jerzy Nawrocki. Generating syntax diagrams from regular expressions.
Foundations of Computing and Decision Sciences, 36(2):81–97, 2011.

[10] Bartosz Alchimowicz and Jerzy Nawrocki. The COCA quality model for user documentation.
Software Quality Journal (not assigned to an issue yet), 2014.

[11] Bartosz Alchimowicz, Jakub Jurkiewicz, Mirosław Ochodek, and Jerzy Nawrocki. Building Bench-
marks for Use Cases. Computing and Informatics, 29(1):27–44, 2010.

[12] Bartosz Alchimowicz, Jakub Jurkiewicz, Jerzy Nawrocki, and Mirosław Ochodek. Towards use-
cases benchmark. In Software Engineering Techniques, pages 20–33. Springer Berlin Heidelberg,
2011.

[13] Bartosz Alchimowicz, Jerzy Nawrocki, and Mirosław Ochodek. Towards automatic explanation of
field syntax in web applications. Technical Report RA-10/2014, Politechnika Poznańska, 2014.

[14] Carl Martin Allwood and Tomas Kalén. Evaluating and improving the usability of a user manual.
Behaviour & Information Technology, 16(1):43–57, 1997.

[15] Srinivas Bangalore, Owen Rambow, and Steve Whittaker. Evaluation metrics for generation. In
Proceedings of the first international conference on Natural language generation, volume 14, pages
1–8. Association for Computational Linguistics, 2000.

160

http://opennlp.apache.org
http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.stanford.edu/software/tagger.shtml
http://nlp.stanford.edu/software/tagger.shtml
http://nlp.stanford.edu/software/tokenizer.shtml

161

[16] Victor R. Basili, Gianluigi Caldiera, and Dieter H. Rombach. The Goal Question Metric Approach,
volume I. John Wiley & Sons, 1994.

[17] Fabian Beck, Stefan Gulan, Benjamin Biegel, Sebastian Baltes, and Daniel Weiskopf. RegViz:
visual debugging of regular expressions. In ICSE Companion, pages 504–507, 2014.

[18] Anja Belz and Ehud Reiter. Comparing Automatic and Human Evaluation of NLG Systems. In In
Proc. EACL’06, pages 313–320, 2006.

[19] Daniel M Berry, Khuzaima Daudjee, Jing Dong, Igor Fainchtein, Maria Augusta Nelson, Torsten
Nelson, and Lihua Ou. User’s manual as a requirements specification: case studies. Requirements
Engineering, 9(1):67–82, 2004.

[20] Alan F. Blackwell. Your Wish is My Command. In Your Wish is My Command, chapter SWYN: A
Visual Representation for Regular Expressions, pages 245–270. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2001. ISBN 1-55860-688-2.

[21] Alan F Blackwell. See what you need: Helping end-users to build abstractions. Journal of Visual
Languages & Computing, 12(5):475–499, 2001.

[22] IEEE-SA Standards Board. IEEE Std 1063-2001, IEEE standard for Software User Documentation.
Institute of Electrical and Electronics Engineers, 2001.

[23] Taylor L Booth. Probabilistic representation of formal languages. In Switching and Automata
Theory, 1969., IEEE Conference Record of 10th Annual Symposium on, pages 74–81. IEEE, 1969.

[24] Thorsten Brants. TnT: a statistical part-of-speech tagger. In Proceedings of the sixth conference on
Applied natural language processing, pages 224–231. Association for Computational Linguistics,
2000.

[25] Eric Brill. A simple rule-based part of speech tagger. In Proceedings of the workshop on Speech
and Natural Language, pages 112–116. Association for Computational Linguistics, 1992.

[26] Ivan Budiselic, Sinisa Srbljic, and Miroslav Popovic. RegExpert: A Tool for Visualization of Regular
Expressions. In EUROCON, 2007. The International Conference on "Computer as a Tool", pages
2387–2389. IEEE, 2007.

[27] J. Byrne. Scientific and Technical Translation Explained: A Nuts and Bolts Guide for Beginners.
Translation Practices Explained. Taylor & Francis, 2014. ISBN 9781317642046.

[28] José Coch. Evaluating and comparing three text-production techniques. In Proceedings of the 16th
conference on Computational linguistics, volume 1, pages 249–254. Association for Computational
Linguistics, 1996.

[29] Alistair Cockburn. Writing Effective Use Cases. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1st edition, 2000. ISBN 0201702258.

[30] Jacob Cohen. Statistical power analysis. Current Directions in Psychological Science, 1(3):98–101,
1992.

[31] Mike Cohn. User stories applied: For agile software development. Addison-Wesley Professional,
2004.

[32] W. J. Conover. Practical Nonparametric Statistics. John Wiley & Sons, 3rd edition, 1999.

[33] Larry L. Constantine and Lucy A. D. Lockwood. Software for Use: A Practical Guide to the Models
and Methods of Usage-centered Design. ACM Press/Addison-Wesley Publishing Co., New York, NY,
USA, 1999. ISBN 0-201-92478-1.

162

[34] Microsoft Corporation. Microsoft Manual of Style. Microsoft Press Series. Microsoft Press, 4th
edition, 2012. ISBN 9780735648715.

[35] Croton Research. Graphrex, 2014. URL http://crotonresearch.com/graphrex/. [Online;
accessed 10 February 2014].

[36] Robert Dale, Hermann Moisl, and Harold Somers. Handbook of natural language processing. CRC
Press, 2000.

[37] F. DeRespinis, J. Jenkins, International Business Machines Corporation, A. Laird, P. Hayward, and
L.I. McDonald. The IBM Style Guide: Conventions for Writers and Editors. IBM Press Series. IBM
Press/Pearson, 2011. ISBN 9780132101301.

[38] Steven J DeRose. Grammatical category disambiguation by statistical optimization. Computa-
tional Linguistics, 14(1):31–39, 1988.

[39] Magdalena Derwojedowa, Maciej Piasecki, Stanisław Szpakowicz, and Magdalena Zawisławska.
Polish WordNet on a shoestring. In Proceedings of Biannual Conference of the Society for Compu-
tational Linguistics and Language Technology, Tübingen, pages 169–178, 2007.

[40] George Doddington. Automatic evaluation of machine translation quality using n-gram co-
occurrence statistics. In Proceedings of the second international conference on Human Language
Technology Research, pages 138–145. Morgan Kaufmann Publishers Inc., 2002.

[41] Jay Earley. An efficient context-free parsing algorithm. Communications of the ACM, 13(2):94–102,
1970.

[42] Martin Erwig and Rahul Gopinath. Explanations for Regular Expressions. In Proceedings of the
15th International Conference on Fundamental Approaches to Software Engineering, FASE’12,
pages 394–408, Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-3-642-28871-5.

[43] José Figueira, Salvatore Greco, and Matthias Ehrgott. Multiple criteria decision analysis: state of
the art surveys, volume 78. Springer, 2005.

[44] Julie Fisher. User Satisfaction and System Success: considering the development team. Aus-
tralasian Journal of Information Systems, 9(1):21–29, 2001. ISSN 1449-8618.

[45] Karl Fogel. Producing open source software: How to run a successful free software project. O’Reilly
Media, Inc., 2005.

[46] W. Nelson Francis and Henry Kučera. Frequency analysis of English usage: lexicon and grammar.
Houghton Mifflin, 1982.

[47] GW French, JR Kennaway, and AM Day. Programs as visual, interactive documents. Software:
Practice and Experience, 44:911–930, 2014.

[48] Jeffrey E. F. Friedl. Mastering Regular Expressions. O’Reilly & Associates, Inc., Sebastopol, CA,
USA, 2nd edition, 2002. ISBN 0596002890.

[49] Gregory Grefenstette and Pasi Tapanainen. What is a word, what is a sentence?: problems of
Tokenisation. Rank Xerox Research Centre, 1994.

[50] Robert Gunning. The technique of clear writing. New York: McGraw-Hill International, 1952.

[51] David Hardcastle and Donia Scott. Can we evaluate the quality of generated text? In Bente
Maegaard Joseph Mariani Jan Odijk Stelios Piperidis Daniel Tapias Nicoletta Calzolari (Confer-
ence Chair), Khalid Choukri, editor, Proceedings of the Sixth International Conference on Language
Resources and Evaluation (LREC’08), Marrakech, Morocco, may 2008. European Language Re-
sources Association (ELRA). ISBN 2-9517408-4-0.

http://crotonresearch.com/graphrex/

163

[52] Anthony Hartley, Donia Scott, John Bateman, and Danail Dochev. AGILE–A system for multi-
lingual generation of technical instructions. In MT Summit VIII, Machine Translation in the
Information Age, Proceedings, pages 145–150. Santiago de Compostela, Spain, 2001.

[53] Alan Hartman. Software and hardware testing using combinatorial covering suites. In Graph
Theory, Combinatorics and Algorithms, pages 237–266. Springer, 2005.

[54] Jonathan Hayward. Django JavaScript Integration: AJAX and jQuery. Packt Publishing, 2011. ISBN
1849510342, 9781849510349.

[55] Richard Hazlett. Measurement of user frustration: a biologic approach. In CHI ’03 Extended
Abstracts on Human Factors in Computing Systems, CHI EA ’03, pages 734–735, New York, NY,
USA, 2003. ACM. ISBN 1-58113-637-4. doi: 10.1145/765891.765958.

[56] Marti A. Hearst. Multi-paragraph segmentation of expository text. In Proceedings of the 32nd
Annual Meeting of the Association for Computational Linguistics, pages 9–16, Las Cruces, New
Mexico, USA, June 1994. Association for Computational Linguistics.

[57] Adrian Holovaty and Jacob Kaplan-Moss. The Definitive Guide to Django: Web Development Done
Right. Expert’s voice in Web development. Apress, 2nd edition, 2009. ISBN 978-1430219361.

[58] Dag Hovland. The inclusion problem for regular expressions. In Language and Automata Theory
and Applications, pages 309–320. Springer, 2010.

[59] Shihong Huang and Scott Tilley. Towards a documentation maturity model. In Proceedings of the
21st Annual International Conference on Documentation, pages 93–99. ACM, 2003.

[60] Russ Hurlbut. A survey of approaches for describing and formalizing use cases. Expertech, Ltd,
1997.

[61] IEEE. IEEE Std 830-1998, IEEE Recommended Practice for Software Requirements Specifications.
Institute of Electrical and Electronics Engineers, 1998.

[62] IEEE. IEEE Std 1028-2008, IEEE Standard for Software Reviews and Audits. Institute of Electrical
and Electronics Engineers, 2008.

[63] ISO/IEC. ISO/IEC 14977:1996 - Information technology – Syntactic metalanguage – Extended BNF.
International Organization for Standardization, Geneva, Switzerland, 1996.

[64] ISO/IEC. ISO/IEC 9126-1:2001 - Software engineering – Product quality – Part 1: Quality model.
International Organization for Standardization, Geneva, Switzerland, 2001.

[65] ISO/IEC. ISO/IEC 25000:2005 - Software engineering – Software product Quality Requirements
and Evaluation (SQuaRE) – Guide to SQuaRE. International Organization for Standardization,
Geneva, Switzerland, 2005.

[66] ISO/IEC. ISO/IEC 12207:2008 - Systems and software engineering – Software life cycle processes.
International Organization for Standardization, Geneva, Switzerland, 2008.

[67] ISO/IEC. ISO/IEC 26514:2008 - Systems and software engineering – Requirements for designers
and developers of user documentation. International Organization for Standardization, Geneva,
Switzerland, 2008.

[68] ISO/IEC. ISO/IEC 26513:2009 - Systems and software engineering – Requirements for testers
and reviewers of user documentation. International Organization for Standardization, Geneva,
Switzerland, 2009.

[69] ISO/IEC. ISO/IEC 25010:2011 - Systems and software engineering – Systems and software Quality
Requirements and Evaluation (SQuaRE) – System and software quality models. International
Organization for Standardization, Geneva, Switzerland, 2011.

164

[70] ISO/IEC/IEEE. ISO/IEC/IEEE 24765:2010 - Systems and software engineering – Vocabulary. Inter-
national Organization for Standardization, Geneva, Switzerland, 2010.

[71] ISO/IEC/IEEE. ISO/IEC 26512:2011 - Systems and software engineering – Requirements for acquirers
and suppliers of user documentation. International Organization for Standardization, Geneva,
Switzerland, 2011.

[72] ISO/IEC/IEEE. ISO/IEC/IEEE 29148:2011 - Systems and software engineering – Life cycle processes –
Requirements engineering. International Organization for Standardization, Geneva, Switzerland,
2011.

[73] ISO/IEC/IEEE. ISO/IEC/IEEE 42010:2011 Systems and software engineering – Architecture descrip-
tion. International Organization for Standardization, Geneva, Switzerland, 2011.

[74] ISO/IEC/IEEE. ISO/IEC 26511:2012 - Systems and software engineering – Requirements for man-
agers of user documentation. International Organization for Standardization, Geneva, Switzerland,
2012.

[75] ISO/IEC/IEEE. ISO/IEC 26515:2012 - Systems and software engineering – Developing user doc-
umentation in an agile environment. International Organization for Standardization, Geneva,
Switzerland, 2012.

[76] Ivar Jacobson. Concepts for Modeling Large Real Time Systems. Royal Institute of Technology,
Department of Telecommunication Systems-Computer Systems, 1985.

[77] Ivar Jacobson. Object-Oriented Software Engineering: A Use Case Driven Approach. Addison
Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 2004. ISBN 0201403471.

[78] Stephen C Johnson. Yacc: Yet another compiler-compiler, volume 32. Bell Laboratories Murray
Hill, NJ, 1975.

[79] T. Capers Jones. Estimating Software Costs: Bringing Realism to Estimating. McGraw-Hill, Inc.,
New York, NY, USA, 2nd edition, 2007. ISBN 9780071483001.

[80] Ho-Won Jung, Seung-Gweon Kim, and Chang-Shin Chung. Measuring software product quality:
A survey of ISO/IEC 9126. Software, IEEE, 21(5):88–92, 2004.

[81] Daniel Jurafsky and James H. Martin. Speech and Language Processing. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 2nd edition, 2009. ISBN 0131873210.

[82] Bryan Jurish and Kay-Michael Würzner. Word and Sentence Tokenization with Hidden Markov
Models. Journal of Language Technology and Computational Linguistics, 28(2):61–83, 2013.

[83] Jakub Jurkiewicz. Identification of Events in Use Cases. PhD thesis, Poznań University of Technol-
ogy, Poznań, Poland, 2013.

[84] Haruhiko Kaiya, Tomonori Sato, Akira Osada, Naoyuki Kitazawa, and Kenji Kaijiri. Toward quality
requirements analysis based on domain specific quality spectrum. In Proceedings of the 2008
ACM Symposium on Applied Computing, SAC ’08, pages 596–601, New York, NY, USA, 2008. ACM.
ISBN 978-1-59593-753-7.

[85] Tadao Kasami. An efficient recognition and syntax-analysis algorithm for context-free languages.
Technical report, DTIC Document, 1965.

[86] Ninus Khamis, René Witte, and Juergen Rilling. Automatic quality assessment of source code
comments: the javadocminer. In Natural Language Processing and Information Systems, pages
68–79. Springer, 2010.

[87] Tibor Kiss and Jan Strunk. Unsupervised multilingual sentence boundary detection. Computa-
tional Linguistics, 32(4):485–525, 2006.

165

[88] S. C. Kleene. Representation of events in nerve nets and finite automata. In Claude Shannon and
John McCarthy, editors, Automata Studies, pages 3–41. Princeton University Press, Princeton, NJ,
1956.

[89] S. Kopczynska and J. Nawrocki. Using non-functional requirements templates for elicitation: A
case study. In Requirements Patterns (RePa), 2014 IEEE 4th International Workshop on, pages
47–54, Aug 2014.

[90] Emiel Krahmer and Kees Van Deemter. Computational generation of referring expressions: A
survey. Computational Linguistics, 38(1):173–218, 2012.

[91] W.H. Kruskal and W.A. Wallis. Use of ranks in one-criterion variance analysis. Journal of the
American Statistical Association, 47(260):583–621, 1952.

[92] Irene Langkilde-Geary. An empirical verification of coverage and correctness for a general-
purpose sentence generator. In Proceedings of the 12th International Natural Language Generation
Workshop, pages 17–24, 2002.

[93] M. E. Lesk and E. Schmidt. UNIX Vol. II. In A. G. Hume and M. D. McIlroy, editors, UNIX Vol. II,
chapter Lex – a Lexical Analyzer Generator, pages 375–387. W. B. Saunders Company, Philadelphia,
PA, USA, 1990. ISBN 0-03-047529-5.

[94] Lamport Leslie. LATEX: A Document Preparation System. Addison-Wesley Publishing Company,
Inc., 2nd edition, 1994.

[95] James C Lester and Bruce W Porter. Developing and empirically evaluating robust explanation
generators: The KNIGHT experiments. Computational Linguistics, 23(1):65–101, 1997.

[96] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and David
McClosky. The Stanford CoreNLP natural language processing toolkit. In Proceedings of 52nd
Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages
55–60, 2014.

[97] Tomasz Marciniak and Michael Strube. Classification-based generation using TAG. In Natural
Language Generation, pages 100–109. Springer, 2004.

[98] Mike Markel. Technical Communication. Bedford/St. Martin’s, 2012. ISBN 9780312679484.

[99] Jiří Maršík and Ondřej Bojar. TrTok: A Fast and Trainable Tokenizer for Natural Languages. The
Prague Bulletin of Mathematical Linguistics, 98:75–85, 2012.

[100] Steve McConnell. Software Estimation: Demystifying the Black Art. Microsoft Press, Redmond,
WA, USA, 2006. ISBN 9780735605350.

[101] Kathleen McKeown, Karen Kukich, and James Shaw. Practical issues in automatic documentation
generation. In Proceedings of the fourth conference on Applied natural language processing, pages
7–14. Association for Computational Linguistics, 1994.

[102] G Harry McLaughlin. SMOG grading: A new readability formula. Journal of Reading, 12(8):
639–646, 1969.

[103] Susan W. McRoy, Songsak Channarukul, and Syed S. Ali. Yag: A template-based generator for real-
time systems. In Proceedings of the first international conference on Natural language generation,
volume 14, pages 264–267. Association for Computational Linguistics, 2000.

[104] Susan W. Mcroy, Songsak Channarukul, and Syed S. Ali. An augmented template-based approach
to text realization. Natural Language Engineering, 9(4):381–420, December 2003. ISSN 1351-3249.

[105] Chris Mellish and Robert Dale. Evaluation in the context of natural language generation. Com-
puter Speech & Language, 12(4):349–373, 1998.

166

[106] George A Miller. WordNet: a lexical database for English. Communications of the ACM, 38(11):
39–41, 1995.

[107] Ruslan Mitkov and Le An Ha. Computer-aided generation of multiple-choice tests. In Proceedings
of the HLT-NAACL 03 workshop on Building educational applications using natural language
processing, volume 2, pages 17–22. Association for Computational Linguistics, 2003.

[108] Jerzy R. Nawrocki and Łukasz Olek. Use-Cases Engineering with UC Workbench. In Krzysztof
Zielinski and Tomasz Szmuc, editors, Software Engineering: Evolution and Emerging Technologies,
volume 130 of Frontiers in Artificial Intelligence and Applications, pages 319–329. IOS Press, 2005.
ISBN 978-1-58603-559-4.

[109] Hermann Ney. Dynamic programming parsing for context-free grammars in continuous speech
recognition. Signal Processing, IEEE Transactions on, 39(2):336–340, 1991.

[110] David G. Novick and Karen Ward. What users say they want in documentation. In Shihong
Huang, Rob Pierce, and John W. Stamey Jr., editors, SIGDOC, pages 84–91. ACM, 2006. ISBN
1-59593-523-1.

[111] David G. Novick and Karen Ward. Why don’t people read the manual? In Shihong Huang, Rob
Pierce, and John W. Stamey Jr., editors, SIGDOC, pages 11–18. ACM, 2006. ISBN 1-59593-523-1.

[112] Mirosław Ochodek and Jerzy Nawrocki. Automatic Transactions Identification in Use Cases. In
Balancing Agility and Formalism in Software Engineering: 2nd IFIP Central and East European
Conference on Software Engineering Techniques CEE-SET 2007, volume 5082 of LNCS, pages 55–68.
Springer Verlag, 2008.

[113] Mirosław Ochodek, Bartosz Alchimowicz, Jakub Jurkiewicz, and Jerzy Nawrocki. Improving the
reliability of transaction identification in use cases. Information and Software Technology, 53(8):
885–897, 2011.

[114] Łukasz Olek, Bartosz Alchimowicz, and Jerzy Nawrocki. Acceptance testing of web applications
with test description language. Computer Science, 15(4):459–477, 2014.

[115] Łukasz Olek, Jerzy Nawrocki, and Miroslaw Ochodek. Enhancing Use Cases with Screen Designs.
In Zbigniew Huzar, Radek Kocí, Bertrand Meyer, Bartosz Walter, and Jaroslav Zendulka, editors,
CEE-SET, volume 4980 of Lecture Notes in Computer Science, pages 48–61. Springer, 2008. ISBN
978-3-642-22385-3.

[116] Maryoly Ortega, María Pérez, and Teresita Rojas. Construction of a systemic quality model for
evaluating a software product. Software Quality Journal, 11(3):219–242, 2003.

[117] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting on association for
computational linguistics, pages 311–318. Association for Computational Linguistics, 2002.

[118] Cécile Paris and Keith Vander Linden. DRAFTER: An interactive support tool for writing multilin-
gual instructions. IEEE Computer, 29(7):49–56, 1996.

[119] Cecile Paris, Nathalie Colineau, Shijian Lu, and Keith Vander Linden. Automatically generating
effective online help. International Journal on E-learning, 4(1):83–103, 2005.

[120] Arancha Pedraz-Delhaes, Muhammad Aljukhadar, and Sylvain Sénécal. The effects of document
language quality on consumer perceptions and intentions. Canadian Journal of Administrative
Sciences/Revue Canadienne des Sciences de l’Administration, 27(4):363–375, 2010.

[121] Jacob Perkins. Python Text Processing with NLTK 2.0 Cookbook. Packt Publishing, 2010. ISBN
1849513600, 9781849513609.

167

[122] Plagiat.pl. Instrukcja Użytkownika Internetowego Systemu Antyplagiatowego Plagiat.pl. Pla-
giat.pl Sp. z o.o., 2012. URL https://www.plagiat.pl/cms_pdf/Plagiat_pl_instrukcja_
uzytkownika_indywidualnego.pdf. [Online; accessed 2 July 2014].

[123] Aarne Ranta. A Multilingual Natural-language Interface to Regular Expressions. In Proceedings of
the International Workshop on Finite State Methods in Natural Language Processing, FSMNLP
’09, pages 79–90, Stroudsburg, PA, USA, 1998. Association for Computational Linguistics. ISBN
975-7679-34-8.

[124] Janice Ginny Redish. Adding value as a professional technical communicator (extract). Technical
communication, 42(1):26–39, 1995.

[125] Ehud Reiter. NLG vs. templates. In Proceedings of the Fifth European Workshop on Natural
Language Generation, pages 95–105, Leiden, the Netherlands, 1995.

[126] Ehud Reiter and Robert Dale. Building Natural Language Generation Systems. Cambridge
University Press, New York, NY, USA, 2000. ISBN 0-521-62036-8.

[127] Ehud Reiter and Somayajulu Sripada. Should corpora texts be gold standards for nlg. In Proceed-
ings of 2nd International Conference on Natural Language Generation, volume 2, pages 97–104,
2002.

[128] Ehud Reiter, Chris Mellish, and Jon Levine. Automatic Generation of Technical Documentation.
Journal of Applied Artificial Intelligence, 9(3):259–287, 1995.

[129] Marc Rettig. Nobody Reads Documentation. Communications of the ACM, 34(7):19–24, July 1991.

[130] Stefan Riezler and John T Maxwell. On some pitfalls in automatic evaluation and significance
testing for MT. In Proceedings of the ACL workshop on intrinsic and extrinsic evaluation measures
for machine translation and/or summarization, pages 57–64, 2005.

[131] Brian Roark. Probabilistic top-down parsing and language modeling. Computational Linguistics,
27(2):249–276, 2001.

[132] Armin Ronacher. Jinja2 Documentation, Version 2.8, 2014. URL http://jinja.pocoo.org/.
[Online; accessed 20 August 2014].

[133] Christopher Scaffidi, Brad Myers, and Mary Shaw. Topes: reusable abstractions for validating
data. In Proceedings of the 30th international conference on Software engineering, pages 1–10.
ACM, 2008.

[134] Lenhart Schubert. Computational Linguistics. In Edward N. Zalta, editor, The Stanford Encyclope-
dia of Philosophy. Spring, 2014.

[135] Ken Schwaber. Agile project management with Scrum. Microsoft Press, 2004.

[136] S.S. Shapiro and M.B. Wilk. An analysis of variance test for normality (complete samples).
Biometrika, 52(3-4):591–611, 1965.

[137] Cathy J. Spencer. A Good User’s Guide Means Fewer Support Calls and Lower Support Costs.
Technical Communication, 42(1):52–55(4), February 1995.

[138] Somayajulu Sripada, Ehud Reiter, and Lezan Hawizy. Evaluation of an NLG System using Post-Edit
Data: Lessons learnt. In Proceedings of European Natural Language Generation Workshop, pages
133–139, 2005.

[139] Somayajulu G Sripada, Ehud Reiter, Jim Hunter, and Jin Yu. Exploiting a parallel text-data corpus.
ENE, 25:12, 2003.

https://www.plagiat.pl/cms_pdf/Plagiat_pl_instrukcja_uzytkownika_indywidualnego.pdf
https://www.plagiat.pl/cms_pdf/Plagiat_pl_instrukcja_uzytkownika_indywidualnego.pdf
http://jinja.pocoo.org/

168

[140] Stack Overflow. Find complement of regular expression. URL http://stackoverflow.com/
questions/15452353/find-complement-of-regular-expression. [Online; accessed 15
March 2015].

[141] Daniela Steidl, Benjamin Hummel, and Elmar Juergens. Quality analysis of source code comments.
In 2013 IEEE 21st International Conference on Program Comprehension (ICPC), pages 83–92. IEEE,
2013.

[142] Andreas Stolcke. An efficient probabilistic context-free parsing algorithm that computes prefix
probabilities. Computational Linguistics, 21(2):165–201, 1995.

[143] William Strunk. The Elements of Style. Filiquarian Publishing, LLC, 2007. ISBN 9781599869339.

[144] Gene Sullivan. Yape Regex Explain 4.01, 2010. URL http://search.cpan.org/~gsullivan/.
[Online; accessed 7 February 2014].

[145] Sun Technical Publications. Read Me First!: A Style Guide for the Computer Industry. Prentice
Hall, 3rd edition, 2010. ISBN 9780137058266.

[146] O.E. Swan. A Grammar of Contemporary Polish. Slavica, 2002. ISBN 9780893572969.

[147] The IEEE and The Open Group. The Open Group Base Specifications Issue 6 – IEEE Std 1003.1,
2004 Edition. IEEE, New York, NY, USA, 2004.

[148] TSO. Managing successful projects with PRINCE2. HM Government – Best management practice.
Stationery Office, 2009. ISBN 9780113310593.

[149] University of Chicago Press. The Chicago Manual of Style. Chicago Manual of Style. University of
Chicago Press, 2010. ISBN 9780226104201.

[150] Kees Van Deemter, Emiel Krahmer, and Mariët Theune. Real Versus Template-Based Natural
Language Generation: A False Opposition? Computational Linguistics, 31(1):15–24, March 2005.
ISSN 0891-2017.

[151] Rini van Solingen and Egon Berghout. The Goal/Question/Metric Method: a practical guide for
quality improvement of software development. McGraw-Hill, 1999.

[152] Pierre Wellner, Mike Flynn, Simon Tucker, and Steve Whittaker. A Meeting Browser Evaluation
Test. In CHI ’92: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
New York, NY, USA, 0 2005. ACM Press. ISBN 1-59593-002-7.

[153] Sandra Williams and Ehud Reiter. Generating readable texts for readers with low basic skills. In
Proceedings of the 10th European Workshop on Natural Language Generation (ENLG’05, pages
15–23, 2005.

[154] Niklaus Wirth. The Programming Language Pascal: Revised Report. Berichte // Zuerich ETH Dept
Informatik. Eidgenössische Technische Hochschule, 1973.

[155] R Michael Young. Using grice’s maxim of quantity to select the content of plan descriptions.
Artificial Intelligence, 115(2):215–256, 1999.

[156] Stelios H Zanakis, Anthony Solomon, Nicole Wishart, and Sandipa Dublish. Multi-attribute
decision making: A simulation comparison of select methods. European Journal of Operational
Research, 107(3):507–529, 1998.

http://stackoverflow.com/questions/15452353/find-complement-of-regular-expression
http://stackoverflow.com/questions/15452353/find-complement-of-regular-expression
http://search.cpan.org/~gsullivan/

© 2015 Bartosz Alchimowicz

Institute of Computing Science
Poznań University of Technology, Poznań, Poland

Typeset using LATEX in Adobe Utopia.

BibTEX entry:

@phdthesis{balchimowicz2015phd,
author = "Bartosz Alchimowicz",
title = "Automatic generation of user manual for web applications",
school = "Pozna{\’n} University of Technology",
address = "Pozna{\’n}, Poland",
year = "2015",

}

	List of Abbreviations
	1 Introduction
	1.1 Problems concerning user documentation in software projects
	1.2 Aim and scope
	1.3 Conventions

	2 Selected aspects of creating user documentation for web applications
	2.1 Audience analysis
	2.2 Basic types of user documentation
	2.3 Style guides and standards
	2.4 General recommendations
	2.5 Legal issues
	2.6 Cost estimation
	2.7 Benefits of a good quality

	3 Selected aspects of Natural Language Processing
	3.1 Natural Language Understanding
	3.1.1 Segmentation
	3.1.2 Part-of-speech tagging
	3.1.3 Lemmatization
	3.1.4 Parsing

	3.2 Automatic Text Generation
	3.2.1 Input data
	3.2.2 Template-based approach
	3.2.3 Natural Language Generation
	3.2.4 Evaluation of language generation tools

	4 The COCA quality model for user documentation
	4.1 Introduction
	4.2 Design assumptions for the quality model
	4.2.1 Form of user documentation
	4.2.2 Point of view
	4.2.3 External quality and quality-in-use
	4.2.4 Context of use
	4.2.5 Orthogonality of a quality model
	4.2.6 Completeness of a quality model

	4.3 The COCA quality model
	4.4 Review-based evaluation of user documentation
	4.4.1 Goal-Question-Metric approach to evaluation of user documentation
	4.4.2 Evaluation procedure
	4.4.3 Quality profile for user documentation

	4.5 Empirical evaluation of operability
	4.5.1 DET questions
	4.5.2 Case studies

	4.6 Related work
	4.7 Conclusions

	5 Automatic explanation of field syntax in web applications
	5.1 Introduction
	5.2 Problem
	5.3 Syntax-Directed Flexible Templates
	5.4 Grammatical attributes
	5.5 Conditional fragments
	5.6 Extensible templates
	5.7 General purpose attributes
	5.8 Idiomatic patterns
	5.9 Auxiliary diagrams and referring expressions
	5.10 Gordian knots of explanation
	5.11 Generation of examples
	5.11.1 Removal
	5.11.2 Contamination

	5.12 Experimental evaluation
	5.12.1 Experiment design
	5.12.2 Operation of the experiment
	5.12.3 Analysis and interpretation
	5.12.4 Threats to validity

	5.13 Related work
	5.14 Conclusions

	6 Compiling software artifacts to generate user manuals
	6.1 Introduction
	6.2 Content of a generated user manual
	6.2.1 Components of a user manual
	6.2.2 Variants of a user manual
	6.2.3 Completeness of selected components

	6.3 Universal artifacts of software projects
	6.4 Generation of a user manual
	6.4.1 Design assumptions
	6.4.2 Project database
	6.4.3 Templates

	6.5 Naive user manual
	6.6 Requirements concerning the operating environment
	6.7 Exemplary usages
	6.7.1 Find relationships between data
	6.7.2 Selection of acceptance tests
	6.7.3 Planning generation of an exemplary usage
	6.7.4 Generating an exemplary usage

	6.8 Glossary
	6.9 Early evaluation
	6.9.1 Exploratory study
	6.9.2 Improvements
	6.9.3 Empirical evaluation

	6.10 Related work
	6.11 Conclusions

	7 Conclusions
	A COCA quality model for user documentation
	A.1 Evaluation mandate – an example
	A.2 Evaluation form for Prospective Users – an example
	A.3 Evaluation report – an example
	A.4 Evaluation report for profile

	B Compiling software artifacts to generate user manuals
	B.1 Project database
	B.1.1 Business Case
	B.1.2 Software requirement Specification
	B.1.3 Acceptance tests
	B.1.4 Glossary

	B.2 Non-functional Requirement Templates and Technical Constraint Templates
	B.2.1 Cover
	B.2.2 Introduction
	B.2.3 Requirements concerning operating environment

	B.3 The user manual generated for the Plagiat.pl web application
	B.4 Evaluation mandate
	B.5 Evaluation form for Prospective User (simplified)
	B.6 Evaluation report

	C Generating Syntax Diagrams from Regular Expressions
	C.1 Introduction
	C.2 Overview of the proposed automatic explanation system
	C.3 Describing field syntax with regular expressions
	C.4 Explaining regular languages with syntax diagrams
	C.4.1 Classical syntax diagrams
	C.4.2 Extended syntax diagrams

	C.5 Generation of a syntax diagram
	C.5.1 Overview of the generator
	C.5.2 Expression parser
	C.5.3 Decorator
	C.5.4 Explanation planner
	C.5.5 Generator of referring expressions
	C.5.6 Surface producer

	C.6 Early evaluation
	C.7 Conclusions

	Bibliography

