
Poznan University of Technology
Institute of Computing Science

C O E V O L U T I O N A RY S H A P I N G
F O R R E I N F O R C E M E N T L E A R N I N G

marcin g . szubert

A dissertation submitted to
the Council of the Faculty of Computing

in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Supervisor: Krzysztof Krawiec, Ph. D. Dr. Habil.
Co-supervisor: Wojciech Jaśkowski, Ph. D.

Poznań, Poland
2014

This dissertation is dedicated to my beloved wife, Michalina,
for her patience, support, and continuous encouragement.

A C K N O W L E D G M E N T S

The work described here was carried out between October 2009 and
May 2014 in the Laboratory of Intelligent Decision Support Systems
at the Faculty of Computing at Poznan University of Technology.
I would like to express my gratitude to all the people who have
contributed to the completion of this dissertation.

First and foremost, this work would not have been possible without
the enormous effort of my supervisor, Krzysztof Krawiec. I deeply
thank him for his constant inspiration, encouragement and, most
importantly, useful criticism. I am also very grateful for the advice
and support of my second supervisor Wojciech Jaśkowski, who has
shown a large interest in my work. His expertise and insightful ideas
have greatly improved this thesis.

Furthermore, I would like to immensely thank my family for their
understanding and tireless support. Their ongoing encouragement
has kept me going throughout this work.

This research has been supported by the Polish National Science
Centre grant no. DEC-2012/05/N/ST6/03152.

v

A B S T R A C T

Shaping is an important animal training technique that originates
from behavioral psychology. The main motivation behind this tech-
nique is to enable animals to perform tasks that are too difficult to
be learned directly. Shaping typically consists in starting from related
simpler tasks and progressively increasing their difficulty. As a result,
the learner can be exposed to appropriate training experience and
gradually refine its skills. By providing a pedagogical sequence of
training tasks, shaping is expected to guide the learner towards the
behavior of ultimate interest.

This thesis investigates the concept of shaping in reinforcement
learning — a machine learning paradigm closely related to human
and animal learning. In this paradigm, an agent learns a decision-
making policy for a sequential decision task through repeated trial-
and-error interactions with an environment. Although shaping has
been already applied to improve the effectiveness of reinforcement
learning, most of the existing approaches rely on manually designed
training environments and thus require a substantial amount of do-
main knowledge and human intervention.

In this thesis we propose a unified shaping framework and in-
troduce novel shaping approaches that avoid incorporating domain
knowledge into the learning process. To this end, we rely mainly on
competitive coevolutionary algorithms, which autonomously realize
shaping by coevolving learners against their training environments.
We investigate a hybrid of coevolution with self-play temporal dif-
ference learning and analyze this combination in the context of its
generalization performance and scalability with respect to the search
space size. Next, we design a novel measure of task difficulty and
use it to devise a set of shaping methods that provide training tasks
from a precomputed task pool according to either static or dynamic
difficulty distribution. Finally, we formalize the problem of optimal
shaping and design a coevolutionary method that optimizes training
experience for a temporal difference learning algorithm.

The proposed shaping methods are experimentally verified in non-
trivial sequential decision making domains, including the benchmark
problem of cart pole balancing and the board games of Othello and
small-board Go. We demonstrate that shaping can provide significant
empirical benefits compared to conventional unshaped reinforcement
learning, either by improving the final performance or by facilitating
faster convergence.

vii

P R E FA C E

Some ideas, figures and portions of text presented in this dissertation
have appeared previously in the following publications:

[1] Krzysztof Krawiec and Marcin G. Szubert. Coevolutionary Tem-
poral Difference Learning for Small-Board Go. In Proceedings of
the IEEE Congress on Evolutionary Computation, CEC 2010, pages
1–8, Barcelona, Spain, 2010. IEEE.

[2] Krzysztof Krawiec, Wojciech Jaśkowski, and Marcin G. Szubert.
Evolving Small-board Go Players Using Coevolutionary Tem-
poral Difference Learning with Archives. International Journal of
Applied Mathematics and Computer Science, 21(4):717–731, 2011.

[3] Krzysztof Krawiec and Marcin G. Szubert. Learning N-tuple
Networks for Othello by Coevolutionary Gradient Search. In
Proceedings of the 13th Annual Conference on Genetic and Evolu-
tionary Computation, GECCO ’11, pages 355–362, New York, NY,
USA, 2011. ACM.

[4] Marcin G. Szubert and Krzysztof Krawiec. Autonomous Shap-
ing via Coevolutionary Selection of Training Experience. In
Proceedings of the 12th International Conference on Parallel Problem
Solving from Nature - Volume Part II, PPSN’12, pages 215–224,
Berlin, Heidelberg, 2012. Springer-Verlag.

[5] Marcin G. Szubert, Wojciech Jaśkowski, and Krzysztof Krawiec.
On Scalability, Generalization, and Hybridization of Coevolu-
tionary Learning: A Case Study for Othello. IEEE Transactions
on Computational Intelligence and AI in Games, 5(3):214–226, 2013.

[6] Marcin G. Szubert, Wojciech Jaśkowski, Paweł Liskowski, and
Krzysztof Krawiec. Shaping Fitness Function for Evolutionary
Learning of Game Strategies. In Proceedings of the 15th Annual
Conference on Genetic and Evolutionary Computation, GECCO ’13,
pages 1149–1156, New York, NY, USA, 2013. ACM.

ix

C O N T E N T S

1 introduction 1

1.1 Problem Setting and Motivation 1

1.2 Aims and Scope . 3

1.3 Thesis Outline . 4

2 reinforcement learning 7

2.1 Reinforcement Learning Problem 7

2.1.1 Markov Decision Processes 9

2.1.2 Value Functions 10

2.1.3 Dynamic Programming 11

2.2 Reinforcement Learning Methods 12

2.2.1 Function Approximation 14

2.2.2 Temporal Difference Learning 16

2.2.3 Evolutionary Algorithms 21

3 shaping background 27

3.1 Shaping in Animal and Human Learning 27

3.1.1 The Law of Effect 27

3.1.2 Discovery of Shaping 28

3.1.3 Scaffolding and Zone of Proximal Development 29

3.2 Shaping in Computational Reinforcement Learning . . 31

3.2.1 Specific Motivations 31

3.2.2 Shaping Principles 32

3.2.3 Inspiring Works in Robotics 33

3.2.4 Reward Shaping 34

3.2.5 Related Approaches 35

4 coevolutionary shaping 37

4.1 Unified Shaping Framework 37

4.2 Coevolutionary Shaping 40

4.2.1 Coevolutionary Algorithms 40

4.2.2 Test-Based Problems 42

4.2.3 Coevolution for Reinforcement Learning 43

5 experimental domains 47

5.1 Othello . 48

5.1.1 Othello Game Rules 48

5.1.2 Policy Representations 49

5.1.3 Performance Measures 54

5.1.4 Previous Research on Computer Othello 56

5.2 Small-Board Go . 57

5.2.1 Original Game Rules 57

5.2.2 Adopted Computer Go Rules 58

xi

xii contents

5.2.3 Policy Representations 59

5.2.4 Performance Measures 60

5.2.5 Previous Research on Computer Go 60

5.3 Cart Pole Balancing . 62

5.3.1 Physical Model 62

5.3.2 Pole Balancing as an MDP Task 64

5.3.3 Performance Measure 64

5.3.4 Previous Research on Pole Balancing 65

6 coevolutionary temporal difference learning 69

6.1 Introduction . 69

6.2 Learning Game-Playing Policies 71

6.2.1 Temporal Difference Learning 71

6.2.2 Evolutionary and Coevolutionary Learning . . . 72

6.2.3 Coevolutionary Temporal Difference Learning 73

6.3 Learning N-tuple Networks for Othello 74

6.3.1 Experimental Setup 74

6.3.2 Performance Against a Heuristic Player 77

6.3.3 Round Robin Tournament 81

6.3.4 Othello League Tournament 83

6.3.5 Analysis of Network Topology 84

6.3.6 Results Summary 85

6.4 Learning Weighted Piece Counters for the Game of Go 87

6.4.1 Experimental Setup 87

6.4.2 Preliminary Experiments 89

6.4.3 Method Comparison 90

6.4.4 Round Robin Tournament 91

6.4.5 Results Summary 91

6.5 Discussion and Conclusions 92

7 shaping in evolutionary learning 95

7.1 Introduction . 95

7.1.1 Problem Difficulty 96

7.1.2 Incremental Evolution 98

7.1.3 Unsupervised Shaping 99

7.2 Difficulty-Based Shaping in Generalized Domains . . . 100

7.2.1 Generalized Reinforcement Learning Domain . 100

7.2.2 Evolutionary Algorithms in Generalized Domains101

7.2.3 Shaping in Generalized Domains 103

7.2.4 Task difficulty . 103

7.2.5 Difficulty-Based Task Pool 105

7.2.6 Difficulty-Based Shaping Methods 106

7.3 Empirical Evaluation of Shaping Methods 112

7.4 Othello Opponent Domain 113

7.4.1 Experimental Setup 114

7.4.2 Domain Difficulty Distribution 115

7.4.3 Single-Stage Shaping Methods 116

contents xiii

7.4.4 Multi-Stage Shaping Methods 121

7.4.5 Hyper-Heuristic Shaping Methods 122

7.4.6 Coevolutionary Shaping 124

7.5 Othello Initial State Domain 128

7.5.1 Experimental Setup 129

7.5.2 Domain Difficulty Distribution 129

7.5.3 Single-stage shaping 132

7.5.4 Multi-stage shaping 134

7.5.5 Coevolutionary Shaping 136

7.6 Pole Balancing Dynamics Domain 141

7.6.1 Experimental Setup 142

7.6.2 Domain Difficulty Distribution 143

7.6.3 Single-Stage Shaping 144

7.6.4 Coevolutionary Shaping 145

7.7 Discussion . 146

8 shaping in temporal difference learning 149

8.1 Optimization of Shaping Task Sequences 150

8.1.1 Optimal Shaping Task Sequence 151

8.1.2 Learning from a Shaping Sequence 152

8.1.3 Coevolutionary Selection of Shaping Sequences 153

8.2 Shaping Task Sequences in the Othello Domain 155

8.2.1 Initial State Shaping Sequences 155

8.2.2 Opponent Shaping Sequences 156

8.3 Experimental Setup and Results 157

8.3.1 Experimental Setup 158

8.3.2 Initial State Shaping Sequences 159

8.3.3 Opponent Shaping Sequences 161

8.4 Discussion . 164

9 conclusions 167

9.1 Contributions . 168

9.2 Future Work . 169

a statistical significance 171

a.1 Othello Opponent Domain 171

a.2 Othello Initial State Domain 173

a.3 Pole Balancing Dynamics Domain 175

bibliography 177

1
I N T R O D U C T I O N

1.1 problem setting and motivation

Many real-world problems concern sequential decision making in
which a decision-making agent must perform a sequence of actions
in an unknown environment. Since actions change the state of the Sequential decision

problemsenvironment, the agent must act dynamically to achieve its goals.
Additionally, actions typically result in both immediate and delayed
consequences that can be quantified as rewards for the agent. The
goal of the agent is to select such actions that maximize the cumula-
tive reward in a long-term perspective. Examples of such sequential
decision problems include playing board games, driving a car, and
dynamic task scheduling.

One way to develop intelligent agents capable of sequential deci-
sion making is to use machine learning. In such an approach, an The machine

learning approachagent is expected to learn automatically through the use of training
experience and so improve its performance at a given task [35, 134].
To that aim, the agent employs a learning algorithm which processes
the provided training experience and builds a specific knowledge
representation (e.g., a neural network or a set of decision rules). De-
pending on the type and source of training experience, two machine
learning paradigms can be used for sequential decision problems.

In case of supervised learning paradigm, the experience is sup-
plied by an external teacher (usually a human expert) in the form
of labeled training examples. Most commonly, training experience Supervised learning

would contain correct actions to be taken in selected states of the
environment. An approach in which training examples are recorded
during demonstrations performed by skilled human operator (e.g. a
car driver [153] or an aircraft pilot [167]) has been termed learning
from demonstrations [7] or behavioral cloning [11]. Importantly, it
is the role of the teacher to select representative and informative
training examples. This importance was emphasized already in the
early work of Selfridge, Sutton and Barto:

The importance of good training experience is well recognised
in pattern classification and inductive inference, where careful
choice of rule exemplars and counter-exemplars clearly affects
learning progress. (Selfridge et al. [174], p. 670)

However, for many nontrivial problems, supervised learning is dif-
ficult to apply due to the lack of expert knowledge in a problem
domain or a large cost of gathering such expertise.

1

2 introduction

An alternative machine learning paradigm for sequential decision
problems is reinforcement learning [189, 226]. In this paradigm, byReinforcement

learning contrast, there is no teacher meant as a provider of training experi-
ence. Instead, the experience is collected autonomously by the agent
during interactions with the environment, which is given as a part of
problem statement. The agent is not told how to respond to a given
situation, but instead it must find out itself which actions yield the
most reward by trying them. Through such trial and error search,
with reward being the only training signal, the agent gathers expe-
rience about possible system states, actions, transitions and rewards.
Essentially, very rarely the agent receives exact information about its
performance directly after each action — usually such information is
delayed, and thus, indirect. Since actions may affect all subsequent
rewards, a problem arises known as temporal credit assignment [133]
— the agent must determine which actions are to be credited with the
eventual rewards.

The brief comparison of the two learning paradigms indicates that
reinforcement learning, though typically requiring much less human
intervention, is generally more challenging than supervised learning
where a direct training signal is provided. Consequently, tackling
complex tasks with reinforcement learning methods may be slow or
infeasible. This is particularly notable when the agent starts learn-
ing from scratch, as a tabula rasa, without any (or with very little)Tabula rasa attitude

knowledge about the environment. In their survey on reinforcement
learning, Kaelbling, Littman and Moore concluded:

There are a variety of reinforcement-learning techniques that
work effectively on a variety of small problems. But very few
of these techniques scale well to larger problems. This is not
because researchers have done a bad job of inventing learning
techniques, but because it is very difficult to solve arbitrary
problems in the general case. In order to solve highly complex
problems, we must give up tabula rasa learning techniques and
begin to incorporate bias that will give leverage to the learning
process. (Kaelbling et al. [101], p. 274)

For this reason, a lot of research has been conducted towards im-
proving the efficiency of reinforcement learning by incorporating some
sort of domain knowledge [43, 45, 122, 190].

A possible means of aiding reinforcement learning is the concept
of shaping, borrowed from behavioral psychology and originally ap-The idea of shaping

plied by Skinner [180] to train animals. The main principle of shaping
is to construct successive approximations of the original task that is
too complex to learn directly, and use such approximations for learn-
ing. By starting from simpler tasks and progressively increasing their
difficulty, the agent can gather useful training experience and grad-
ually refine its skills. Shaping is supposed to provide such training
tasks that guide the agent towards the behavior of ultimate interest.

1.2 aims and scope 3

The idea of shaping has been successfully applied to facilitate rein-
forcement learning of complex tasks. Although there are many com-
putational renderings of shaping, most of them rely on training tasks
that are derived from the target task by modifying some aspect of
the problem [54]. For instance, training tasks may differ with respect Promising shaping

resultsto physical dynamics, the reward scheme, or the number of possible
actions. One of the most appealing empirical results of shaping con-
cerns learning to drive a bicycle by using additional training wheels
and thus changing the physics of the problem [159]. An alternative
shaping approach for the same task consists in providing agent with
additional rewards for heading towards the goal state [160]. These
studies convincingly justify the use of shaping as a powerful tech-
nique for accelerating reinforcement learning of nontrivial problems.

However, facilitating learning via shaping comes at a price. It typi-
cally requires giving up the tabula rasa view and employing a knowl-
edgeable teacher responsible for providing training tasks. Although The price of shaping

the training experience is still gathered autonomously by the agent,
it is largely influenced by the choice of training tasks. For this reason,
shaping can be regarded as a supervised variant of reinforcement
learning [47, 54]. Besides involving substantial amount of domain
knowledge, handcrafting training tasks that approximate desired be-
havior can also introduce unnecessary biases into the learning pro-
cess. In this context, learning from scratch remains an attractive fea-
ture of basic reinforcement learning, conforming to the idea of au-
tonomous intelligence — the primary aspiration of machine learning.

1.2 aims and scope

Following the above discussion, in this thesis we focus on increasing
the performance of solving sequential decision problems by the use
of shaping techniques. Since there are many meanings of shaping in
reinforcement learning [54], here we will apply the term ‘shaping’ to The scope of shaping

any method that affects the training environment, but at the same
time leaves the learning algorithm unchanged. Therefore, instead of
tuning the parameters of the algorithms, we put the emphasis on
exposing the learner to the right training experience. In short, what to
learn becomes here more important than how to learn.

Moreover, we attempt to avoid incorporating human knowledge
into the shaping process and thus maintain the tabula rasa attitude.
In particular, our purpose is to come up with useful training tasks
without human supervision, in a knowledge-free way [124]. To this
end, we employ competitive coevolutionary algorithms [154], which Coevolutionary

shapingare believed to autonomously sustain a tractable learning gradient by
coevolving learners and their learning environments. We expect that
training experience provided by these algorithms will lead to both
faster learning convergence and improved final performance.

4 introduction

The overall goal of this thesis is thus to propose and analyze coevolution-
based methods aimed at improving the efficiency of reinforcement learning by
implementing the general idea of shaping. The specific objectives include:

• To develop a unified shaping framework and identify the possi-
ble ways of knowledge-free shaping for reinforcement learning.Specific objectives

• To investigate competitive coevolution and self-play temporal
difference learning, the two implicit variants of shaping widely
applied for learning game-playing policies.

• To analyze the hybridization of evolutionary search and gradient-
based learning in the context of scalability and generalization.

• To design a measure of task difficulty and devise difficulty-
based shaping methods that provide training tasks according to
a predefined or dynamically maintained difficulty distribution.

• To formalize the problem of optimal shaping and design a co-
evolutionary method which attempts to optimize the training
experience for a temporal difference learning algorithm.

• To experimentally verify the proposed shaping methods on se-
lected sequential decision problems and compare them to the
reference unshaped approaches.

1.3 thesis outline

This dissertation proposes several methods of shaping in reinforce-
ment learning and describes them in separate chapters. Particular
chapters present also the results of computational experiments that
were conducted to validate the proposed methods and compare them
to existing unshaped approaches. This implies certain organization of
the text, where the description of the experimental domains precedes
the presentation of particular methods. More specifically, the disser-
tation is organized as follows.

Chapter 2 provides a brief introduction into the field of reinforce-
ment learning. We describe the conventional reinforcement learning
framework based on the formalism of Markov Decision Processes
and introduce the two approaches for sequential decision problems:
temporal difference learning and direct policy search represented by evo-
lutionary algorithms.

In Chapter 3 we present shaping techniques applied in human and
animal learning. Afterwards, we provide a brief literature review of
existing shaping-related approaches in reinforcement learning.

Chapter 4 introduces a unified shaping framework which delin-
eates the role of shaping in reinforcement learning. On this basis we
demonstrate how coevolutionary algorithms fit into our understand-
ing of shaping.

1.3 thesis outline 5

Chapter 5 presents three experimental domains used throughout
this thesis to validate the proposed shaping methods: board games
of Othello and small-board Go, and the control problem of cart pole
balancing. For each domain we discuss the possible decision-making
policy representations and the performance measures employed to
evaluate the learning results.

Chapter 6 demonstrates the application of two popular reinforce-
ment learning methods that can be regarded as forms of shaping.
In particular, we employ single-population coevolution and self-play
temporal difference learning to develop game-playing policies. Ad-
ditionally, we present coevolutionary temporal difference learning, a
hybrid method that combines elements of gradient-descent learning
and population-based search. The considered methods are compared
in terms of their scalability and generalization performance.

In Chapter 7 we introduce the measure of task difficulty and the
notion of difficulty distribution in the context of multi-task reinforce-
ment learning domains. On this basis, we propose a set of shaping
methods that provide training tasks according to either static or adap-
tively changing difficulty distribution. The most autonomous of the
proposed methods relies on the two-population coevolution.

Chapter 8 formalizes the problem of designing an optimal shaping
task sequence. To synthesize a useful task sequence, we suggest a co-
evolutionary algorithm that attempts to select the training experience
on which temporal difference learning can successfully operate.

Chapter 9 summarizes the dissertation, reviews the main contribu-
tions and outlines the promising directions for future work.

2
R E I N F O R C E M E N T L E A R N I N G

This chapter provides a brief introduction into the field of reinforce-
ment learning (RL). Since RL “is defined not by characterizing learn-
ing methods, but by characterizing a learning problem” (Sutton and
Barto [189], p. 4), we start by describing the reinforcement learning
problem which is then formalized using the mathematical framework
of Markov Decision Processes (MDPs) in Section 2.1. Next, we intro-
duce the notion of value functions and define the optimal decision-
making policy which constitutes a solution to an MDP. We also de-
scribe the dynamic programming methods, which in principle could
be used to solve an MDP if its complete model is known in advance.

In Section 2.2 we introduce two distinct model-free approaches to
solving reinforcement learning problems, namely, searching in the
value function space and searching directly in the policy space. In
this thesis we implement these two approaches in, respectively, tem-
poral difference learning methods (Section 2.2.2) and evolutionary
algorithms (Section 2.2.3). The reader interested in a more compre-
hensive treatment of reinforcement learning is referred to the works
of Kaelbling et al. [101], Sutton and Barto [189], Moriarty et al. [138]
and the recent book of Wiering and van Otterlo [226].

2.1 reinforcement learning problem

The reinforcement learning problem can be regarded as a microcosm
of artificial intelligence: an agent is placed in an environment and
must learn how to act rationally by interacting with this environment
[165, 187]. The agent (also called the learner) is an intelligent decision- Learning from

interactionsmaking entity, which is able to observe the state of the environment.
Depending on these observations, it makes a decision and takes an ac-
tion. As a result, the state of the environment changes while the agent
can receive a numerical reward for its actions. A sequence of such
interactions between the agent and the environment (illustrated in
Fig. 2.1) embodies a sequential decision making process. Importantly,
through the interactions the agent gathers the experience which can
be used to learn how to behave in the environment. The ultimate
goal of an RL problem is to develop a decision-making policy which
maximizes the expected sum of rewards.

Reinforcement learning, in contrast to supervised learning, does
not rely on human supervision or any examples of correct behavior.
The learner is not told how to respond to observed state, but instead Trial-and-error

learningit must discover which actions (and in which states) are the most

7

8 reinforcement learning

Agent

Environment

action

rewardstate

learn from interactions

Figure 2.1: A general scheme of agent-environment interactions.

rewarding by experiencing them. Through such trial-and-error explo-
ration of the environment, the agent gathers the training experience
about the possible state transitions and rewards.

The main difficulty arises from the fact that rewards can be delayed
in time. As a result, acting greedily is not always the best strategy
and it is hard to determine which actions should be credited with the
future rewards. This problem is known as temporal credit assignment:Temporal credit

assignment
In playing a complex game such as chess or checkers. . . one

has a definite success criterion — the game is won or lost. But in
the course of play, each ultimate success (or failure) is associated
with a vast number of internal decisions. If the run is successful,
how can we assign credit for the success among the multitude
of decisions? (Minsky [133], p. 20)

Another characteristic feature of an RL problem is the trade-off be-
tween exploration and exploitation. On the one hand, to receive higherExploration vs.

exploitation reward, the agent should favor exploiting states and actions that it
has tried in the past and already learned that they yield high rewards.
On the other hand, the only way to discover highly-rewarded state-
action combinations is to explore new states and actions. Thus, to
learn successfully, the agent must maintain a proper balance between
these two experimentation strategies.

RL in general does not assume the environment to be deterministic.
The same action taken in the same state can result in different tran-Nondeterminism

sitions and rewards. This makes it even harder to credit the actions
with rewards and so renders RL problem challenging.

Due to flexibility of the RL problem statement, applications of re-
inforcement learning are numerous1. In particular there are a few no-
table successes of RL in learning board game strategies, including the
early work of Samuel [169] on checkers, and the famous backgammon
program called TD-gammon implemented by Tesauro [198]. OtherReal-world

applications examples of interesting RL applications include job shop scheduling
[233], helicopter flying [143] or controlling elevators [37].

1 http://www.ualberta.ca/~szepesva/RESEARCH/RLApplications.html

http://www.ualberta.ca/~szepesva/RESEARCH/RLApplications.html

2.1 reinforcement learning problem 9

2.1.1 Markov Decision Processes

Reinforcement learning problems are conventionally modeled using
the mathematical framework of Markov Decision Processes (MDP)
[157]. An MDP is a discrete-time stochastic control process, defined MDP definition

as a 6-tuple 〈S, A, T, R, I, γ〉, in which:

• S is a set of possible states of the environment and st ∈ S is a
state observed at time step t.

• A is a set of actions, where A(s) ⊆ A denotes a set of actions
available in state s ∈ S. The action taken by the agent at time
step t is denoted as at ∈ A(st).

• T : S× A× S → [0, 1] is a transition function, where T(s, a, s′) =
Pr(s′ | s, a) denotes the probability of transition to state s′ in
result of taking action a in state s. If the MDP is deterministic,
the transition function can be simplified to T : S× A→ S.

• R : S × A × S → R is a reward function, where R(s, a, s′) de-
notes the expected reward for taking action a in state s and
causing a transition to state s′. The actual reward received by
the agent after such transition is denoted as rt+1 and satisfies
E [rt+1 | st = s, at = a, st+1 = s′] = R(s, a, s′). If the MPD is de-
terministic, reward function can be simplified to R : S× A→ R,
and consequently rt+1 = R(st, at).

• I : S → [0, 1] is an initial state distribution from which the initial
states s0 ∈ S are drawn when the process is initialized.

• γ ∈ [0, 1] is a discount factor which determines the value of future
rewards — a reward received k time steps ahead is worth γk−1

times as much as the same reward received immediately.

State transitions of an MDP, by definition, exhibit the so called Markov
property — the conditional probability distribution of future states Markov property

depends only on the current state of the process, and thus, is inde-
pendent of the history. This can be expressed formally:

Pr(st+1 = s′, rt+1 = r | st, at, rt, st−1, at−1, . . . , r1, s0, a0)

= Pr(st+1 = s′, rt+1 = r | st, at) (2.1)

The objective of an agent situated in an environment defined as an
MDP is to maximize some function of the reward sequence, e.g., the
expected cumulative discounted reward E

[
∑∞

t=0 γtrt+1
]
. Clearly, the Policies

obtained rewards depend on the actions taken by the agent. Thus, to
achieve the objective, the agent learns a decision-making policy π :
S → A, which specifies what action should be taken in the currently
observed environmental state.

10 reinforcement learning

The policy return J : π → R is the expected cumulative reward
obtained by following a given policy starting from an initial state
drawn from distribution I:Policy return

J(π) = Eπ

[
∞

∑
t=0

γtrt+1 | s0 ∼ I

]
, (2.2)

where Eπ denotes the expected value when the agent makes actions
according to π at any time step t, i.e., at = π(st). The ultimate goal is
to find an optimal policy π∗ from the given policy space Π. Thus, π∗Optimal policy

constitutes a solution to the MDP. Naturally, the optimal policy is the
one that leads to gathering the maximal return:

π∗ = arg max
π ∈Π

J(π). (2.3)

An MDP completely specifies the environment and together with
the objective function it defines a sequential decision task to be solved
— an instance of the reinforcement learning problem. Since, for theTerminology

purpose of this thesis, we assume a fixed objective function (the ex-
pected cumulative discounted reward), the terms ‘MDP’, ‘environ-
ment’ and ‘task’ can be used interchangeably.

2.1.2 Value Functions

According to the value function hypothesis formulated by Sutton [188],
to find the optimal policy efficiently, value function needs to be com-
puted as an intermediate step. A value function estimates policy’s
expected total future reward given the current state or state-action
pair. The state value function Vπ : S → R describes the expectedState value

functions cumulative reward when the agent starts from state s at time step
t and follows policy π to take actions:

Vπ(s) = Eπ

[
∞

∑
k=0

γkrt+k+1 | st = s

]
. (2.4)

Importantly, the value Vπ(st) of the state observed at time step t
can be divided into the reward rt+1 received immediately and the
discounted sum of all the following rewards. The latter sum can be
expressed as the value of the subsequent state Vπ(st+1). The result-
ing recursive dependency, known as Bellman Equation, is crucial forBellman equations

dynamic programming methods (see Section 2.1.3):

Vπ(s) = Eπ [rt+1 + γVπ(st+1) | st = s]

= ∑
s′∈S

T(s, π(s), s′)(R(s, π(s), s′) + γVπ(s′)). (2.5)

In some cases, for instance when the transition function T is un-
known, it may be more useful to calculate the action value functions.

2.1 reinforcement learning problem 11

For each policy, there exists an action value function Qπ : S× A→ R,
which specifies the expected cumulative reward when following pol-
icy π and starting with taking action a in state s: Action value

functions

Qπ(s, a) = Eπ

[
∞

∑
k=0

γkrt+k+1 | st = s, at = a

]
. (2.6)

By definition, following the optimal policy allows the agent to
gather at least as much reward as it would receive by using any other
policy, i.e., Vπ∗(s) ≥ Vπ(s) for all s ∈ S and all π ∈ Π. It can be
shown that there exists at least one optimal policy for an MDP, but
even if there is more of them, all optimal policies share the same
optimal value function V∗ = Vπ∗ . Moreover, the optimal value function Optimal value

functionis sufficient to act optimally:

π∗(s) = arg max
a∈A(s)

∑
s′∈S

T(s, a, s′)(R(s, a, s′) + γV∗(s′)). (2.7)

This fact is exploited by many algorithms, which instead of directly
searching for policies, aim for the optimal value function.

2.1.3 Dynamic Programming

If the complete model of the environment is available (i.e., its transi-
tion and reward functions), the optimal policy can be found with a
model-based approach, which is implemented by dynamic programming
(DP) methods. DP methods, proposed by Bellman [15], employ the
aforementioned recursive dependency between the values of succes-
sive states (cf. Equation 2.5), to articulate Bellman optimality equation: Bellman optimality

equation
V∗(s) = max

a∈A(s)
∑

s′∈S
T(s, a, s′)(R(s, a, s′) + γV∗(s′)). (2.8)

The equation expresses the intuitive fact, that the optimal value of
state s is equal to the expected cumulative discounted reward ob-
tained after taking the best action available in that state. If the number
of states is finite, then the system of such equations, one per each
state s ∈ S, could be in principle solved explicitly by some method
for solving systems of non-linear equations.

The two most popular DP methods, value iteration and policy it-
eration [89] approach the problem of computing the optimal value Value iteration and

policy iterationfunction by turning Bellman equations into iteratively applied update
rules. The rules improve the estimate of the value of a given state on
the basis of estimates of values of its successor states. This idea is
known as bootstrapping [189] and is a characteristic feature not only
of DP methods but also of temporal difference learning algorithms
(cf. Section 2.2.2). Both policy iteration and value iteration start from
arbitrary policies represented by value functions and are guaranteed
to converge in the limit towards V∗ [16].

12 reinforcement learning

Although the DP methods are able to exactly solve an MDP, in
practice they can be difficult to apply. The main problem is that theyDynamic

programming
applicability

require the model of the MDP to be known and an exact (tabular)
representation of the value function, with one entry per each state or
state-action pair. In practice, even if we precisely know the environ-
ment’s dynamics, the number of states can be so large that storing
their values explicitly is technically infeasible. Such a problem exists
for example in most non-trivial board games, where the environ-
ment’s model is provided by game rules, but the huge number of
possible game states makes application of DP impossible. The prob-
lem of large state spaces has been already identified by Bellman [15],
who coined it the curse of dimensionality, by which he meant that the
size of the state space grows exponentially with the number of state
variables. Moreover, many problems are characterized by continuous
state spaces, which also precludes the use of DP.

2.2 reinforcement learning methods

Reinforcement learning methods attempt to find a solution for an
MDP but, in contrast to dynamic programming (cf. Section 2.1.3), do
not take advantage of the environment’s model given a priori, and
thus are generally considered as model-free [226]. Instead of exploit-Model-free approach

to MDP ing the knowledge about environment’s dynamics, they essentially
learn a policy from the samples of experience generated in simu-
lated episodes of interactions between the agent and the environment.
A single interaction consists of observing the current state of the en-
vironment st, choosing an action at, and receiving reward rt+1. At the
same time, the environmental state transitions to st+1. The quadruple
(st, at, rt+1, st+1) can be considered as an elementary unit of training
experience gathered in such an interaction.Training experience

The general scheme of model-free reinforcement learning is illus-
trated in Figure 2.2. Starting with some arbitrary policy, the agent is
placed in the environment and takes actions accordingly. By observ-
ing state transitions and received rewards, it gathers training experi-
ence, which allows the learning algorithm to reason about the envi-
ronment and adjust the target policy π developed so far. The phasesOnline learning

of experience gathering and learning from it are typically alternated
many times. In particular, the scenario in which learning occurs after
every single interaction is called online.

Depending on the behavior policy πb employed to generate training
experience, learning can be regarded as on-policy or off-policy [156,
189]. On-policy learning employs the target policy as the behavior
policy, to take the actions in the environment, i.e. πb = π. In theOff-policy and

on-policy learning off-policy case, by contrast, the target policy is learned from the ex-
perience generated by following another behavior policy, typically a
randomized policy derived from π.

2.2 reinforcement learning methods 13

Environment

action

Training Interactions

Agent

Policy

⇡b

at = ⇡b(st)

Learning

⇡Target policy

⇡b

behavior policytraining experience
(st, at, rt+1, st+1)

algorithm

state
st

reward
rt+1

Figure 2.2: A general scheme of model-free reinforcement learning.

In order to learn how to behave in an unknown environment, the
crucial issue is to explore it during training interactions. If the agent Exploration

always chooses the action specified by the target policy, it may re-
peat the same behavior and, in deterministic case, observe the same
state transitions. Therefore, it is sometimes useful to follow another
behavior policy in the hope of discovering more rewarding actions.
The simplest way to ensure environment exploration is so called ε-
greedy strategy [214]. This exploration strategy works by taking, with
probability ε, a randomly chosen action instead of that specified by
the target policy. Since using the right exploration strategy can lead
to generating more informative samples of training experience, a lot
of research has been devoted to efficient exploration in reinforcement
learning [136, 202, 224].

There are two types of model-free methods: those that rely on
value functions and those that search the space of policies directly. Value function based

methodsIn the former case the learning algorithm maintains policy implicitly
in the form of a value function and updates the values of particular
states (or state-action pairs) according to the training experience. The
premise behind this approach is that any value function can be easily
turned into policy by acting greedily and choosing actions leading to
the most valuable successor states. Therefore, as already mentioned
in Section 2.1.2, finding the optimal value function is equivalent to
finding an optimal policy. Most of such methods are based on tempo-
ral difference learning described in Section 2.2.2.

14 reinforcement learning

The second type of model-free methods, the direct policy search
methods, represent policies explicitly and attempt to find the optimal
one through a variety of search operators [138]. The objective func-
tion that steers the optimization process is typically calculated as the
average policy return obtained in a series of training episodes in the
given environment. Consequently, out of all training experience gath-Direct policy search

ered by the agent, these methods utilize only the cumulative reward.
These methods are represented by, among others, genetic algorithms
— “although not often thought of in this way, genetic algorithms are,
in a sense, inherently a reinforcement learning technique” (Whitley
et al. [221]). Furthermore, since any method capable of solving RL
problems can be considered as RL method, general purpose optimiza-
tion techniques like simulated annealing or evolutionary computa-
tion may be treated as such too. In this thesis, among direct policy
search methods, we are particularly concerned about evolutionary
algorithms (see Section 2.2.3), which have become a widely used ap-
proach to reinforcement learning problems [73, 137, 217, 221].

2.2.1 Function Approximation

Before we explore the particular learning algorithms we need to in-
troduce the idea of function approximation [28], which allows to store
policies and their value functions in case of high-dimensional or con-
tinuous state spaces. In practice, a policy is often represented as an ac-Policy as an action

selector tion selector [196, 218], which realizes the same mapping as an action-
value function. For this reason, we will limit the following discussion
to the issue of efficiently representing value functions.

In tasks with small and discrete state spaces, value function can be
easily represented as a look-up table [201], where each value is stored
individually. However, if the number of states grows, using an explicitLook-up tables

value table becomes infeasible not only due to memory requirements
but also because of the number of interactions required to visit all
states and estimate their individual values accurately.

The solution to these problems is to use a function approximator
that adopts a class of parameterized functions to replace the look-up
table. Employing function approximation allows to represent a value
function in a much more compact way, because the number of pa-
rameters needed to specify the approximator is usually far less than
the number of states. Additionally, approximation allows to generalizeGeneralization

limited training experience across large state spaces, so updating the
value of one state affects the values of many other states with related
characteristics [100]. As a result there is no longer a need to explore
every state in order to estimate its value, since a function generalizes
from observed states to all other states, even those that were never
experienced during interactions with the environment.

2.2 reinforcement learning methods 15

hidden
layer

input
layer

output
layer

~w(2,1)

~w(3,1)

�1(s)

�2(s)

~w(1,2)

~w(1,1)

�3(s)

�4(s)

�5(s)

y(k,1) = f(~w(k,1), ~�(s))

Figure 2.3: An illustrative multilayer perceptron with five inputs, one hid-
den layer consisting of three neurons and a single neuron in the
output layer.

2.2.1.1 Artificial Neural Networks

The most common type of function approximators are artificial neu-
ral networks (ANNs), described thoroughly by Haykin [82]. Neural
networks are bio-inspired general-purpose computational models for
representing functions in a compositional manner. Typically, they are
composed of many simple processing elements called neurons, which
are interconnected and communicate with each other by sending sig-
nals. Remarkably, they are capable to uniformly approximate any
differentiable function [38].

Among many architectures of ANNs, the particularly popular one
is a feedforward layered network known as a multilayer perceptron Multilayer

perceptron(MLP). Figure 2.3 illustrates an example of three-layer2 MLP. In this
type of network, neurons are divided into a sequence of layers, where
the neighboring layers are fully connected to each other. The first
layer, called input layer, is responsible for preparing (e.g., normalizing)
the input signals and propagating them to hidden layers. The signals
propagate then through the hidden layers, and end up at the outputs
of the neurons in the output layer, from where they can be fetched
and interpreted in an application-specific manner. Each neuron im-
plements a nonlinear activation function f and a modifiable vector of
parameters (weights) ~w, which both determine how the neuron aggre-
gates all its inputs into a single output y. Typically, the aggregation
involves a weighted sum of inputs passed through a sigmoid or a
hyperbolic tangent function.

2 Some authors do not count the input layer while the others count only the number
of hidden layers.

16 reinforcement learning

2.2.1.2 Neural Networks for Value Function Approximation

Neural networks such as MLPs are frequently employed in RL ap-
plications for representing both state value function V(s) and action
value function Q(s, a). In such cases, the number of network inputs
and outputs is task-specific while the number of hidden neurons is
left to network designer.

When using ANNs to approximate a state-value function V, the
inputs of the network are determined by a vector of features ~φ(s) de-
rived from the observed state s, and the single output of the network
is supposed to approximate V(s). Such function can be employed forState value

approximation selecting actions if the environment is deterministic and its transition
model is known at least partially. For instance, in many board games
it is not difficult to compute all possible board positions (called after-
states [189]) resulting from legal moves, although the opponent reply
may not be known. By applying the ANN to estimate the value of
every afterstate, the agent could take the move leading to the most
valuable one. In this context the function approximated by the ANN
can be considered as afterstate value function.

To approximate the action value function Q(s, a), which is generally
more useful for selecting actions in nondeterministic or unknown
environments, there are few possible ways of employing neural net-
works. In all of them, network inputs are determined by the featuresAction value

approximation ~φ(s) of state s, like in state value approximators. If the number of
available actions is relatively small, it is possible to have a separate
network output for each action a ∈ A. Alternatively, the values of
particular actions can be approximated by a set of independent net-
works, each with a single output [208]. Clearly, neither of these ap-
proaches can be applied in tasks with numerous or continuous ac-
tions. A straightforward way to deal with such tasks is to use a single
network with state features as inputs and a single output interpreted
directly as an action. Yet another idea is to provide the action as
an additional input for the network, to obtain its value at network’s
output.

2.2.2 Temporal Difference Learning

Temporal difference learning (TDL) is the most representative class
of model-free reinforcement learning algorithms that rely on value
functions (see Section 2.1.2). It was introduced by Sutton [186], but its
origins date back to the famous checkers playing program designed
by Samuel [169]. Like other value function based methods, TDL aims
at learning the optimal value function (or its approximation), from
which the optimal policy could be derived. Basically, TDL works by
estimating the values of states or actions on the basis of other, hope-
fully more accurate estimates. This idea, known as bootstrapping, is
featured also by the DP methods (cf. Section 2.1.3).

2.2 reinforcement learning methods 17

However, instead of exploiting the model-based Bellman equations
(see Equation 2.8), the TDL algorithms are inherently model-free and
estimate value functions from the training experience generated by
interactions with the unknown environment. Moreover, TDL is typ-
ically applied in an incremental and online manner, in which the
algorithm processes every single action taken by the agent in the
environment.

2.2.2.1 Value Prediction

As an intermediate step towards improving current policy π, the TDL
methods attempt to solve the prediction problem, i.e., compute its state
value function Vπ. Only then the policy can be adjusted by making
it greedy with respect to the estimated value function (cf. Eq. 2.15). To Prediction problem

estimate Vπ, the TDL methods use the experience gathered by the
agent following policy π in the given environment. Whenever the
agent gathers a unit of training experience (st, at, rt+1, st+1) resulting
from a transition st → st+1 and reception of rt+1 reward, it updates
the current estimate of the value function Vt into Vt+1.

In particular, the simplest TDL value prediction algorithm known
as TD(0) [186], updates the estimate of state value function with the TD(0) algorithm

following rule:

Vt+1(st) = Vt(st) + α(rt+1 + γVt(st+1)−Vt(st)). (2.9)

This rule attempts to minimize the difference between the current
prediction of cumulative future reward Vt(st) and the one-step-ahead
prediction, where the latter involves the actual (received) reward rt+1

and is equal to rt+1 + γVt(st+1). Consequently, the error between the
successive predictions δt = rt+1 + γVt(st+1)−Vt(st) is used to adjust
the value of state st. Importantly, the learning rate α ∈ [0, 1] determines
the size of correction.

The TD(0) algorithm can be naturally extended by looking further
than only one step ahead and using the subsequent actual rewards
to update the value of the current state. In the extreme case, the
algorithm would wait till the end of the training episode to know
the exact discounted sum of rewards Rt (see Equation 2.11), compute
the prediction error, and employ the update rule analogous to 2.9:

Vt+1(st) = Vt(st) + α(Rt −Vt(st)), (2.10)

Rt =
∞

∑
k=0

γkrt+k+1. (2.11)

This extreme variant of TD belongs to the class of Monte Carlo (MC) Monte Carlo
methodsmethods, which estimate the value function using the empirical (ac-

tual) sum of rewards of Rt rather than its estimation. Noteworthy,
for deterministic environments, the update rule (2.10) can be said to
implement supervised learning, because Rt is the correct (desired)
value of V(st).

18 reinforcement learning

2.2.2.2 Value Prediction with Function Approximation

Although both TD(0) and Monte Carlo methods share the underlying
idea of estimating state value function from samples of experience,
they represent two extremes in implementing this process. MC-based
methods need to wait until the end of an episode, when its exact
outcome is known and can be back-propagated to correct the pre-
dictions made for the previously encountered states. TD(0), to the
contrary, waits only one time step, calculates the error between tem-
porally successive predictions, and uses it to update the estimate of
current state’s value. TD(λ) is an elegant umbrella that embraces theTD(λ) methods

above special cases of TD(0) and MC, which is equivalent to TD(1).
It allows to adjust the lookahead horizon by tuning the λ parameter,
which makes the algorithm looks further in the future to compute
temporal difference in estimations of state values.

In practice, the TDL algorithms are often combined with value func-
tion approximators (cf. Section 2.2.1) to allow generalization across
large state spaces. In such situations, the value function is approxi-
mated by V~θ — a differentiable function of the parameter vector ~θ

(i.e., for any ~θ ∈ Rd, V~θ : S → R is such that a gradient ∇~θV~θ(s)
exists for every s ∈ S). For example, if a neural network is employed
to implement this function, the vector ~θ would contain all network
weights. Consequently, instead of adjusting the values of particular
states (e.g., using equations 2.9 or 2.10), the learning algorithm oper-
ates on the vector of parameters. A variant of TDL that adjusts these
parameters proportionally to the negative gradient of the squared
prediction error is called gradient descent TD(λ) [186, 189]. Its updateGradient descent

TD(λ) rule is:

~θt+1 = ~θt + αδt

t

∑
k=1

(γλ)t−k∇~θV~θk
(sk), (2.12)

δt = rt+1 + γV~θt
(st+1)−V~θt

(st), (2.13)

where the gradient ∇~θV~θ is the vector of partial derivatives of value
approximation for a given state with respect to each parameter. This
rule illustrates that the trace decay parameter λ ∈ [0, 1] determines
the rate of ‘aging’ of the past gradients, i.e., the rate at which their
impact on the current update decays when reaching deeper into the
history. This general formulation of TD(λ) takes into account the
entire sequence of states and the corresponding predictions that ap-
peared in a single episode up to time step t; in the case of TD(0),Gradient descent

TD(0) the weight update is determined only by its effect on the most recent
estimation:

~θt+1 = ~θt + αδt∇~θV~θt
(st). (2.14)

2.2 reinforcement learning methods 19

Algorithm 2.1 Online gradient-descent TD(λ) for learning policy.
The approximate value function V~θ is parametrized by ~θ.

Require: learning rate α, decay rate λ, number of training episodes
n, exploration rate ε, deterministic MDP 〈S, A, T, R, I, γ〉

1: ~θ ← Initialize Parameters

2: for i = 1 to n do
3: ~e←~0
4: s← Initialize State(I)
5: while ¬Is Terminal State(s) do
6: with probability ε do a← Random(A(s))
7: else a← arg maxa∈A(s)(R(s, a) + γV~θ(T(s, a))
8: r = R(s, a)
9: s′ = T(s, a)

10: if Is Terminal State(s′) then δ = r−V~θ(s)
11: else δ = r + γV~θ(s

′)−V~θ(s)
12: ~e← γλ~e +∇θV~θ(s)
13: ~θ = ~θ + αδ~e
14: s← s′

15: end while
16: end for

2.2.2.3 Learning Policies

Although in principle the TD(λ) algorithms are used to solve the pre-
diction problem (i.e., estimate Vπ for a given policy π), if the model
of the environment is available, they can be also employed to learn
policies represented implicitly by value functions. Basically, the idea
is to incrementally adjust the value function of a continually changing
policy computed on-the-fly from the value function itself [226]. Such
a scenario is illustrated in Algorithm 2.1, which demonstrates online
learning of policy by gradient descent form of TD(λ) algorithm for
an approximated value function V~θ .

After initialization of the vector of parameters ~θ, the training expe-
rience is collected in n training episodes. Each episode starts from the
initial state drawn from the distribution I and continues until a ter-
minal state is reached. In the meantime, actions are taken according From value function

to policyto the recent value function, which implicitly represents the policy
which for each state s chooses the action leading to the most valuable
successor state s′ (the policy is greedy with respect to V):

π(s) = arg max
a∈A(s)

∑
s′∈S

T(s, a, s′)(R(s, a, s′) + γV(s′)). (2.15)

However, such a greedy policy is not followed all the time, but to
maintain sufficient environment exploration, with probability ε, a
random action is taken instead (i.e., an ε-greedy policy is used).

20 reinforcement learning

After each state transition, the prediction error δ is calculated (see
Equation 2.13), which is then used to adjust the value function param-
eters according to the gradient descent form of TD(λ). Importantly,
to avoid storing past gradients and calculating their sum at each time
step (cf. Equation 2.12) the updates are calculated incrementally using
the idea of eligibility traces [186, 189]:Eligibility traces

~et = γλ~et−1 +∇~θV~θt
, (2.16)

~e0 = ~0. (2.17)

As a result, the parameters update rule can be formulated as:

~θt+1 = ~θt + αδt~et. (2.18)

Since each update of the value function parameters aims to improve
the prediction accuracy and the actions are taken greedily with re-
spect to the most recent value function, the overall performance is
likely to be improved, but the convergence cannot be guaranteed.

Learning policies implicitly represented by state value functions
turns out to be particularly useful in the domain of games, in whichApplications in

games the transition model is available and can be used to compute the
resulting position for each move. Since the influential work of Tesauro
[197, 198] and the success of his TD-Gammon player, variations of
the TD(λ) algorithm have become a well-known approach for elabo-
rating game-playing strategies without human knowledge or expert
strategies given a priori. A lot of research has been conducted with
learning strategies for the games of Go [164, 172], Othello [207, 125]
or Chess [14, 203].

Nevertheless, if the environment model is not known, taking ac-
tions on the basis of the state value function (cf. Equation 2.15) is
impossible. Instead, an algorithm that learns control policies can rely
on the action value function Q(s, a) which allows for choosing actions
just by comparing their values in the particular state:

π(s) = arg max
a∈A(s)

Q(s, a). (2.19)

The two most recognized algorithms for model-free learning of
Q(s, a) functions are Q-learning [215] and SARSA [163]. Both algo-Q-learning and

SARSA rithms represent the class of temporal difference learning and operate
in the same incremental fashion as TD(λ). For instance, after gather-
ing a unit of training experience, the Q-learning algorithm updates
the values of actions with the following rule:

Qt+1(st, at) = Qt(st, at) + α(rt+1 + γ max
a∈A(st+1)

Qt(st+1, a)−Qt(st, at))

Since this update rule essentially utilizes one-step lookahead to com-
pute the prediction error, it can be considered as analogous to TD(0)
update rule expressed in Equation 2.9. Additionally, both Q function
learning algorithms can be combined with function approximation
and employ eligibility traces [150, 225].

2.2 reinforcement learning methods 21

2.2.3 Evolutionary Algorithms

As discussed in the previous section, one approach to solving rein-
forcement learning problems is temporal difference learning which
relies on value functions to indirectly represent behavior policies. An
alternative model-free approach is to search the space of policies Π
directly in order to find a solution π∗ ∈ Π that maximizes the return Direct policy search

J(π) in a given MDP (see Equation 2.3). This idea can be realized by
employing a general purpose optimization algorithm driven by the
objective function f : Π → R. Typically, the value of the objective
function f (π) simply approximates the expected cumulative return
by averaging the rewards obtained in multiple episodes in the given
environment by policy π.

Among many optimization techniques that could be applied to
search for the optimal policy, evolutionary algorithms (EAs) form a class
of stochastic algorithms that is particularly well-recognized for its suc-
cessful applications in reinforcement learning [73, 146, 218, 221, 234].
EAs are bio-inspired optimization procedures that mimic the process Evolutionary

algorithmsof natural evolution including mechanisms such as genetic recombi-
nation, mutation, reproduction and selection [9, 51]. The most signifi-
cant advantage of EAs lies in their flexibility — all they need to know
about the optimization problem being solved is how to evaluate a
quality (so called fitness) of a candidate solution (here: f).

The many variants of EAs, including Genetic Algorithms [69], Evo-
lution Strategies [17], and Genetic Programming [107], share a com-
mon set of underlying features:

• Unlike many conventional optimization methods, which itera-
tively process a single search point, EAs maintain a set of can-
didate solutions represented as a population of individuals. By Implicit parallelism

sampling many points in the search space simultaneously, they
implement a collective optimization process which allows them
to avoid the problem of getting stuck in local minima.

• The survival of the fittest principle is used to iteratively refine
the population of solutions. In each iteration (generation), all Selection pressure

individuals in the population are evaluated and assigned fitness
values. These values steer the selection process, which favors
the better solutions and makes them more likely to contribute
offspring to the next generation.

• The offspring of a population is generated in a randomized
process that models the natural phenomena of mutation and Variation operators

recombination. These variation operators perform search in the
space of candidate solutions and correspond to self-replication
of slightly modified individuals and combining information from
two or more selected individuals, respectively.

22 reinforcement learning

Algorithm 2.2 General scheme of an evolutionary algorithm
1: P ← Create Random Population()

2: Evaluate Population(P)
3: while ¬Termination Condition() do
4: S ← Select Parents(P)
5: P ← Recombine And Mutate(S)
6: Evaluate Population(P)
7: end while
8: return Get Fittest Individual(P)

A scheme of a typical generational evolutionary algorithm is illus-
trated in Algorithm 2.2. In the first steps, the initial population ofA typical

evolutionary
algorithm

candidate solutions is created (typically in a randomized way) and
evaluated according to the given fitness function. Afterwards, the
algorithm proceeds iteratively in generations until the termination
condition is met. In each iteration the fittest individuals are selected
to act as parents and contribute offspring to the next generation. The
offspring is created by copying parents or combining them using the
crossover operator. Additionally, the newly-bred individuals can be
subject to random mutations before they get evaluated. The termina-
tion condition typically depends on the number of such generations
processed or on the quality of the best solution found so far. When
fulfilled, evolution stops and the fittest individual is returned as the
final solution.

This pseudocode is only intended to represent a general idea of
how a typical evolutionary algorithm works. In particular, every sin-
gle phase of the algorithm (including initialization, selection, recom-
bination, evaluation etc.) can be implemented in various ways and
a lot of research has been devoted to find which one is the best for
particular problem classes or applications. The extensive presentation
of evolutionary algorithms can be found in the book of Eiben and
Smith [51], while their history and applications are surveyed by Bäck
et al. [10].

2.2.3.1 Evolutionary Reinforcement Learning

Evolutionary algorithms can be used to solve reinforcement learning
problems, as long as the latter can be framed as optimization prob-
lems. For this purpose, a space of candidate solutions and an objective
function need to be defined. Since the goal is to find the optimal pol-Search space

icy for an MDP with state space S and action space A, a candidate so-
lution naturally corresponds to a control policy π : S → A. However,
there are many possible ways to express such a state-action mapping,
and thus, depending on the problem being solved, a specific function
representation needs to be chosen, e.g., neural networks.

2.2 reinforcement learning methods 23

Given the space of candidate solutions, the crucial issue is to specify
the fitness function for evaluating their quality. Since in RL problems
the objective is to maximize the policy return, EAs could calculate the
fitness of a policy by simulating an interaction episode in the given
MDP environment and summing the obtained rewards. However, the
precise fitness evaluation of a policy may be non-trivial for at least Fitness function

two reasons: 1) stochastic transitions or rewards, and 2) many possi-
ble initial states of the environment. In such cases the policy return is
a random variable and a single episode is not enough to evaluate the
policy reliably.

In order to discuss how EAs fit into the general scheme of model-
free learning from interactions, let us recall Figure 2.1. The first differ-
ence to mention, when compared to previously described temporal
difference learning methods (cf. Section 2.2.2), is that such evolution-
ary learning is essentially based on the population of learners. The Evolutionary

learning from
interactions

learning algorithm maintains a set policies and in each generation
employs every policy to control the agent’s behavior in the given
environment. Training experience gathered in this way is used by
the algorithm to compare the policies and select the best of them for
further random adjustments. Importantly, from all the training experi-
ence the evolutionary algorithm cares only about the sum of rewards.
Instead of investigating particular state transitions it treats the whole
interaction episode just as a means of estimating the policy return.
Therefore, it does not make use of all information that is available:

Evolutionary methods ignore much of the useful structure of
the reinforcement learning problem: they do not use the fact that
the policy they are searching for is a function from states to
actions; they do not notice which states an individual passes
through during its lifetime, or which actions it selects.
(Sutton and Barto [189], p. 9)

Consequently, the evolutionary learning algorithm does not process
the training experience online, after every single interaction, but waits Online vs. offline

learninguntil all episodes are completed. Only then the algorithm can reason
about the fitness of particular policies. In such offline3 mode of learn-
ing, policies remain unchanged for entire episodes of interactions.

To evaluate a policy in the above EA sense, one must strictly follow
it during interaction trials. As it cannot change during a trial (or
even during the entire evaluation act), the agent cannot explore the
environment by trying new actions. This is in sharp contrast with tem-
poral difference learning techniques, in which the agent intentionally
deviates from its policy (using, e.g., ε-greedy exploration strategy)
to discover potentially more rewarding alternative actions. Neverthe-
less, evolutionary learning algorithms are also capable of developing

3 Alternatively, the distinction between offline and online RL algorithms may depend
on whether the algorithm use a simulator to generate training experience or gathers
it directly from the real system.

24 reinforcement learning

new policies but through exploration performed at the level of entire
policies. In fact, both exploration (meant as discovering new regionsExploration in

evolutionary
learning

of the policy space) and exploitation that concerns visiting neighbor-
hoods of previously encountered candidate solutions are fundamen-
tal concepts for any search algorithm [209]. Evolutionary algorithms,
which perform exploitation and exploration by means of selection
and genetic operators (mutation and crossover), are well-recognized
for keeping the balance between those two aspects of search. [130].

2.2.3.2 Neuroevolution

An important design choice in any direct policy search method (in-
cluding EAs) concerns the representation of policies. RepresentingPolicy

representation policies directly as state-action mappings (technically: tables) may
be impossible particularly in MDPs with large or continuous state
spaces. In analogy to temporal difference learning methods (see Sec-
tion 2.2.2), this problem can be mitigated by employing function ap-
proximators like neural networks (see Section 2.2.1). Applying evolu-
tionary algorithms to learn parameters of neural networks is known
as neuroevolution [61, 231] and has been reported successful in many
reinforcement learning domains [73, 90, 196].

Typically, neuroevolution assumes a fixed neural network topology
and focuses solely on evolving its weights. In such cases, the spaceParametric policy

space of considered policies can be seen as a parametric policy space [2, 83]
Π = {π~θ | ~θ ∈ Rd}, where each policy π~θ is represented by a network
parametrized with a d-dimensional weight vectors ~θ. Consequently,
the learning algorithm performs a search in the parameter space Θ =

{~θ | ~θ ∈ Rd} in order to find the optimal vector of parameters, i.e.,
such that maximizes the return of the corresponding policy:

~θ∗ = arg max
~θ ∈Θ

J(π~θ). (2.20)

Evolution strategies (ES) is a variant of evolutionary algorithm that
is particularly well suited for solving problems in which solutions are
represented as real-valued vectors. Algorithm 2.3 demonstrates oneEvolution strategies

of the flagships of ES, the (µ + λ)-ES algorithm, applied to evolve
weights ~θ of a fixed-topology neural network in order to optimize the
corresponding policy π~θ for the given MDP.

Algorithm 2.3 follows the general scheme of evolutionary algo-
rithm presented in Algorithm 2.2. µ and λ are parameters that control(µ + λ)-ES

initialization the population size and the degree of elitism of the algorithm. At
first, the initial population containing µ + λ individuals is created.
Each individual is a d-dimensional vector drawn from the normal
distribution with standard deviation σinit. Next, the fitness of each
individual is evaluated, which consists in simulating n interaction
episodes in the given environment and calculating the average cu-
mulative reward received when following the policy encoded by the

2.2 reinforcement learning methods 25

Algorithm 2.3 (µ + λ)-ES for optimizing weights of a neural network
with respect to its performance as an MDP policy.

Require: µ, λ, number of parameters d, number of generations g,
number of training episodes n, MDP 〈S, A, T, R, D, γ〉

1: function Evolution Strategy(µ, λ, g, MDP, n)
2: P ← {~θi ∼ Nd(~0, σinit · Id), i = 1, ..., µ + λ}
3: F ← {Evaluate Individual(Pi, MDP, n), i = 1, ..., µ + λ}
4: for i = 1 to g do
5: S ← Select Parents According To Fitness(P ,F , µ)

6: O ← {Si mod µ +Nd(~0, σmut · Id), i = 1, ..., λ}
7: P ← S ∪O
8: F ← {Evaluate Individual(Pi, MDP, n), i = 1, ..., µ + λ}
9: end for

10: return Parg maxi Fi

11: end function
12:

13: function Evaluate Individual(~θ, MDP, n)
14: NN~θ ← Initialize Neural Network(~θ)
15: for i = 1 to n do
16: s← Initialize State(MDP)
17: while ¬Is Terminal State(s) do
18: a← Choose Action(s, NN~θ , MDP)
19: s, r ← Take Action(s, a, MDP)
20: f itness← f itness + r
21: end while
22: end for
23: return f itness/n
24: end function

individual. It is worth to point out that exactly the same (µ + λ)-ES
algorithm could be used to solve any other optimization problem
in which the solution can be expressed as a real vector — the only
problem-specific part is the fitness evaluation.

When the initial evaluation is completed, the algorithm repeats the
evolutionary loop of selection, breeding, and evaluation for a g gen-
erations. Each generation starts from sorting the individuals accord-
ing to fitness in descending order. The µ fittest individuals (which
form the so called elite of the population) are chosen as the parents
of the next generation. To obtain λ new individuals, each parent The evolutionary

loopis cloned λ/µ times and its copies are mutated by adding random
Gaussian noise of zero mean and standard deviation of σmut. Algo-
rithm 2.3 illustrates the basic variant of ES, which does not involve
recombination, thus the offspring is generated solely by the mutation
operator. The next generation, created by merging the parents with

26 reinforcement learning

theirs newly-bred offspring, contains µ + λ individuals, which are
then evaluated. After g generations, the individual with the highest
fitness is returned as the result of the algorithm.

Apart from choosing a specific evolutionary algorithm, an impor-
tant technical issue is how to execute agent’s policy, i.e., choose ac-
tions, using a given neural network (cf. line 18 of the Algorithm 2.3).
Typically, neural networks are employed as a state or action evalua-Neural network as a

policy tors. As a results, network’s role resembles that of V(s) and Q(s, a)
and thus its functioning could be based on the same principles as in
approximating these function (see discussion in Section 2.2.1.2). The
bottom line is that network’s inputs are determined by the current
state of the environment s, while its output evaluates this state or
directly indicates which action is the best to take in this state.

Most neuroevolutionary methods do not change the architecture of
the network in the course of evolution. For instance, when employing
multilayer perceptrons, there is a predetermined number of neurons
in each layer which are fully connected with each other layer-to-layer.
However, relying on a fixed, manually predetermined architecture
can significantly limit evolvability of the neural network. For this rea-Topology and

Weight Evolving
Neural Networks

son, several methods for discovering good network topologies during
learning have been proposed. In such approaches, generally termed
Topology and Weight Evolving Neural Networks (TWEANN), both
weights and topology of the network are subject to optimization and
can change along an evolutionary run. The most popular TWEANN
methods include NeuroEvolution of Augmenting Topologies (NEAT)
proposed by Stanley and Miikkulainen [184] and Symbiotic, Adaptive
Neuro-Evolution (SANE) introduced by Moriarty and Miikkulainen
[137]. Capability of evolving simultaneously both weights and struc-
tures of function approximators is one of the main strengths of evo-
lutionary learning when compared with temporal difference learning
techniques.

3
S H A P I N G B A C K G R O U N D

In this chapter we present shaping techniques applied to teaching
both living organisms and intelligent agents. We start by describing
the idea of shaping that originates from the field of behavioral psy-
chology and was applied in human and animal learning (Section 3.1).
Afterwards, in Section 3.2, we provide a brief literature review of
shaping-related approaches in computational reinforcement learning.
In particular we analyze specific motivations for shaping and present
some inspiring examples of shaping in robotics.

3.1 shaping in animal and human learning

In order to fully understand the inspiration of our shaping approach
we need to take a look at the early inspirations of the whole domain
of reinforcement learning. Since this machine learning paradigm can
be regarded as a computational counterpart of the trial-and-error
learning process which occurs in nature, it was largely influenced
by the research in the field of learning animals. The pioneering re-
search in this field was conducted in the first half of the 20th century
by, among others, two famous psychologists: Edward Lee Thorndike
and Burrhus Frederic Skinner. Both of them have devised innovative Operant

conditioninganimal training procedures to investigate the effects of consequences
on developing new behaviors in living organisms. The observations
they made allowed Skinner to define later the principles of operant
conditioning — a type of learning in which reinforcing or punishing
an action influences the future rate of repeating this action.

3.1.1 The Law of Effect

Although it is Skinner who is regarded as the father of operant condi-
tioning, it was who first studied how behavior changes on the basis
of its consequences Thorndike [199]. His most famous experiments
involved home-made puzzle boxes in which he placed hungry cats. Thorndike’s puzzle

boxesA cat could escape from a box to obtain food only by operating
a series of latches and levers. The first successful escapes occurred
by accident — thanks to the trial-and-error exploration of the box.
Thorndike plotted a learning curve by measuring the amount of time
needed for the cat to escape in successive trials. He discovered that
after first few episodes, the escape time gradually declined since the
cat was able to quickly recall how to behave to receive a reward.

27

28 shaping background

From these experiments, he concluded that if an action brings a
desirable consequence, it becomes ‘stamped in’ and will likely be
repeated in the future, which explained how animals develop new
habits in their behaviors. He described this phenomenon as the Law
of Effect:

Of several responses made to the same situation, those which
are accompanied or closely followed by satisfaction to the animal
will, other things being equal, be more firmly connected with
the situation, so that, when it recurs, they will be more likely
to recur; those which are accompanied or closely followed by
discomfort to the animal will, other things being equal, have
their connections with that situation weakened, so that, when it
recurs, they will be less likely to occur. The greater the satisfac-
tion or discomfort, the greater the strengthening or weakening
of the bond. (Thorndike [200], p. 244)

According to Sutton and Barto [189], Thorndike’s procedures involved
the essence of trial-and-error learning by combining both search and
memory. Indeed, initially the cat was performing a random searchThe essence of

trial-and-error
learning

by trying many different actions in an attempt to escape the box.
Later, by comparing the results of such actions it could associate the
rewarding behavior with a particular situation in order to memorize
it and repeat it in the future.

3.1.2 Discovery of Shaping

Following the work of Thorndike, Skinner [180] introduced the terms
of reinforcement and punishment which formed the basis for his oper-
ant conditioning theory. Both terms refer to consequences of behaviorReinforcement and

punishment which modify the organism’s tendency to repeat that behavior in
the future. Skinner believed that the ability to associate particular ac-
tions with the following reinforcements is a basic learning mechanism
which allows animals to optimize their behavior in a given environ-
ment. This belief can be regarded as one of the main motivations for
computational reinforcement learning paradigm.

The most of Skinner’s studies on operant conditioning was based
on his experiments with training rats in an improved version of the
puzzle box, which he called an operant conditioning chamber (known
also as the Skinner Box). In these experiments he observed a funda-The Skinner Box

mental problem in Thorndike’s trial-and-error learning procedures.
The problem arose when the target behavior was too complex and
it was never performed by the animal in the course of random en-
vironment exploration. In such situations there was nothing to be
reinforced and thus learning could not take place. To deal with this
problem, Skinner proposed a variant of operant conditioning that was
later named shaping.

3.1 shaping in animal and human learning 29

Shaping is defined as a method of successive approximations. In-
stead of reinforcing only the target behavior, which can be difficult
to achieve by accident, any action that results in a progress towards
behavior is rewarded. Shaping was discovered by Skinner during his A day of great

illuminationwork on Project Pigeon aimed at training pigeons to control the tra-
jectory of flying bombs. The discovery is described by Peterson [151]
as a day of great illumination. Skinner explained it as following:

We first give the bird food when it turns slightly in the di-
rection of the spot from any part of the cage. This increases
the frequency of such behavior. We then withhold reinforcement
until a slight movement is made toward the spot. This again
alters the general distribution of behavior without producing
a new unit. We continue by reinforcing positions successively
closer to the spot, then by reinforcing only when the head is
moved slightly forward, and finally only when the beak actually
makes contact with the spot...

The original probability of the response in its final form is
very low; in some cases it may even be zero. In this way we
can build complicated operants which would never appear in
the repertoire of the organism otherwise. By reinforcing a series
of successive approximations, we bring a rare response to a very
high probability in a short time... The total act of turning toward
the spot from any point in the box, walking toward it, raising
the head, and striking the spot may seem to be a functionally
coherent unit of behavior; but it is constructed by a continual
process of differential reinforcement from undifferentiated behav-
ior, just as the sculptor shapes his figure from a lump of clay.
(Skinner [181], pp. 92-93)

Although reinforcement allows to control animal’s behavior, some
tasks are simply to difficult to be learned directly. Shaping can be con-
sidered as a developmental approach, in which the learner is trained
on a pedagogical sequence of tasks of increasing difficulty.

3.1.3 Scaffolding and the Zone of Proximal Development

A similar problem to that encountered by Skinner in training animals
was later observed in teaching humans. Sometimes solving a task
requires a too high level of skills or knowledge to be approached by
a student. In such situation, some sort of bias must be provided to
allow the student accomplish a demanding task. In the instructional Instructional

scaffoldingscaffolding proposed by Wood et al. [230], the bias is formed not by
simplifying a task (as it was done in animal’s behavior shaping) but
through additional support and assistance of the teacher. Thanks to
the new external source of information and experience, tailored to the
needs of the student, learning progress can be sustained.

30 shaping background

Learner can
do unaided

Learner can not do

Zone of Proximal Development
(learner can do with guidance)

Figure 3.1: Graphical representation of the zone of proximal development.
The middle circle illustrates the tasks that are too difficult to be
learned without help, but that can be mastered with guidance of
a knowledgable teacher.

A closely related term is the zone of proximal development, defined by
Vygotsky [213]. This term indicates how the acquisition of new knowl-The zone of proximal

development edge depends on previous learning and the availability of teacher’s
guidance (cf. Fig. 3.1). In order to be solved, a task must be kept in
this zone. Otherwise, the learner will be unable to gain competence
in the task even if provided with the help of an experienced teacher.
Vygotsky [212] describes the zone of proximal development as:

... the distance between the actual developmental level as de-
termined by independent problem solving and the level of poten-
tial development as determined through problem solving under
adult guidance, or in collaboration with more capable peers. For
example, two 8 yr. old children may be able to complete a task
that an average 8 yr. old can do. Next, more difficult tasks are
presented with very little assistance from an adult. In the end,
both children were able to complete the task.
(Vygotsky [212], pp. 92-93).

3.2 shaping in computational reinforcement learning 31

3.2 shaping in computational reinforcement learning

Despite the appealing inspirations of shaping techniques, they have
not been widely adopted in computational reinforcement learning.
This can be seen as quite surprising since reinforcement learning of
intelligent agents faces very similar difficulties to those observed in
learning of living organisms. In particular, there is a major problem
caused by the fact that reinforcement is delayed and often too scarce. Delayed

reinforcement ...For example, in learning game-playing policies, the reward signal
typically occurs only after finishing the game and is directly deter-
mined by its outcome. In the case of learning an extremely difficult
game where chances of winning by making just random moves are
practically negligible, an agent with zero knowledge never receives
positive reinforcement and learning simply can not occur.

However, delayed rewards are not the only aspect of reinforcement
learning tasks that make them difficult to solve. In this section we
discuss other reasons of task difficulty that constitute direct moti-
vations for using shaping to facilitate computational reinforcement
learning (see Section 3.2.1). Afterwards, we provide a brief survey of
the most interesting studies that attempted to provide an easier path
to learning by the means of methods called shaping.

3.2.1 Specific Motivations

The general motivation for shaping concerns aiding an intelligent
agent in mastering a difficult task. Here, we consider specific moti-
vations by analyzing the reasons that make reinforcement learning
tasks difficult to solve by conventional approach. In the following list ... and other reasons

of task difficultywe associate these reasons with particular elements of the underlying
Markov Decision ProcessM = 〈S, A, T, R, I, γ〉 (cf. Section 2.1.1):

• Large state space. If the number of states is large, it may be very
time-consuming to find a policy that generalizes well across the
entire state space (cf. Section 2.2.1). Recall from Section 2.1.3
that the size of the state space grows exponentially with the
number of variables describing the state (this phenomenon is
known as the curse of dimensionality [15]).

• Large action space. The number of possible policies of the form
π : S → A grows exponentially with the number of possible
actions. As the size of the search space increases, it makes the
problem of finding the optimal solution effectively harder.

• Nondeterministic transition function. When taking the same action
in the given state may result in different transitions, decisions
are made under uncertainty. For this reason, to acquire con-
fidence in reasoning about the potential consequences, many

32 shaping background

repeated exploration trials must be performed. Apart from state
transitions, also the received rewards may be stochastic.

• Delayed rewards. Rewards are delayed in time and provide only
minimal feedback about the agent’s performance (e.g. limited
to indicating final success or failure). Consequently, the agent
is hardly able to reason about the quality of a given policy or
its particular actions. This problem is known as temporal credit
assignment and constitutes one of the main challenges in rein-
forcement learning.

Importantly, each of the above motivations does not exclude the oth-
ers and thus a given task can be difficult for a number of reasons.Alleviating

difficulties Moreover, one aspect of the task can be influenced by changing the
other ones, so difficulty can be reduced in different ways. For instance,
to alleviate the problem of delayed rewards, we could modify the
task by appropriately modulating the reward signal or by changing
the initial state distribution to make an agent start near the highly
rewarded states.

3.2.2 Shaping Principles

Driven by the above motivations, most of the existing approaches to
shaping in computational reinforcement learning consist in modify-
ing the given MDPM, which is assumed to be too hard to be learned
directly by a traditional RL approach. The modification typically con-Task modification

cerns only one of the elements of the MDP, and thus, a modified task
M′ resembles the original one but may have, e.g., a different reward
function, i.e., M′ = 〈S, A, T, R′, I, γ〉. Importantly, the ultimate goal
remains unchanged, and M′ is only expected to provide an easier
path to learning the original taskM, while keeping the same overall
computational cost. Put another way, by changing the training envi-
ronment the agent is supposed to gather useful training experience
that will facilitate learning of the original task.

The quintessence of shaping can be expressed by the following
question:

When faced with a complex problem, is it better to tackle it
directly with a standard RL algorithm, or to first solve a related
simple problem and apply the experience gained to the complex
problem? (Madden and Howley [123], p. 391)

Moreover, according to Randløv [159], shaping can be essentially re-
alized in two different ways. Although it is often limited to perma-Sequence of task

modifications nently changing the training environment to a single task modifica-
tionM′, it can also rely on a sequence of progressively more difficult
task modifications culminating in the original (target) one.

3.2 shaping in computational reinforcement learning 33

Despite its appeal, shaping can be difficult to realize because a
meaningful task modification usually requires substantial knowledge
about the problem at hand. For this reason shaping is often regarded Shaping

requirementsas a method of incorporating implicit domain knowledge into the
learning process [127, 227]. The presence of an external supervisor
that identifies useful task modifications for the shaping process is
sometimes regarded as its inherent feature:

The essence of shaping is that of a supervised, iterative pro-
cess, whereby the learned task is repeatedly modified in some
meaningful way by an external trainer, so as to eventually bring
the learning agent to perform the behavior of ultimate interest.
(Erez and Smart [54], p. 215)

3.2.3 Inspiring Works in Robotics

Most of early works on shaping concern learning robots to perform
physical behaviors. This was a natural application for shaping as it
roughly corresponds to teaching animals to master motor skills, a
context in which shaping was historically applied for the first time
(see Section 3.1).

To the best of our knowledge, the first work on computational shap-
ing (albeit it does not refer to this particular term) is the study of Self-
ridge et al. [174], who demonstrated that solving a pole balancing task
is easier if a learning system starts with mastering a simpler version
of the task. Such directed training procedure can be implemented by Directed training for

pole balancingmodifying the parameters of the training environment that influence
its transition function (e.g., by increasing the mass or shortening the
length of the pole). Interestingly, the authors compared selecting a
pedagogical sequence of training tasks to presenting the right training
examples in supervised learning.

One of the earliest works that explicitly uses the term ‘shaping’ is
the study of Gullapalli and Barto [76] aimed at learning a robot hand
to press keys on a simulated calculator keypad. They hypothesize
that learning complex physical control behavior can be facilitated by
providing the learner with some initial domain knowledge. Shaping
is regarded as a natural way of introducing such knowledge through
rewarding manually identified behavioral approximations of the tar-
get task. Although judging what constitutes a good approximation Approximating

physical distancesis in general not easy, even if domain knowledge is available, in the
particular case of learning physical behavior, an approximation can be
specified in terms of physical distances. Even though Gullapalli et al.
successfully implemented shaping by manually designing a sequence
of intuitive approximations of the target key-pressing task, this work
clearly points to the need of more formalized and systematic shaping
procedures.

34 shaping background

Dorigo and Colombetti [47] considered shaping as a supervised vari-
ant of reinforcement learning, which includes, apart from an agent
and an environment, also a knowledgeable trainer responsible for
guiding the learning process. It is the trainer who provides addi-Supervised

reinforcement
learning

tional rewards for progressing towards the desired behavior, and
thus, alleviates the problem of delayed reinforcement. Nevertheless,
there is a need of specifying the shaping policy, i.e., trainer’s strategy
for providing reinforcements. In principle, the role of trainer could
be played by a human expert. Otherwise, a dedicated reinforcement
program should be implemented to automatically steer the learning
process. However, programming a trainer for, e.g., a complex problem
within the robotics domain can be as hard as solving the original
problem.

Asada et al. [8] focused on scaling a theoretical reinforcement learn-
ing method to larger and more complex robot learning problems.Learning from easy

missions They also applied a form of shaping to cope with the delayed rein-
forcement problem in the learning vision-based robot to shoot a ball
into the goal. In their learning from easy missions they began training by
placing a robot and the ball near the goal. Only after mastering such
a simplified task, they started to gradually moving the robot further
from the goal:

This situation resembles a case in which the small child tries
to shoot a ball into the goal, but he (or she) cannot imagine which
direction and how far the goal is because a reward is received
only after the ball has entered into the goal. Further, he (or she)
does not know how to choose an action from several action com-
mands. This is the famous delayed reinforcement problem due
to no explicit teacher signal that indicates the correct output at
each time step. Then, we construct the learning schedule such
that the robot can learn in easy situations at early stages and
learn in more difficult situations at later stages.
(Asada et al. [8], p. 285)

3.2.4 Reward Shaping

The above examples of early shaping approaches demonstrate differ-
ent ways in which original tasks can be modified to facilitate learning.
In particular, the presented studies involve modification of reward
function R, transition function T and initial state distribution I. MoreArtificial reward

signal recent applications of shaping focus mainly on changing the first of
these elements, which is typically realized by adding an artificial
reward signal for training purposes. Such approach is commonly
referred to as reward shaping [111, 127, 142] and is the closest to the
original shaping procedure employed by Skinner (cf. Section 3.1.2).

3.2 shaping in computational reinforcement learning 35

Ideally, a reward function R should provide useful feedback about
performed actions soon after they were taken. In many MDP tasks,
however, reinforcement occurs only upon reaching the goal state. In
order to mitigate the problem of temporal credit assignment, reward
shaping creates an additional reward signal F that is expected to pro-
vide an intermediate feedback about the progress towards the goal. Intermediate

feedbackConsequently, the agent is trained in a more supportive environment
with enhanced reward function, i.e., M′ = 〈S, A, T, R + F, I, γ〉. The
crucial question is whether the optimal policy learned in such mod-
ified task is equivalent to the optimal policy for the original task.
Importantly, Ng et al. [142] showed conditions that must be fulfilled
by the additional reward function F in order to preserve the optimal
policy between the tasks.

3.2.5 Related Approaches

Most of the shaping approaches considered so far have been moti-
vated by the problem of delayed reinforcement. However, the vast size
of the space space has also stimulated a lot of research towards scal-
ing and accelerating reinforcement learning [100, 136, 195]. One pos- Hierarchical RL

sible approach is hierarchical reinforcement learning [12, 43, 84] which
boils to decomposing the original MDP into a hierarchy of smaller
MDPs. Training experience gathered on such subtasks can be used to
solve the original task more effectively.

Another notable example of a shaping-related work is that of Mad-
den and Howley [123]. The authors considered a sequence of logical
tasks of progressive difficulty that were characterized by increasing
size of the maze. They introduced the approach called progressive Progressive RL

RL which alternates the cycles of experimentation and introspection.
In the experimentation phase, the agent gathers the experience and
learns a policy for a given task. Then, in the introspection phase, sym-
bolic knowledge is extracted from the elaborated policy and applied
to a new state space to create an initial policy for a next task in the
sequence. The progressive RL provided a significant speed-up with
respect to standard RL methods.

Finally, in the particular case of evolutionary learning methods, the Incremental
evolutionapproach based on employing several fitness functions corresponding

to progressively harder versions of the given task is referred to as
incremental evolution [72, 140, 206]. We discuss this approach in more
detail in Section 7.1.2.

4
C O E V O L U T I O N A RY S H A P I N G

In the previous chapter we presented the existing shaping approaches
applied in computational reinforcement learning. Here, we attempt
to place these approaches in a unified shaping framework that de-
lineates the role of shaping in a standard reinforcement learning sce-
nario (see Section 4.1). We discuss the potential improvements of the
learning process that can be achieved by the means of shaping. Af-
terwards, in Section 4.2 we describe coevolutionary algorithms and
discuss how they are capable of implementing the shaping process
autonomously.

4.1 unified shaping framework

The examples of existing shaping approaches in reinforcement learn-
ing indicate common need of good training experience. In a typical
reinforcement learning setup (see Figure 2.2), it is implicitly assumed
that an agent gathers training experience by interacting with the same
environment that constitutes the goal of learning. Put another way, Sources of training

experiencethe original (target) MDP task for which the optimal policy is to be
found, is also used for training purposes, i.e., to generate the samples
of experience and to get the feedback concerning the quality of the
current policy. Although such setting may seem straightforward and
natural, it may be beneficial to diverge from it and employ different
tasks (environments) for training. By using purpose-built training en-
vironments, the agent can be exposed to a more informative training
experience that allows a specific learning algorithm to progress faster
and to find better solutions in the assumed search space.

Throughout this thesis, we will use the term ‘shaping’ for any
method that affects the training environment, but at the same time
does not influence the reinforcement learning algorithm. Therefore,
instead of tuning the parameters of the algorithms, we put the em-
phasis on finding useful source of training experience. Most of the General notion of

shapingexisting shaping approaches discussed in Section 3.2 are compati-
ble with this notion of shaping, which is presented graphically in
Fig. 4.1. The grey box in the figure encapsulates the conventional
RL scenario discussed earlier (see Section 2.1). Although this may
remain transparent for the learning algorithm or the agent, in case of
shaping the training interactions take place in purpose-built training
environments. The figure emphasizes the distinction between these
training environments and the target ones, in which the agent should
ultimately perform well.

37

38 coevolutionary shaping

Learning algorithm

EnvironmentEnvironment

Training
environments

Training Interactions

Agent

Policy ⇡b

behavior
policy

Target
environment

Performing behavior

Agent

Policy

training experience

Shaping method

Target policy ⇡ ⇡

Figure 4.1: The place of shaping in computational reinforcement learning

Let us explain Fig. 4.1 in detail. The role of the Shaping method is
to provide such Training environments that can facilitate progress of a
given Learning algorithm. To provide useful source of training experi-
ence, the shaping method must take into account the goal of learning
(Target environment). Consequently, the training environments are typ-The role of shaping

ically closely related to the target one and differ only with respect
to some element of the MDP definition (cf. Section 3.2.2). By con-
straining the scope of variations of the target task, we can assume
that the role shaping method is limited to choosing the right tasks
from a specific space (domain) of tasks. Additionally, the shaping
method may work adaptively by exploiting the feedback from the
learning algorithm (illustrated with a dashed line). For instance, it
can analyze the results of training interactions and verify how the
agent copes with the tasks provided so far. Preferably, on this basis
it should adjust the training environment to construct a more ‘peda-
gogical’ learning gradient.

Importantly, in this thesis, we assume that a policy π : S → A
learned in the training environments can be directly applied in the
target one. This means in practice that the considered training andTransferring the

policy target environments share a common state space S and action space
A1 and can differ only with respect to transition function T, reward
function R or initial state distribution I. However, in general, it is
possible to employ training environments that vary also with respect
to S and A. In such cases, an additional step may be needed which

1 Technically, to reuse a policy in a new task, it may be enough if the state and action
description variables remain the same.

4.1 unified shaping framework 39

Training time

Pe
rf

or
m

an
ce

Training directly in the
target environment

Training in purpose-built
environments (shaping)

Figure 4.2: Potential benefits of shaping. The figure is adapted from Torrey
and Shavlik [205].

converts the learned policy so that it is applicable in the target en-
vironments. This step is conventionally realized by transfer learning
methods [195, 205] which attempt to transfer the knowledge gained
in one task to another.

It is worth to note that the proposed shaping framework is not
limited to the shaping techniques developed in past work. One par-
ticular approach that fits into the framework and is used together
with evolutionary learning algorithms is known as fitness modeling or
fitness approximation [95]. The main motivation behind this approach Fitness

approximationis the complexity of task dynamics, which causes large computational
cost of computing state transitions and simulating interactions with
the environment. The idea is to employ surrogate training tasks which
approximate the target one but are simpler to simulate. Training tasks
act as a proxy of the true goal which allows to effectively compute
fitness of evolving individuals [105].

Moreover, although all the previously discussed works on shaping
rely on manually selected training tasks, a shaping method can in
principle work without human supervision by trying to autonomously
identify useful task in the assumed space of task variations. Investi- Knowledge-free

shapinggating the ideas of such knowledge-free shaping constitute the main
purpose of this thesis. In particular, we employ competitive coevolu-
tionary algorithms [154]. We expect that training experience provided
by these algorithms will lead to both faster learning convergence and
improved final performance. These two measures of learning effec-
tiveness, commonly adopted in transfer learning [205], correspond Measures of

learning
effectiveness

to the dashed (shaped) learning curve in Fig. 4.2 being, respectively,
steeper and higher than the one for unshaped (target) environment.

In the following chapters we investigate particular shaping meth-
ods in the context of specific learning algorithms, namely, evolution-
ary algorithms (Chapters 6 and 7) and temporal difference learning
algorithms (Chapters 6 and 8).

40 coevolutionary shaping

4.2 coevolutionary shaping

Coevolutionary algorithms have been introduced into the field of
computational intelligence as an alternative to conventional evolu-
tionary algorithms described in Section 2.2.3. There are two main
types of coevolutionary algorithms, namely, competitive coevolution-
ary algorithms and cooperative coevolutionary algorithms. The difference
between them concerns the character of relationships between coe-
volving individuals (symbiotic cooperation or competition). Since weCompetitive and

cooperative
coevolution

focus on the competitive form of interactions in this thesis, whenever
the term ‘coevolution’ is used, it shall be interpreted as competitive
coevolution. The reader interested in cooperative coevolutionary al-
gorithms and its applications is referred to the works of Potter and
De Jong [155], Gomez et al. [70], Krawiec and Bhanu [108].

In this section we provide a brief description of coevolutionary al-
gorithms and we formalize the class of test-based problems for which
they are typically applied. Afterwards, we discuss how coevolution-
ary methods can be generally applied in reinforcement learning. In
particular we frame reinforcement learning problem as a test-based
problem, which allows us to draw a close analogy between coevolu-
tion and shaping.

4.2.1 Coevolutionary Algorithms

Fitness function is an indispensable component of evolutionary algo-
rithms that drives the search process by assigning fitness values to
candidate solutions. It is also the fitness function that constitutes the
major difference between evolutionary and coevolutionary algorithms.Context-sensitive

fitness evaluation In evolutionary algorithms this function is usually expected to be
static and reflect individual’s absolute performance, which is assumed
to be independent of other individuals in the population. Coevolu-
tionary algorithms, by contrast, employ dynamic fitness functions that
assess the relative performance of individuals with respect to other
evolving individuals. As a result, fitness evaluation is context-sensitive:
a candidate solution appearing well in one population may turn out
to be poor when transferred to another.

Coevolutionary algorithms are particularly well-suited to interactive
domains, in which there is no intrinsic objective function given or such
a function is costly to compute. Instead, in order to evaluate candidate
solutions, coevolution relies on the outcomes of interactions between
coevolving individuals. The abstract notion of interaction denotes hereInteractive domains

a procedure that reveals information about a pair of candidate solu-
tions. The formal definition of interactive domains can be found in
the work of Popovici et al. [154]. A canonical example of interactive
domains are classic two-player board games like chess, backgammon

4.2 coevolutionary shaping 41

12 2 Coevolution

Algorithm 1 Basic scheme of a generational evolutionary algorithm

P ← createRandomPopulation()
evaluatePopulation(P)
while ¬terminationCondition() do
S ← selectParents(P)
P ← recombineAndMutate(S)
evaluatePopulation(P)

end while
return getFittestIndividual(P)

The family of EA is composed of a few methods that differ slightly in technical
details, but all can be realized with the basic scheme presented in Algorithm 1. The
most important difference between these methods concerns so called representation
which defines a mapping from phenotypes onto a set of genotypes and specifies what
data structures are employed in this encoding. Phenotypes are objects forming so-
lutions to the original problem, i.e. points of the problem space of possible solutions.
Genotypes, on the other hand, are used to denote points in the evolutionary search
space which are subject to genetic operations. The process of genotype-phenotype
decoding is intended to model natural phenomenon of embryogenesis. More detailed
description of these abstractions can be found in [Weise 09].

Returning to different dialects of EA, candidate solutions are represented typi-
cally by strings over a finite alphabet (usually binary) in Genetic Algorithms (GA)
[Holland 62], real-valued vectors in Evolution Strategies (ES) [Rechenberg 73], finite
state machines in classical Evolutionary Programming (EP) [Fogel 95] and trees in
Genetic Programming (GP) [Koza 92]. A certain representation might be prefer-
able if it makes encoding solutions to particular problem more natural. Obviously,
genetic operations of recombination and mutation must be adapted to choosen rep-
resentation. For example, crossover in GP is usually based on exchanging of subtrees
between combined individuals.

The most significant advantage of EA lies in their flexibility and adaptability to
the given task. This may be explained by their metaheuristic character of “black
box” that makes only few assumptions about the underlying objective function which
is a subject to optimization. Another benefit is that EA are claimed to be robust
problem solvers showing roughly good performance over a wide range of problems,
as reported by Goldberg [Goldberg 89].

Especially the combination of EA with problem-specific heuristics including
local-search based techniques, often make possible highly efficient optimization al-
gorithms for many areas of application. Such hybridization of EA is getting popular
due to their capabilities in handling real-world problems involving noisy environ-
ment, imprecision or uncertainty. The latest state-of-the-art methodologies in Hy-
brid Evolutionary Algorithms are described in [Grosan 07].

(a) Single-population coevolution.

1

14 2 Coevolution

P

(a) Round-robin in one population - ×

P
1 P

2

(b) Round-robin in two populations

Fig. 2.1: Round-robin tournament interaction scheme

ing competitions between accordingly coupled pairs is the dominant computational
requirement of the evolution process, the competition topology is an important con-
sideration. Different types of topologies were proposed and discussed by Angeline
and Pollack [Angeline 93], Panait and Luke [Panait 02] and Sims [Sims 94b].

Round-robin tournament which is illustrated in Figure 2.1 is a common approach
resulting in the most accurate evaluation. In this pattern each member of each
population interact with every other individual which can serve as a partner. This
requires n(n − 1)/2 competitions in a single-population of P1 members (as shown
in Figure 2.1a) and nm competitions in a two-population setup, where P2 and
m are s.However, such approach is computationally expensive, especially for large
populations. Therefore, more efficient patterns of interactions

Single Elimination Tournament (SET) Tournament interaction scheme is illus-
trated in figure 2.2. This type of interactions is dedicated to coevolutionary algo-
rithms with only one population (or solely inter-population). Alternatively, it can be
extended to be use However, basing on this concept an extension of inter-population
tournament could be designed.

2.2.3 Coevolution vs Evolution in Practice

A question arises: when and why shall we prefer coevolution rather than traditional
evolutionary algorithm. Machine learning. We will consider how EA can be used
for problem which naturally requires coevolution.

Moreover, this inconsistency of EA with natural evolution leads to a serious
problem if, in contrast to optimization, there is no objective function intrinsic to a

14 2 Coevolution

P

(a) Round-robin in one population - ×

P
1 P

2

(b) Round-robin in two populations

Fig. 2.1: Round-robin tournament interaction scheme

ing competitions between accordingly coupled pairs is the dominant computational
requirement of the evolution process, the competition topology is an important con-
sideration. Different types of topologies were proposed and discussed by Angeline
and Pollack [Angeline 93], Panait and Luke [Panait 02] and Sims [Sims 94b].

Round-robin tournament which is illustrated in Figure 2.1 is a common approach
resulting in the most accurate evaluation. In this pattern each member of each
population interact with every other individual which can serve as a partner. This
requires n(n − 1)/2 competitions in a single-population of P1 members (as shown
in Figure 2.1a) and nm competitions in a two-population setup, where P2 and
m are s.However, such approach is computationally expensive, especially for large
populations. Therefore, more efficient patterns of interactions

Single Elimination Tournament (SET) Tournament interaction scheme is illus-
trated in figure 2.2. This type of interactions is dedicated to coevolutionary algo-
rithms with only one population (or solely inter-population). Alternatively, it can be
extended to be use However, basing on this concept an extension of inter-population
tournament could be designed.

2.2.3 Coevolution vs Evolution in Practice

A question arises: when and why shall we prefer coevolution rather than traditional
evolutionary algorithm. Machine learning. We will consider how EA can be used
for problem which naturally requires coevolution.

Moreover, this inconsistency of EA with natural evolution leads to a serious
problem if, in contrast to optimization, there is no objective function intrinsic to a

(b) Two-population coevolution.

Figure 4.3: Round-robin interaction patterns.

or Othello. In these domains the interaction consists simply in playing
a game between two individuals.

The simplest coevolutionary algorithm employs a single, homoge-
neous population of individuals, which interact directly with each
other. Using such single-population coevolution is limited to symmet-
ric domains, like the game of Othello, in which the roles in inter-
actions are interchangeable. Although single-population coevolution Single- and

two-population
coevolution

has been intensely exploited in the context of games [5, 63, 115, 152],
some results suggest that it can be generally more useful to maintain
simultaneously two populations of individuals — a population of
solutions (learners) and a population of tests (teachers) [24, 56, 85, 98,
162]. In such two-population coevolution, the interactions occur only
between individuals that belong to different populations. When ap-
plied to evolving game-playing policies, each population contains the
opponents used for evaluating players in the other population.

An important aspect of fitness evaluation in coevolution is the in-
teraction scheme that determines which individuals should be con-
fronted with each other [147]. The most common interaction scheme,
known as round-robin tournament is illustrated in Fig. 4.3. In this scheme, Interaction scheme

every member of each population interacts with every other indi-
vidual which can serve as a partner. Depending on the number of
populations employed by the algorithm and their roles, the set of
appropriate partners is different. Typically, in the single-population
coevolution all other members of the population are used as oppo-
nents, while in the two-population coevolution — all members of the
opposite population.

42 coevolutionary shaping

4.2.2 Test-Based Problems

Test-based problems [41, 91] belong to the class of co-optimization prob-
lems posed in interactive domains [154] and are conventionally ap-
proached by coevolutionary algorithms. In test-based problems, the
quality of a candidate solution can be determined by performing
interactions with a number of tests. Formally, a test-based problem
can be defined [92] as a tuple 〈S , T ,G〉, in which:

• S is a set of candidate solutions,

• T is a set of tests,

• G : S × T → R is an interaction function.

The objective in test-based problems is defined by a solution concept
[56], which describes a subset of candidate solutions that constitute
solutions to the problem. One of the most commonly used solution
concepts is maximization of expected utility [40], i.e., maximization of
the expected result of interaction with a randomly selected test. ThisSolution concepts

solution concept can be used, for instance, to identify the best scoring
white player strategy in the game of chess. To fully define such a test-
based problem, S would include all possible white player strategies,
the set T would contain all black player strategies, while the interac-
tion G would simply correspond to a single game of chess.

Since typically the set of all possible tests is very large , it is compu-
tationally infeasible to explicitly evaluate individuals on all of them.
Therefore, approaching test-based problems with conventional evo-
lutionary algorithms requires defining a computationally cheaper fit-
ness function. The easiest way to reduce the computational complex-EAs for test-based

problems ity is to limit the number of tests used for fitness evaluation purposes.
One approach, which was recently reported successful [33, 94], is to
randomly sample the tests whenever fitness need to be evaluated.
Another approach is based on a heuristic handcrafted fitness function.
Designing such a function typically requires intimate knowledge of
problem domain and its precise articulation. For instance, to evaluate
chess-playing strategies, the function would need characterizing var-
ious aspects of expert play and observing these characteristics in the
behavior of evaluated player.

Coevolutionary algorithms (see Section 4.2.1) attempt to select the
tests in an adaptive, dynamic manner, and thus can in principle avoid
potential biases resulting from the use of a fixed or manual selection
of tests. Typically they maintain a population of candidate solutionsCoevolutionary

arms race that are rewarded for solving tests and a population of tests rewarded
for challenging the solutions. Consequently, coevolution is believed to
encourage an arms race, “in which the two populations reciprocally drive
one another to increasing levels of performance and complexity” [162]. In
other words, coevolution can be seen as method that simultaneously
searches the space of solutions and evolves a fitness function:

4.2 coevolutionary shaping 43

Coevolutionary algorithms progress from a simple intuition:
evolve the fitness function together with the evolving individu-
als. By adjusting the challenge put to evolving individuals, we
hope algorithms might tune the fitness function to push individ-
uals into continually increasing their capabilities.
(Bucci and Pollack [25], p. 221)

4.2.3 Coevolution for Reinforcement Learning

Coevolutionary algorithms have been frequently applied in machine
learning to evolve behaviors of autonomous agents. In particular, a
lot of problems addressed by coevolution originates from the areas of
robotics [60, 132, 144, 178] and game playing [19, 162, 152, 63]. Such
problems can be usually framed not only as test-based problems but
also as reinforcement learning problems, which inherently involve
interactions between agents (policies) and their environments (tasks). Test-based

reinforcement
learning problem

Consequently, we can define a general test-based reinforcement learning
problem, over a common space of states S and actions A:

• S — a set of policies of the form π : S → A which constitute
candidate solutions to the given problem.

• T — a set of MDP tasks which play the role of tests. All tasks
in T share the same state space S and action space A, so we can
use the same policy π : S→ A across the entire set T . However,
each task τ ∈ T fully specifies its individual transition function
Tτ, reward function Rτ and initial state distribution Iτ.

• J : Π× T → R — an MDP interaction function, where J(π, τ)

is the expected return obtained by the agent following policy π

in task τ = 〈S, A, Tτ, Rτ, Iτ, γ〉:

J(π, τ) = Eπ

[
∞

∑
k=0

γkrk+1 | R = Rτ, T = Tτ, s0 ∼ Iτ

]
.

Following the notion of solution concepts [56], we can define the
goal of learning in such a problem. For the most studied solution
concept of maximization of expected utility, this would boil down to
specifying the solution π∗ that satisfies:

π∗ = arg max
π

E [J(π, τ) | τ ∈ T] .

Coevolutionary approach to such problems involves a population
of policies and a population of tasks2. The interactions between in-
dividuals in both populations are used for fitness evaluation that

2 Sometimes a single entity can play both interaction roles, e.g. a game-playing policy
can also specify the opponent in the training environment. In such symmetric cases,
it is possible to apply a single-population coevolution.

44 coevolutionary shaping

EnvironmentEnvironment

Training
Environments

Training Interactions

Agent

Policy

Performing behavior
in a domain of tests

Agent

Policy ⇡l

Shaping method

Population
of solutions

fitness
behavior

policy

Evolutionary
learning algorithm

Target environment

⇡b

⇡b

Population
of tests

Figure 4.4: Two-population coevolution as a shaping method.

drives the entire learning process. However, while the policies are
evaluated for their performance within the population of tasks, the
tasks should be rather rewarded for informing about the capabilities
of evolving policies (“performing is not the same as informing” [24]).Population of tests

as a teacher In this context, the population of tests plays the role of the teacher
[19, 53, 98, 99] which ideally should pose tasks that are consistently
neither too ‘difficult’ nor too ‘easy’, but feature the level of difficulty
that provides a tractable learning gradient for the coevolving learners
(policies) [210].

The role of the teacher (played by the population of tests) can be
expressed as the hypothesis that

The best way for adaptive agents to learn is to be exposed
to problems that are just a little more difficult than those they
already know how to solve (Juillé [97], p. 127).

This belief resembles the concept of the zone of proximal develop-
ment (see Section 3.1). Also, it pertains to the observation that “you
can only learn what you almost already know” [57].

Furthermore, we can draw an analogy between coevolution and
shaping. Figure 4.4 illustrates how two-population coevolution natu-
rally fits into the introduced shaping framework. In this context, thePopulation of tests

as a shaping method population of tests together with its selection and variations mech-
anisms acts as a shaping method and provides training tasks that

4.2 coevolutionary shaping 45

are expected to facilitate the learning process. As already discussed
in Section 4.1, although most reinforcement learning scenarios focus
on developing the optimal policy for a single target environment, it
can be beneficial to consider a set of related training environments
that can provide an easier path to learning. Coevolution is a nature-
inspired method of searching such a space of training environments
and adaptively constructing a useful learning gradient for the popu-
lation of learners.

Similar analogies between shaping (or staged/incremental learn-
ing) have been considered since the early works on coevolution:

The success of a machine learning system depends very much
on the learning environment in which it is placed. After it has
extracted all the accessible information from its original envi-
ronment, it may need to be put in to a new, more challenging,
environment in order to progress. ‘Curricular’ or ‘staged’ learn-
ing occurs when a learner is placed in to a pre-designed series
of environments one after the other, as it progresses. However,
designing an appropriate series of environments may be very
difficult. This difficulty would be avoided if there were some way
for the learner and its environment to co-evolve with each other,
so that the one would always be appropriate for the other.
(Blair and Pollack [19], p. 166)

In particular, it has been emphasized that coevolution is capable of
realizing shaping-like process automatically:

Shaping . . . requires a human experimenter to design a sched-
ule of changes to the task, whereas coevolution itself can be seen
as an automatic shaping method: the fitness depends on the be-
havior of the opposing population, which is gradually becoming
more proficient in a coevolutionary arms-race.
(Dziuk and Miikkulainen [49], p. 1078)

This statement closely resonates with this thesis, which revolves around
coevolution meant as an ‘unsupervised’ shaping approach.

5
E X P E R I M E N TA L D O M A I N S

In this chapter we introduce three testbed domains that are used
throughout this thesis. Each domain provides a common basis for
one or more sequential decision tasks, which can be learned with
reinforcement learning methods described in Section 2.2. In the sub-
sequent chapters we report the experiments conducted in these do-
mains which allow us to compare the performance of the proposed
shaping methods with that of conventional learning techniques.

The first two domains are board games, which have always been
a popular area of machine learning research [65]. In fact, creating a Motivation for

using board gamesgame-playing program capable of beating human masters has been
one of the earliest goals of the artificial intelligence field [171]. Fur-
thermore, since the seminal studies of Arthur Lee Samuel [169, 170]
and his checkers-playing program, games have been regarded as par-
ticularly useful testbeds for developing and evaluating new learning
techniques:

For some years the writer has devoted his spare time to the
subject of machine learning and has concentrated on the de-
velopment of learning procedures as applied to games. A game
provides a convenient vehicle for such study as contrasted with
a problem taken from life, since many of the complications of
detail are removed (Samuel [169], p. 211).

Importantly, Sutton and Barto [189] refer to Samuel’s program as to
the first example of what can be called a temporal difference learning
technique. Following this influential work, a lot of research consisted
in applying reinforcement learning methods for elaborating board
game policies [67], with the backgammon player called TD-Gammon
[198] being the most famous example.

Most experiments in this thesis concern the board game of Othello
which is described in Section 5.1. The second considered game is a Implemented

domainssimplified version of Go played on a 5× 5 board. Besides the games,
the third domain discussed in Section 5.3, is a standard reinforcement
learning problem of cart pole balancing (also known as the inverted
pendulum task).

In the following sections we describe the particular domains in
detail. For each of them we discuss the possible ways of represent-
ing decision-making policies and present the performance measures
employed in the experiments to evaluate the learning results and com-
pare particular learning methods. Moreover, we also provide a brief
survey of the previous research conducted in each of the considered
domains.

47

48 experimental domains

(a) Othello initial board state. Black to
move.

(b) Board state after black’s move. White
to move.

Figure 5.1: Othello boards with legal moves marked as shaded locations.

5.1 othello

A minute to learn. . . a lifetime to master is the motto of the game of
Othello. Indeed, despite its apparent simplicity, it is one of the most
challenging board games with numerous tournaments and regular
world championship matches. The exact origin of the game is un-
known but rumors say that it arose from an old Chinese game called
Fan Mian [78]. Contemporarily, Othello was proposed in 19th century
by Lewis Waterman, who marketed it under the name Reversi [149].History of Othello

Both names ‘Othello’ and ‘Reversi’ are often used interchangeably to-
day. The modern rules of Othello, which are standardized around the
world now, have been proposed and popularized in Japan by Goro
Hasegawa [80]. The name of the game refers to William Shakespeare’s
drama “Othello, the Moor of Venice” [175], to illustrate that the game
is full of dramatic reversals caused by the rapid changes in dominance
on the board.

5.1.1 Othello Game Rules

The game of Othello is a deterministic, perfect information, zero-sum
board game played by two players on an 8× 8 board. Typically, pieces
are disks with a white and black face, each face representing one
player. Figure 5.1a shows the initial state of the board; each playerInitial game setup

starts with two pieces in the middle of the grid. The black player
moves first, placing a piece, black face up, on one of four shaded
locations. Figure 5.1b illustrates the board state resulting from one of
possible moves of the black player. Players make moves alternately by
placing their pieces on the board until neither of them is able to make
a legal move.

5.1 othello 49

A legal move consists in placing a piece on an empty square and
flipping the appropriate pieces. To place a new piece, two conditions
must be fulfilled. Firstly, the position of the piece must be adjacent to
an opponent’s piece. Secondly, the new piece and some other piece
of the player must form a vertical, horizontal, or diagonal line with a
contiguous sequence of opponent’s pieces in between. After placing Making legal moves

the piece, all such opponent’s pieces are flipped; if multiple lines
exist, flipping affects all of them. This makes the game particularly
dramatic — a single move may gain the player a large number of
pieces and swap players’ chances of winning. A legal move requires
flipping at least one of the opponent’s pieces. Making a move in each
turn is mandatory, unless there are no legal moves. The game ends
when both players have no legal moves. The objective of the game is
to have the majority of pieces on the board at the end of the game.
If both players have the same number of disks, the game ends in a
draw.

5.1.2 Policy Representations

Since the number of states in the game of Othello is too large to
represent the policy directly as a state-action mapping, we need to
employ an indirect representation of policy. For this aim, we can Function

approximationapproximate either state value function or action value function, as
already discussed in Section 2.2.1.2.

In the context of games, state value function plays the role of po-
sition evaluation function [176] which, given a state (a board game
position), returns a scalar value indicating how beneficial the state
is for the player. If it is possible to compute the resulting afterstates Position evaluation

functionfor each possible action (what we assume here), we can evaluate them
with the position evaluation function and choose the most favorable
move. Since typically an evaluation function is more accurate near the
end of a game, it can be combined with a deeper minimax game tree
search to flexibly balance between computation time and evaluation
accuracy.

Although action value functions have also been used in practice
[62], most recent works on learning Othello strategies have focused
on state value functions [120, 126], and we follow that trend in this
thesis. Moreover, we focus our research on comparison between learn-
ing methods rather than developing efficient tree search algorithms 1-ply search

or designing new representation of policies. For this reason, to select
a move, we evaluate all states at 1-ply — when a player is to make
a move, it expands the current game state to all possible direct af-
terstates and evaluates each of them using the position evaluation
function f . The state gauged as the most valuable determines the
move to be made. Ties are resolved at random.

50 experimental domains

Evaluation function architecture Number of weights References

Weighted Piece Counter (WPC) 64 [120, 232]

Multilayer Perceptron (MLP) 2 144 (flexible) [18, 102]

Spatial Neural Network 5 900 [29, 30]

N-Tuple Network 8 748 (flexible) [117, 126]

Table 5.1: Evaluation function architectures supported by the Othello Posi-
tion Evaluation Function League.

5.1.2.1 Popular Position Evaluation Functions and the Othello League

A good overview of different function architectures used to evalu-
ate Othello positions is provided by Lucas and Runarsson in their
Othello Position Evaluation Function League1. Table 5.1 shows the
architectures acceptable in the league and the number of parameters
(weights) employed by each of them. If the number of weights is
flexible, like for MLPs or n-tuple networks, we refer to the specific
settings from the papers listed in the table.

To represent game-playing policies, in our experiments we employ
both Weighted Piece Counters (WPCs) and n-tuple networks, which
are precisely described in Sections 5.1.2.2 and 5.1.2.4, respectively.Othello League

player architectures WPC is the simplest possible architecture, which may be viewed as
an artificial neural network comprising a single linear neuron with
inputs connected to all 64 board locations. It assigns a single weight
to each location and calculates the utility of a given board state by
multiplying the weights by color-based values of the pieces occupying
corresponding locations. Regarding the league results, all the best
players submitted to the competition are based on more complex
architectures than WPC, such as n-tuple networks. Such functions
operate in a highly non-linear fashion and typically involve much
larger number of parameters.

As a side note regarding the Othello League, apart from the compe-
titions held among submitted evaluation functions [118], there is an
online trial league2 based on the score obtained in 100 games played
at 1-ply (in which 10% of moves are forced to be random) against
the standard WPC heuristic (swh) player. The weights of the swhTrial league vs.

heuristic player player handcrafted by Yoshioka et al. [232] are illustrated in Table
5.2 and visualized in Fig. 5.2a. We adopt the score obtained against
this benchmark player as one of the performance measures used in
our experiments to compare policies developed by different learning
methods (see Section 5.1.3). Additionally, to make the comparison
more informative, we employed also the best players submitted to
the league as opponents in round robin tournaments.

1 http://algoval.essex.ac.uk:8080/othello/html/Othello.html
2 http://algoval.essex.ac.uk:8080/othello/League.jsp

http://algoval.essex.ac.uk:8080/othello/html/Othello.html
http://algoval.essex.ac.uk:8080/othello/League.jsp

5.1 othello 51

1.00 −0.25 0.10 0.05 0.05 0.10 −0.25 1.00

−0.25 −0.25 0.01 0.01 0.01 0.01 −0.25 −0.25

0.10 0.01 0.05 0.02 0.02 0.05 0.01 0.10

0.05 0.01 0.02 0.01 0.01 0.02 0.01 0.05

0.05 0.01 0.02 0.01 0.01 0.02 0.01 0.05

0.10 0.01 0.05 0.02 0.02 0.05 0.01 0.10

−0.25 −0.25 0.01 0.01 0.01 0.01 −0.25 −0.25

1.00 −0.25 0.10 0.05 0.05 0.10 −0.25 1.00

Table 5.2: The weight matrix of the swh player.

5.1.2.2 The Weighted Piece Counter Architecture

The Weighted Piece Counter (WPC) architecture relies on a heuristic
assumption that to judge the utility of a particular board state it is
enough to independently consider the occupancy of every board loca-
tion. For this reason, WPC assigns a weight wi to each board location WPC operation

i and uses scalar product to calculate the value of position evaluation
function f for a given board state b:

f (b) =
8×8

∑
i=1

wibi, (5.1)

where bi is +1, −1, or 0 if, respectively, location i is occupied by a
black piece, white piece, or empty. The players interpret the values of
f in a complementary manner: the black player prefers moves leading
to states with larger values while the smaller values are favored by
the white player.

The main advantage of WPC is its simplicity, resulting in very fast
board evaluation. Moreover, a policy represented by a WPC can be
easily interpreted just by inspecting the weight values. For instance, Advantages of WPC

Table 5.2 presents the weight matrix of the swh player which clearly
focuses at taking possession of the corners because they feature the
highest values. Additionally, WPC weights can be also presented in a
more illustrative way by means of a weight-proportional coloring as
in Fig. 5.2a (darker squares denote larger weights, i.e., more desirable
locations on the board).

The handcrafted swh weights (Fig. 5.2a) illustrate the importance of
the corners of the Othello board. These are the only squares that once
occupied by a player, can never be captured by its opponent. While
the corners are the most desirable, their immediate neighbors have
very low weights. Such configuration indicates that placing disks on
neighboring locations should be avoided to prevent the opponent
from capturing a corner. This feature of the game is confirmed in
practice: placing a stone in a corner can gain a player a large number
of points and revert the previously anticipated game outcome.

52 experimental domains

variable

−0.25

0.00

0.25

0.50

0.75

1.00

weight
value

(a) Othello board colored proportionally to
corresponding swh player weights.

B BA D ACC D

FGG EB E BF

HF CIH I FC

D GJJG I DI

I J IJGD DG

IH CFHIC F

BGFB FGE E

ABCDDCBA

(b) Othello board symmetries.
Squares that are equivalent
under symmetry are marked
with the same letter.

Figure 5.2: Othello board illustrations that indicate swh player weights and
board symmetries.

5.1.2.3 The Shared Weighted Piece Counter Architecture

Although the WPC architecture contains 64 independent weights as-
sociated with particular board locations, some weights play very simi-
lar role due to symmetries in Othello board. For instance, the weightsOthello board

symmetries of the handcrafted swh player illustrated in Fig. 5.2a are symmetric
under reflection and rotation. The Othello board symmetries are vi-
sualized in Fig. 5.2b which illustrates 10 types of locations that play
unique roles in the Othello board. Squares marked with the same
letter can be seen equivalent if symmetries are taken into account.

Lucas [117] reported that enforcing symmetry of WPC weights and
thus reducing the number of parameters to only 10 weights can in-
crease the learning speed. Sharing weights across symmetric locationsSharing WPC

weights have been found successful also in other works [207]. We implement
this idea and term the WPC with symmetric weight matrix Shared
Weighted Piece Counter (SWPC). Symmetries of the Othello board
are exploited also by the n-tuple networks described below.

5.1.2.4 The N-tuple Network Architecture

The idea of n-tuple networks was originated by Bledsoe and Brown-
ing [20] for character recognition. Since then it has been successfullyOrigins of n-tuple

networks applied to both classification [161] and function approximation tasks
[104]. Their main advantages include conceptual simplicity, speed of
operation, and capability of realizing non-linear mappings of com-
binatorial characteristics. Following significant research on using n-
tuple classifiers for hand-written digits [119] and face recognition
problems [116], Lucas proposed employing the n-tuple architecture
also for game-playing purposes [117].

5.1 othello 53

2 0 1

1 0 2
0

Figure 5.3: Two sample n-tuples superimposed on the Othello board. Each
input location represents a ternary digit. Multiplying them by
successive powers of 3 leads to decimal values of 2 · 32 + 0 · 31 +
1 · 30 = 19 and 1 · 33 + 0 · 32 + 2 · 31 + 0 · 30 = 33, which are used
as indexes in the associated look-up tables.

An n-tuple network expects as input some compound entity (ma-
trix, tensor, image) x, which elements (usually scalar variables) can
be retrieved using some form of coordinates. An n-tuple network Network operation

operates by sampling that input object with m n-tuples. An n-tuple
ti, i = 1, . . . , m, is a sequence of n variables aij,j = 0 . . . n − 1, each
corresponding to predetermined coordinates in the input. Assuming
that each variable in x takes on one of v possible values, an n-tuple
can be viewed as a template for an n-digit number in base-v numeral
system. When a specific input x is given, it assumes one of vn possible
values. The number represented by the n-tuple ti is used as an index
in an associated look-up table LUTi, which contains parameters anal-
ogous to weights in standard neural networks. For a given input x,
the output of the n-tuple network can be calculated as:

f (x) =
m−1

∑
i=0

fi(x) =
m−1

∑
i=0

LUTi

[
n−1

∑
j=0

x(aij)vj

]
, (5.2)

where x(aij) denotes the element located at position aij in x.
In the context of Othello, an n-tuple network acts as a state evalua-

tion function. It takes a board state as an input x and returns its utility. N-tuple network for
OthelloInput variables are identified with coordinates on the board, and the

value retrieved from a single location is 0, 2, or 1 if, respectively, it
is occupied by a white piece, black piece, or is empty. Consequently,
an n-tuple represents a ternary number which is used as an index
for the associated look-up table containing 3n entries (see Fig. 5.3).
Additionally, board symmetries are incorporated (though not shown
in this figure) — a single n-tuple is employed eight times, once for
each possible board reflection and rotation. LUT values indexed by
all such equivalents are summed together to form the output of the
particular n-tuple. The final value of a board is simply the sum of all
n-tuple outputs (Equation 5.2).

54 experimental domains

Reward scheme
Reward value

win draw loss

Three points for a win [44] 3 1 0

Othello League scoring [118] 1 0.5 0

Table 5.3: Reward schemes employed in Othello tasks.

The number of possible n-tuple instances is exponential in func-
tion of the size of x and n, so assigning the initial input variables
(board locations) to n-tuples is an important design choice. Typically,Input assignment

in pattern recognition the simplest approach of random selection of
coordinates is commonly used. However, in the context of games, the
spatial neighborhood of chosen locations is intuitively relevant. For
this reason, and particularly for Othello, connected sets of locations
like a straight line or a rectangle area are usually chosen. In our im-
plementation we allowed for more flexible assignments in the form
of snake shapes, proposed by Lucas [117]. For each n-tuple, we choose
a random square on the board from which a random walk of n− 1
steps in any of the maximum eight possible directions is taken.

5.1.3 Performance Measures

To monitor the progress of learning in the Othello domain, we employ
several performance measures for evaluating policies. Given a policy
π, each measure is based on calculating the expected cumulative re-
ward, i.e., the policy return J(π), in one or more MDP tasks. In theseOthello game as an

MDP task tasks, the state space contains all possible Othello board positions
while the actions are legal moves. Reward is granted only at the end
of the game and is determined by the game outcome. Specific values
of rewards are defined by the reward schemes presented in Table 5.3.

In the performance measures described below, each game-playing
task is posed by a certain opponent which is treated as a part of
the environment as it determines the transition function. Importantly,
when a policy is evaluated in a given task it can be used either by a
black or white player. Technically, we simulate the same number of
games for both these scenarios.

5.1.3.1 Standard WPC Heuristic Player

To assess how well a policy copes with a moderately strong opponent,
we evaluate it in a single task posed by the standard WPC heuristic
(swh) player. This human-designed opponent is used in the online
Othello League (see Section 5.1.2.1) as well as in many previous works
on Othello [18, 207, 120, 168]. The weights of the WPC policy used by
this player are shown in Table 5.2 and in Fig. 5.2a.

5.1 othello 55

Since the game itself is deterministic, we force both players to make
random moves with probability ε = 0.1 to diversify their behaviors
and we use the average policy return in a number of games as a
performance measure. Following Lucas and Runarsson [120], we as- Move randomization

sume that the ability of playing such a randomized game is highly
correlated with the ability of playing the original Othello.

5.1.3.2 Round-Robin Tournament

A handcrafted heuristic policy like swh, even when randomized, can-
not be expected to represent in full the richness of possible oppo-
nent policies. In order to compare different learning methods in a Relative

performance
measure

wider context, in some of the experiments conducted in this thesis
we employ a relative performance measure based on a round-robin
tournament between the policies developed by particular methods.
For this purpose we recruit teams of diverse opponents composed
of the policies representing these methods and play a tournament,
where each team member is confronted with all members from the
opponent teams. The final performance of a team (representing a
learning method) is determined as the sum of rewards obtained by
its policies in the tournament.

Let us notice that the round-robin tournament offers yet another
advantage: there is no need to randomize moves (as it was the case
when playing against a single external player), since the presence of
multiple policies in the opponent team naturally provides behavioral
variability.

5.1.3.3 Othello League Contestants

Thanks to the courtesy of the Othello League organizers (see Section
5.1.2.1), we were provided with the strategies submitted to the league
by anonymous contestants. From the several hundreds submitted to External pool of

opponentsthe league, we selected the top 14 strategies to form a pool of oppo-
nents. To evaluate a given policy we compute its cumulative return
in games with every opponent in the pool. It is worth noticing that
this performance measure, by being based on highly skilled players,
should be considered as the most demanding one in comparison to
the remaining measures.

5.1.3.4 Expected Utility

A fully objective assessment of the policy would consist in playing
against all possible Othello opponents. However, the huge number of
opponent policies makes the explicit computation of such expected
utility measure impossible. We can only estimate it by calculating Generalization

performancethe score obtained in a limited number of games against randomly
generated WPC policies. Clearly, this measure evaluates how well a
policy generalized across the entire domain of Othello tasks.

56 experimental domains

The expected utility measure corresponds to the maximization of
expected utility solution concept [56] in co-optimization (cf. Section 4.2.2)
and is also referred to as generalization performance [31, 33].

5.1.4 Previous Research on Computer Othello

The game of Othello has been a subject of artificial intelligence re-
search for more than 20 years. The significant interest in this game
may be explained by its simple rules, large state space cardinality
(around 1028) and high divergence rate3. All these reasons combined
cause Othello to stay unsolved — a perfect Othello player has not been
created yet (as opposed to, e.g., checkers). Thus, Othello remains an
excellent benchmark for learning algorithms and player architectures.

Conventional Othello-playing programs are based on thorough hu-
man analysis of the game, materialized in sophisticated handcrafted
evaluation functions. They often incorporate supervised learning tech-Traditional approach

niques that use large expert-labeled game databases and efficient
look-ahead game tree search. One of the first examples representing
such approach was BILL [112]. Besides using pre-computed tables
of board patterns, it employed Bayesian learning to build in certain
features into an evaluation function.

Today, one of the most known Othello programs is Logistello [27],
which makes use of advanced search techniques and applies several
methods to learn from previous games. Its evaluation function isLogistello

based on a pre-defined pattern set including horizontal, vertical and
diagonal lines as well as special patterns covering edges and corners
of the board. Pattern configurations correspond to binary features
and have associated values. Evaluating a board state consists in sum-
ming up the values of features occurring in it, and thus, is practically
equivalent to calculating the value of an n-tuple network.

Recently, the mainstream research on Othello has moved towards
better understanding of what types of learning algorithms and player
architectures work best. The series of CEC Othello Competitions [118]Recent trends

pursued this direction by limiting the ply depth to one, effectively dis-
qualifying the algorithms that employ a brute-force game tree search.

The most challenging scenario of elaborating a game-playing pol-
icy is learning without any support of human knowledge or expert
opponents known in advance. This task formulation is addressed by,
among others, self-play temporal difference learning and coevolution-
ary learning, which were applied to Othello by Lucas and Runarsson
[120]. Other examples of using self-learning approaches for OthelloKnowledge-free

approach include coevolution of spatially aware MLPs [30], TD-leaf learning
of structured neural networks [207], and Nash Memory applied for
coevolved n-tuple networks [126].

3 Divergence rate describes the average difference between board positions that can
be reached with a single move from a given state [67].

5.2 small-board go 57

5.2 small-board go

The game of Go is believed to have originated about 4000 years ago
in Central Asia, which makes it one of the oldest known board games.
Although the game itself is very difficult to master, its rules are rela-
tively simple and comprehensible. For this reason the famous chess
player, Edward Lasker [110], summarized Go in the following way:

While the Baroque rules of Chess could only have been cre-
ated by humans, the rules of Go are so elegant, organic, and
rigorously logical that if intelligent life forms exist elsewhere in
the universe, they almost certainly play Go.

5.2.1 Original Game Rules

Go is played by two players, black and white, typically on an 19× 19
board. Players make moves alternately, blacks first, by placing their
stones on unoccupied intersections of the grid formed by the board.
At any time the player who is about to move may pass his turn. The
game ends if both players pass consecutively.

In a broad sense, the objective of the game is to control more terri-
tory than the opponent at the end of the game. This can be achieved Game objective

by forming connected stone groups enclosing as many vacant points
and opponent’s stones as possible. A stone group is a set of stones
of the same color adjacent to each other; empty intersections adjacent
to a group constitute its liberties. When a group loses its last liberty,
i.e., becomes completely surrounded by opponent’s stones or edges
of the board, then it is captured and removed.

A legal move consists in placing a piece on an empty intersec-
tion and capturing enemy groups which are left without liberties (if
any). Additional restrictions on making moves concern suicides and Legal moves

so called ko rule. A suicide is a potential move that would reduce the
number of liberties of player’s own group to zero. Moves leading
to suicides are illegal. Ko rule states that a move that recreates a
previous board state (i.e., the arrangement of stones on the board)
is not allowed either.

The winner is the player who scores more points at the end of
the game. The scores are determined using a scoring system agreed
upon before the game; the two popular systems include area counting
(Chinese) and territory counting (Japanese). Both ways of calculating Scoring systems

the score of a player involves the number of empty intersections sur-
rounded by the player (player’s territory). This figure is augmented
by the number of player’s stones on the board in the area counting
system, or by the number of captured stones (prisoners) in the territory
counting system. In this thesis we use the Chinese scoring scheme
with no komi (i.e., no points given in advance to one of the players).

58 experimental domains

The reader interested in more detailed description of Go rules is re-
ferred to the book by Bozulich [23].

5.2.2 Adopted Computer Go Rules

There are a few noteworthy issues about the rules of Go that make
developing computer players particularly difficult. For this reason, we
restrict our research a simplified version of Go, described in following
and well adopted in the computational intelligence community.

First of all, the immense cardinality of the state space and the
large branching factor render full-board Go intractable for many al-
gorithms. Fortunately, the game rules are flexible enough to be easilySmall-board Go

adapted to smaller boards without loss of the underlying ‘spirit’ of
the game, so in a great part of studies on computer Go the board is
downgraded to 9× 9 or 5× 5. Following Runarsson and Lucas [164]
and Lubberts and Miikkulainen [115], we consider playing Go on a
5× 5 board (see Fig. 5.4).

A more subtle difficulty in adopting Go rules to computer pro-
grams concerns the fact that game termination criterion is in a sense
subjective here, i.e., human players end a game after they agree that
they can gain no further advantages. In such situations they use a
substantial amount of knowledge to recognize particular intersections
as implicitly controlled. According to the game rules, if it is impossibleControlled

intersections to prevent a group from being captured, it is not necessary to capture
it explicitly in order to gain its territory. Such a group is considered
as dead and it is removed at the end of the game when both players
decide which groups would inevitably be captured. Because deter-
mining which stones are dead is nontrivial for computer Go players,
we assume that all groups on the board are alive and that capturing
is the only way to remove an opponent’s group. As a consequence,
games are usually continued until all intersections are explicitly con-
trolled and, thus, are much longer than those played by humans.

Finally, in some Go rule sets (including the Chinese rules that we
employ), the ko rule is superseded by super-ko that forbids repetition
of board states during a game. Recurrently appearing states implySuper-ko rule

cycling and, theoretically, an infinite game. However, strict implemen-
tation of super-ko requires storing all previous board configurations
and comparing each of them to the current state. Since most of pos-
sible cycles are not longer than 3, we use a reasonable approach in
which we remember just two previous board configurations. How-
ever, longer cycles can still occur, so to ensure that the game ends,
an upper limit of 125 on the total number of moves is additionally
imposed. Exceeding this limit results in declaring game’s result as a
draw.

5.2 small-board go 59

(a) An example of game position. variable

−0.1

0.0

0.1

0.2

0.3

weight
value

(b) Go board colored proportionally to
heuristic WPC weights.

Figure 5.4: Small-board version of Go.

5.2.3 Policy Representations

Due to huge number of possible small-board states, Go policies, sim-
ilarly to Othello, can not be represented explicitly. For this reason,
we employ weighted piece counters (WPCs, see Section 5.1.2.2) to
implement the position evaluation function f . Using WPCs implies WPC and direct

board representationthe simplest form of board representation (known as Koten [128]),
in which exactly one input for each intersection is provided to the
evaluation function f . Although such an input signal does not carry
information about neighboring intersections, which seems to be es-
sential in Go, it has been frequently used in related studies [164, 172].

The fact that WPC weighs occupancy of each board intersection
independently makes it probably the least sophisticated policy rep-
resentation for the game of Go. One can discuss whether WPC is Lack of spatial

contextappropriate for the game that exhibits such strong spatial coherence
[177]. In objective terms therefore, we do not anticipate the policies
represented in this way to beat the top-ranked computer players.
However, in the context of this thesis this should not be perceived as
a hindrance, as our primary goal is to investigate the performance of
learning and shaping methods. Still, we postulate that at least some
of the conclusions can be generalized to other, more sophisticated
policy representations.

On the other hand, WPC’s simplicity and positional character bring
substantial advantages, fast board evaluation being the most promi-
nent one. As in Othello, WPC policies can be also easily visualized Hand-crafted WPC

policyby coloring board locations according to corresponding weights, as
illustrated in Fig. 5.4b (darker squares denote larger weights, i.e.,
more desirable locations on the board). The figure presents a hand-
crafted WPC policy based on a best player found by Runarsson and
Lucas [164]. Table 5.4 presents the weight matrix of this player, which
clearly aims at occupying the center of the board while avoiding the
corners.

60 experimental domains

−0.10 0.20 0.15 0.20 −0.10

0.20 0.25 0.25 0.25 0.20

0.10 0.30 0.25 0.30 0.10

0.20 0.25 0.25 0.25 0.20

−0.10 0.20 0.15 0.20 −0.10

Table 5.4: The weight matrix of the heuristics player.

5.2.4 Performance Measures

To evaluate a policy for the game of small-board Go, we rely on
similar performance measures to those used for Othello (cf. Section
5.1.3). In particular, we employ the round-robin tournament and two
human-designed opponents described below.

5.2.4.1 Heuristic WPC Player

Analogously to the swh player used in the Othello domain (see Sec-
tion 5.1.3.1), we hand-crafted a heuristic player based on the WPC
policy representation to evaluate policies for the game of small-board
Go. Table 5.4 illustrates the weight matrix of this player, which is
based on the strategy developed by Runarsson and Lucas [164].

All WPC-based policies are deterministic and so is the game of Go.
Thus, in order to estimate player’s probability of winning against
the WPC heuristic player, we force both players to make random
moves with probability ε = 0.1; this allows us to take into account
a richer repertoire of players’ behaviors and make the resulting esti-
mates more continuous and robust.

5.2.4.2 Liberty Player

To provide another, qualitatively different benchmark for the devel-
oped methods we created a simple game-specific heuristic strategy
based on the concept of liberties (described in Section 5.2.1). This
strategy, called here Liberty Player looks 1-ply ahead and evaluates
a position by subtracting the number of opponent liberties from the
number of its own liberties. Ties are resolved randomly. As with the
heuristic WPC player, both players are forced to make random moves
with probability ε = 0.1.

5.2.5 Previous Research on Computer Go

The game of Go has been a subject of computational intelligence re-
search for more than 40 years and it is increasingly recognized as a
great challenge because the best computer players can still be beaten
by professional human players in full-board games [96, 129]. This is

5.2 small-board go 61

a result of a huge combinatorial complexity of this game, which is
much higher than for other popular two-player deterministic board
games. The state space cardinality in Go is around 10170 and the game
tree has an average branching factor of around 200. For this reason a
lot of research on computer Go focuses on the versions with smaller
boards, like 9× 9 or even 5× 5.

Many Go-playing programs are precisely tuned expert systems based
on a thorough human analysis of the game. In such programs, knowl- Hand-coded Go

programsedge of professional Go players formulated as a multitude of rules
and guidelines is implemented in a game-playing algorithm in order
to recognize particular board patterns and react to them. However,
this knowledge-based approach is constrained by the extent and qual-
ity of the available knowledge and the possibility of its articulation in
the source code of the playing program.

An appealing alternative to using hand-coded expert rules is an
approach based on Monte Carlo Tree Search techniques [22], which by
contrast, requires very little domain knowledge. This method chooses Monte Carlo

techniquesa move on the basis of statistics collected during thousands of random
playouts starting from the current board state. One of the strongest
Go programs using this approach is Fuego [52], the champion of 2009
Computer Olympiad in 9× 9 Go, which has recently defeated 9-dan
professional player on the same board size. Another major program,
Many Faces of Go [64], champion of 2008, uses an interesting combi-
nation of Monte Carlo Tree Search with an older knowledge-based
approach.

Nevertheless, in Go as in Othello, the approach that is most inspir-
ing from the AI perspective is learning policies without any reference
to human knowledge or game strategy given a priori. This approach Self-learning

approachis represented by, e.g., self-play temporal difference learning and co-
evolutionary learning, which were investigated and compared in the
context of small-board Go by Runarsson and Lucas [164]. There are
more examples of using self-learning approaches for Go including
the studies by Lubberts and Miikkulainen [115] and Schraudolph et al.
[172]. A comprehensive review of all AI methods applied to computer
Go can be found in a survey by Bouzy and Cazenave [21].

62 experimental domains

5.3 cart pole balancing

Cart pole balancing is a standard benchmark problem in the field
of control theory and for over 50 years has been widely used to
demonstrate the performance of machine learning methods [4, 66].Alternative names

The problem is also known by the name of inverted pendulum problem
[3], while in the early work of Widrow and Smith [222] it is originally
described as a broom-balancing machine:

The dynamic system is a motorized cart carrying an inverted
pendulum. The controller for the system is required to keep the
pendulum balanced and keep the cart within certain bounds by
applying a horizontal force to the cart. . . . This is similar to a
person trying to balance a broom on his finger.
(Widrow and Smith [222], p. 312)

There are several reasons that explain the popularity of this prob-
lem in reinforcement learning community. Apart from being easyReasons of

popularity to understand and visualize (see Fig. 5.5), it involves the hallmark
challenge of temporal credit assignment — the feedback signal occurs
only after a long sequence of actions, when the pole falls or the cart
hits the track boundary. Moreover, as noted by Wieland [223]:

The problem is of interest because it describes an inherently
unstable system and is representative of a wide class of problems.
(Wieland [223], p. 667)

For instance, the inverted pendulum problem is related to rocket and
missile guidance [74]. Besides, it was also used as a testbed for learn-
ing strategies for satellite attitude control [166].

Finally, although the standard version of the problem is relatively
easy and can be solved with a single linear neuron [222] and a ran-
dom search in its weight space [66, 75], there are many extensions ofProblem variations

the problem that make it more challenging, even for modern learn-
ing methods. The most commonly used variations include adding
a second pole, using a jointed pole [223], or restricting the amount
of available state information. The last variation makes the problem
non-Markovian and requires to employ short term memory [73].

5.3.1 Physical Model

The canonical version of the single pole balancing problem, which is
described in the influential studies of Michie and Chambers [131] and
Barto et al. [13], is schematically illustrated in Fig. 5.5. A rigid pole
(pendulum) of length 2l and mass m is mounted on a wheeled cart of
mass M. The movement of the cart is restricted to one-dimensional
bounded track and the pole can only swing in a vertical plane defined
by the track. The objective is to balance the pole by exerting horizontal

5.3 cart pole balancing 63

xx = 0

✓

~F

2l

M

m

Figure 5.5: Single pole balancing problem.

force F on the cart, either from the left or from the right side. The
balancing attempt fails when the pendulum inclination θ exceeds the
given limit or when the cart reaches the track boundaries.

The state of the system is described by four real-valued variables:

• x — the position of the cart measured as the distance from the
center of the track,

• ẋ — the velocity of the cart,

• θ — the angle of the pole,

• θ̇— the angular velocity of the pole.

The dynamics of the system is modeled by the following differential
equations [223]:

ẍ =
F + mlθ̇2 sin θ + 3

4 m cos θ
(

µp θ̇
ml + g sin θ

)
− µc sgn(ẋ)

M + m
(
1− 3

4 cos2 θ
) (5.3)

θ̈ = − 3
4l

(
ẍ cos θ + g sin θ +

µp θ̇

ml

)
, (5.4)

where g denotes the gravitational acceleration, µc is the coefficient of
friction between the cart and the track and µp is the friction coefficient
of the hinge between the cart and the pole.

64 experimental domains

5.3.2 Pole Balancing as an MDP Task

Controlling the cart can be naturally formulated as an undiscounted
episodic MDP task, in which states are represented by tuples of the
form (x, ẋ, θ, θ̇), actions are the forces applied to the cart, and the
transition function is defined by the motion equations (5.3 and 5.4).States, actions and

transitions In the initial state, the cart is placed in the centre of the track, i.e.
x = 0, and the pole inclination θ is set to nonzero value θ0, so the
system cannot be balanced just by applying no force at all.

At each discrete time step t (every T seconds of the simulated time),
the control policy must provide the force as a signed real value from
a certain range. A positive reward equal to 1 is awarded for each timeReward scheme

step before failure. Consequently, the return of the policy (i.e. the total
reward) is equal to the number of steps for which the pole was kept
in balance. We adopt this reward definition throughout this thesis; an
alternative reward scheme consists in providing only a single reward
equal to −1 directly after a failure [13].

In contrast to game-playing domains, in pole balancing tasks both
the state space and the action space are continuous. For such tasks,Continuous space

artificial neural networks (ANNs) are particularly well suited to rep-
resent controller policies. Moreover, in many previous studies ANNs
have been successfully applied to different variants of the pole bal-
ancing problem [3, 46, 75, 90]. In our experiments we rely on MLPs
(see Section 2.2.1.1) with four inputs corresponding to state variables
and a single output specifying the amount of force used to push the
cart. Typically, the state variables are scaled to the same range before
being input to the network.

The most common choices of parameters and limits for the canon-
ical variant of the pole balancing task [13] are presented in Table 5.5.Standard parameter

setting Note that, to provide more realistic environment, the force is clamped,
so an agent cannot push the cart arbitrarily strongly. Moreover, the
pole’s inclination is also limited, because falling outside the given
interval is considered as a failure.

5.3.3 Performance Measure

Since the fully observable single pole balancing task can be easily
solved by a single neuron and random weight guessing [71], it can
not be used to reliably evaluate and compare capabilities of learning
methods. To make the problem more challenging, in our experiments
we attempt to learn a policy that is able to generalize across many
tasks from the pole balancing domain.

Consequently, to evaluate the policy we simulate a series of runs
in many tasks and calculate the average policy return which is anExpected utility

estimate of its expected utility. A similar performance measure was
employed by Whitley et al. [221], who measured the generality of pole

5.3 cart pole balancing 65

Symbol Description Value

x position of the cart on the track [−2.4 m, 2.4 m]

θ inclination of the pole [−12°, 12°]

F force applied to the cart [−10 N, 10 N]

l half length of the pole 0.5 m

m mass of the pole 0.1 kg

M mass of the cart 1.0 kg

µc track friction coefficient 0.0005

µp pole’s hinge friction coefficient 0.000002

θ0 initial pole inclination 1°

T simulation time step 0.02 s

g gravitational acceleration −9.81 m/s2

Table 5.5: Standard parameter setting of cart pole balancing problem.

balancing controllers by using a fixed set of 625 initial states. Here,
instead of modifying the initial state, we consider tasks with different
physical properties such as the length of the pole or the mass of the
cart. Importantly, these parameters affect the transition function of
the original MDP task. Detailed experimental settings concerning the
multi-task pole balancing domain are discussed in Chapter 7.

Each simulated run starts from the state (0, 0, 1°, 0) and the simu-
lation ends when balancing fails or after predetermined number of
time steps. The dynamics of the environment is implemented using Simulation details

the fourth order Runge-Kutta integration [48] with a step size of
0.01 s. The implementation of the environment is based on the freely
available source code by Faustino Gomez [71].

5.3.4 Previous Research on Pole Balancing

Many learning algorithms have been applied to the pole balancing
problem and its variations. In one of the earliest works in this do-
main, Widrow and Smith [222] trained a single linear neuron using Supervised learning

approachsupervised learning. For this purpose, they required prior knowledge
of the correct control policy so they computed it by linearizing the
dynamics of the system and applying conventional control theory
methods. On this basis they were able to calculate the error signal at
each time step and teach the neuron accordingly.

The pole balancing task described by Widrow and Smith [222] was
later adapted by Michie and Chambers [131]. They proposed the Early reinforcement

learning approachalgorithm called BOXES which can be regarded as one of the first
examples of reinforcement learning methods. The algorithm relied
on discretizing the space of states into regions called “boxes”. For

66 experimental domains

each box, the algorithm maintained an action indicating the force
to be applied when the given state was observed. The idea of state
space quantization was reused by Barto et al. [13], who proposed an
adaptive critic element (ACE) to train the neural network controller.
Importantly, all these early studies employed the so called “bang-
bang” control, in which only two actions are possible — the forces
of full magnitude in either direction, e.g. either 10 N or −10 N.

According to Gomez et al. [75], the recent works on pole balancing
problem can be divided into those that rely on a single agent (value
function based methods) and those relying on evolutionary (direct
policy search) techniques. The authors provide also empirical com-Single agent and

evolutionary
methods

parisons of these approaches and show that evolutionary methods
are generally more efficient, in particular for the more complex vari-
ants of the problem. This is one of the reasons why the single agent
methods have not been very popular for solving this task. Let us
just mention that this group of methods include temporal difference
learning (see Section 2.2.2) such as Q-learning, which was applied to
pole balancing by Lin and Mitchell [114].

The evolutionary approach, on the other hand, have been com-
monly applied especially in combination with neural networks. TheNeuroevolution

conventional neuroevolutionary approach (where each individual rep-
resents a complete network) was employed by Wieland [223], who
considered different variants of the problem including a jointed pole
and two poles of different lengths. The author employed recurrent
neural networks to solve both Markovian (with velocities given as
the part of the state description) and non-Markovian (with partially
observable state) versions of the problems.

In the context of pole balancing, the conventional neuroevolution
was outperformed by cooperative coevolutionary approach proposed
by Moriarty and Miikkulainen [137]. Their method called SymbioticCooperative

coevolution Adaptive Neuro-Evolution (SANE) evolves single neurons instead of
complete networks. The fitness of a neuron depends on the perfor-
mance of the network in which it participates. This work was ex-
tended by Gomez and Miikkulainen [73], who proposed Enforced
Sub-populations (ESP) which allowed to evolve recurrent neural net-
works. As a result, the method could be applied to solve the non-
Markovian variant of the double pole balancing task. Interestingly,
the authors observed that the hardest variant of the task is the one
with two poles of similar length. For this reason, they attempted
to facilitate learning by starting from the relatively easier tasks and
gradually increasing the length of the shorter pole. Such incremental
approach can be regarded as a form of supervised shaping.

An alternative neuroevolutionary method was applied by Igel [90],
who evolved neural network weights by CMA-ES, an efficient variantCMA-ES

of evolution strategies with self-adaptation of mutation distribution
[77]. The author considered a few pole balancing scenarios with one

5.3 cart pole balancing 67

or two poles and in both Markovian and non-Markovian versions.
When compared to other mentioned methods [75], this approach was
one of the most efficient.

6
C O E V O L U T I O N A RY T E M P O R A L D I F F E R E N C E
L E A R N I N G

The previous chapter provided a description of experimental domains
including two board games: Othello and small-board Go. This chapter
demonstrates how to learn to play these games with reinforcement
learning methods. In particular, we employ single-population coevo-
lution and self-play temporal difference learning, which both can be
seen as forms of shaping. Additionally, we introduce coevolutionary
temporal difference learning, a hybrid method that combines elements
of gradient-descent learning and population-based search.

Section 6.2 describes how to apply these methods to learn game-
playing policies represented by function approximators. Specifically,
we investigate empirical results of learning n-tuple networks for Oth-
ello (Section 6.3) and weighted piece counters for small-board Go
(Section 6.4). We employ several performance measures to compare
both the effectiveness of learning methods and their scalability with
the size of policy representation. The main finding is that hybridiza-
tion of the learning techniques improves the final performance and
allows to cope with growing dimensionality of the search space.

6.1 introduction

Most board games inherently involve sequential decision making and
thus constitute natural test-beds for reinforcement learning methods.
One approach to learning game-playing policies is temporal differ-
ence learning (TDL, 2.2.2) which has become particularly popular Self-play TDL

after the influential work of Tesauro [197] and the success of his
TD-Gammon player. Importantly, TD-Gammon was able to learn to
play Backgammon at expert level solely by playing against itself. By
using such self-play training paradigm, it did not require any human
supervision or expert strategies given a priori.

An alternative approach to autonomously elaborating game poli-
cies is single-population coevolutionary learning (CEL). The most Single-population

CELpromising examples of this approach include successfully learning to
play Checkers [29, 63] and Backgammon [19]. Although CEL follows
the idea of self-teaching and breeds a population of policies by letting
them play against each other, the learning process is diametrically
different than that realized by gradient-descent TDL. In particular,
CEL does not exploit all the training experience available from train-
ing games — it uses only the final game outcome (reward), while
ignoring the entire course of interactions.

69

70 coevolutionary temporal difference learning

Despite significant differences, these two learning methods can be
seen as conceptually derived from the same classic work of Samuel
[169] on the checkers playing program. The program was trained by
playing against a stable copy of itself and thus it has been considered
as the world’s first example of self-play training paradigm. The learn-Samuel’s legacy

ing procedure employed by Samuel is often referred to as an early
precursor of temporal difference learning:

Samuel was one of the first to make effective use of heuristic
search methods and of what we would now call temporal differ-
ence learning. (Sutton and Barto [189], p. 267)

On the other hand, Bucci [24] argues that Samuel’s learning algorithm
can be also framed as a specific form of two-population coevolution:

To elaborate the analogy with evolutionary computation,
Samuel’s procedure can be called a coevolutionary algorithm
with two populations of size 1, asynchronous population up-
dates, and domain-specific, deterministic variation operators.
(Bucci [24], p. 2)

From another perspective, both TDL and CEL can be regarded as
forms of shaping, although they do not fit exactly into our general
shaping framework (cf. Section 4.1). In fact, they are rather implicitShaping perspective

forms of shaping without separate mechanism responsible for provid-
ing training environments (such as, e.g., a second coevolving popula-
tion). Essentially however, they both conduct learning in a dynamic
environment which is expected to get more challenging while the
competence of learners increases. The analogies between coevolution
and shaping have been already discussed in Section 4.2.3. It’s worth
pointing out, howeveer, that self-play TDL has been also recognized
in the past as a successful example of shaping:

Gerald Tesauro’s Backgammon playing agent achieved master
level play through self-play . . . Self-play is a sort of shaping,
since at first the agent plays against a nearly random opponent
and thereby solves an easy task. The complexity of the task then
grows as the agent gets better at playing.
(Randløv and Alstrøm [160], p. 466)

Several papers directly compare the effectiveness of TDL and CEL
applied to games like Othello [120, 192, 207], small-board Go [164],
Backgammon [39] or the card game of Rummy [106]. Generally speak-TDL vs. CEL

ing, the reported results show that TDL and CEL exhibit complemen-
tary features. Typically, TDL learns much faster but then got stuck,
and, no matter how many training games it plays, does not improve
its performance. CEL, by contrast, progresses slower but, if properly
tuned, for some domains and specific policy representations can even-
tually outperform TDL.

6.2 learning game-playing policies 71

In this chapter, we ask whether it is possible to combine the advan-
tages of these two implicit forms of shaping in a single algorithm that
would develop better solutions than any of these methods on its own.
To this aim, we propose a hybrid method referred to as coevolutionary
temporal difference learning (CTDL, [192, 193]) that works by combining CTDL

elements of gradient-descent learning and population-based search.
To verify the potential synergistic effect of this combination, we apply
CTDL to learning n-tuple networks for Othello (see Section 6.3) and
WPCs for small-board Go (Section 6.4). Before we present the results
of conducted experiments, in the next section we discuss general
characteristics of the employed learning algorithms.

6.2 learning game-playing policies

For most nontrivial games, it is impossible to represent a policy di-
rectly as a mapping from states to actions, due to huge number of
states. Thus, typically, a more concise way of representing policies
needs to be employed (cf. Section 2.2.1). Importantly, the choice of
policy representation determines the size and characteristics of the
hypothesis space of the learning problem.

In this section we discuss TDL, CEL and CTDL in the context
of learning policies for perfect information deterministic zero-sum
board games. We assume that policies are represented as position Search perspective

evaluation functions (see Section 5.1.2) approximated by some sort of
neural networks. In such case, learning game-playing policies can be
naturally viewed as searching through a space of parameters of such
function approximators (a parametric policy space).

6.2.1 Temporal Difference Learning

The use of temporal difference learning for elaborating game-playing
policies stems from modeling board games as MDP tasks, where the
goal is to maximize the expected reward in the long run. In such tasks,
the state space contains all possible board positions while the actions
represent legal moves. The essential feature of this scenario is that the
actual reward is determined by the game outcome and thus it is not
known before the end of the game.

In this chapter we employ TDL in the form of gradient-descent
TD(λ) illustrated in Algorithm 2.1. Apart from setting parameters
like α, λ and ε, the algorithm requires a specification of the train-
ing MDP environment. Following the success of TD-Gammon, we Self-play MDP

environmentconduct learning in a self-play environment. Consequently, a policy
being learned is used to select actions for both players, alternately.
The rewards occur only in terminal states and equal to +1 if the
winner is black, −1 if white, and 0 when the game ends in a draw.

72 coevolutionary temporal difference learning

Technically, we use Algorithm 2.1 to adjust the weight vector ~θ

of a neural network that is used to calculate the value of position
evaluation function f . However, in principle, the algorithm attempts
to learn a state value function V~θ , which is closely related to f albeit
not necessarily identical. Unlike f which aims at relative ordering ofTechnical details

particular game states, V~θ predicts the expected return from the given
state till the end of the game. Under the assumed reward scheme,
this return is limited to the range [−1, 1]. Thus, to employ f as a
return predictor in the course of learning its values are subsequently
squeezed to this range using hyperbolic tangent. The same setting
was used in the previous works [120, 164]. Importantly, squeezing
the values of f does not change the policy it represents, as far as the
squeezing function is monotonically increasing.

6.2.2 Evolutionary and Coevolutionary Learning

In the context of searching the parametric policy space, TDL can be
seen as a single-point search with a gradient-based operator and as
such may not be able to escape from local optima [197]. EvolutionaryComplementary

alternative for TDL algorithms, described briefly in Section 2.2.3, have complementary
characteristics — they maintain a population of policies, but have
no means for calculating individually adjusted corrections for each
policy weight. That lessens the problem of local optima by its implicit
parallelism and random modification of candidate solutions. Conse-
quently, evolutionary computation seems to be an attractive comple-
mentary alternative for TDL for learning game-playing policies.

The main search driver in evolutionary search is fitness function.
However, one faces substantial difficulty when designing an abso-
lute fitness function for the task of learning game policies. A trulyObjective fitness

objective assessment of individual’s utility in case of games can be
done only by playing against all possible opponent policies. For the
majority of games this is computationally intractable. An alternative
is to consider only a limited number of opponents, and thus, lessen
the computational burden. In this case the sample of opponents used
for evaluation could be formed by a predefined expert player(s) or a
sample of random opponents [33].

In this light, coevolution is an appealing alternative that offers
a natural way of designing fitness function. In a single-population
coevolutionary algorithm (see Section 4.2.1), relative performance of
individuals is calculated on the basis of the results of their interac-
tions with other population members. In learning game policies, anRelative fitness

interaction consists in playing a game and increasing the fitness of
the winner while decreasing the fitness of the loser. In the evaluation
scheme adopted here, individuals play games with each other in a
round-robin fashion and the outcomes of these interactions determine
their fitness values.

6.2 learning game-playing policies 73

Algorithm 6.1 Coevolutionary temporal difference learning.
1: P ← Create Random Population()

2: Evaluate Population(P)
3: while ¬Termination Condition() do
4: S ← Select Parents(P)
5: P ← Recombine And Mutate(S)
6: for all ~θ ∈ P do
7: TDL(~θ)
8: end for
9: Evaluate Population(P)

10: end while
11: return Get Fittest Individual(P)

Evolutionary learning (EL) and coevolutionary learning (CEL) of
game policies used in this chapter follow the above presented ideas.
They typically start with generating a random initial population of
player individuals (policies). Individuals are evaluated with an objec- EL and CEL for

gamestive or relative fitness function for EL or CEL, respectively. The best
performing policies are selected, undergo genetic modifications such
as mutation and crossover, and their offspring replace some of (or all)
former individuals. In practice, this generic scheme is usually supple-
mented with various details which causes EL and CEL to embrace a
broad class of algorithms that have been successfully applied to many
two-person games, including Backgammon [152], Chess [81], Check-
ers [29, 63], NERO [185], Pong [135], and AntWars [93]. In particular,
Lucas and Runarsson used (1 + λ) and (1, λ) evolution strategies (cf.
Algorithm 2.3) to learn policies for the games of small-board Go [164]
and Othello [120].

6.2.3 Coevolutionary Temporal Difference Learning

In order to benefit from the complementary features of TDL and CEL,
it sounds reasonable to combine these approaches into a single hybrid
algorithm. Following this motivation, we proposed a method termed Combining TDL

and CELcoevolutionary temporal difference learning (CTDL, [192, 193]). CTDL
is a straightforward hybrid that exploits different characteristics of
the search process performed by each constituent method. It main-
tains a population of policies and alternately performs CEL and TDL.
In the CEL phase, individuals are evaluated on the basis of a round-
robin tournament and a new generation is obtained using standard
selection and variation operators. Then, in the TDL phase, each policy
is subject to a number of TD(λ) self-play training games. This succes-
sion of CEL and TDL repeats in cycles. The pseudocode of CTDL is
presented in Algorithm 6.1.

74 coevolutionary temporal difference learning

Other hybrids of TDL and CEL have been occasionally applied for
learning game-playing policies. Kim et al. [102] trained a population
of neural networks with TD(0) and used the resulting policies as an
initial population for the standard genetic algorithm with mutation as
the only variation operator. Singer [179] combined coevolution withRelated work

temporal difference learning which, as the author suggests, “may be
superior to random mutation as an engine for discovery of useful sub-
structures”. A similar approach with TDL used as a weight mutation
operator in a coevolutionary algorithm was recently investigated by
Manning [126]. Contrary to CTDL, which uses straightforward coevo-
lution with no long-term memory mechanism, the author employed
the Nash Memory algorithm [59] with bounded archives.

It is worth noticing that hybridization of evolutionary learning and
temporal difference learning can be considered as a form of memetic
algorithm. Memetic algorithms [139] are hybrid approaches couplingLamarckian

inheritance a population-based global search method with some form of local
improvement. Since these algorithms usually employ evolutionary
search, they are often referred to as Lamarckian Evolution, to com-
memorate Jean-Baptiste Lamarck who hypothesized, incorrectly in
the view of today’s neo-Darwinism, that the traits acquired by an
individual during its lifetime can be passed on to its offspring.

6.3 learning n-tuple networks for othello

In this section we present the experimental results of learning policies
represented by n-tuple networks for the game of Othello (see Section
5.1.2.4). We conducted several experiments to determine how the con-
sidered learning methods fare for different sizes of networks with
respect to selected performance measures. In particular, we aimed to
answer the following questions: How do the algorithms scale with
the size of policy representation? Is the performance against a heuris-
tic player a good predictor of player’s likelihood to beat other op-
ponents? What is the ability of the policies trained with particular
methods to play against previously unseen opponents?

6.3.1 Experimental Setup

All algorithms were implemented within our coevolutionary algo-
rithms library called cECJ [191] built upon Evolutionary Computation
in Java (ECJ) framework [121]. Our unit of computational effort is a
single game and the computing time of other stages of evolutionary
cycle is neglected. To provide fair comparison, all runs were stopped
when the number of games played reached 3 000 000. Each experi-
ment was repeated 24 times.

6.3 learning n-tuple networks for othello 75

6.3.1.1 Policy Representation

We rely on n-tuple networks (see Section 5.1.2.4) because of its appeal-
ing potential demonstrated in recent studies [117, 126] and promising
results in the Othello League (cf. Section 5.1.2.1). We start from small N-tuple networks

networks formed by seven 4-tuples (7× 4), which include 567 weights.
Later, we move to 9× 5 networks (2187 weights on aggregate) to end
up with the largest 12× 6 architecture (8748 weights), which has been
recently successfully applied to Othello by Manning [126]. This pro-
gression enables us to observe how particular learning methods cope
with the growing dimensionality of the search space. A candidate
solution is represented as a concatenation of lookup table weights
associated with its n-tuples

We decided to employ the input assignment procedure that re-
sults in randomly placed snake-shaped tuples (see Section 5.1.2.4).
Regarding the look-up table weights, their initial values depend on
the particular learning algorithm. As previous research has shown Initialization

[193], TDL learns faster when its weights are initialized with zeroes.
Evolutionary methods, on the other hand, assume that the popula-
tion is randomly dispersed in the search space. For this reason, in
the purely evolutionary and coevolutionary algorithms (i.e., without
TDL) we start with weights initialized randomly in the [−1, 1] range.

6.3.1.2 Search Operators

The considered learning algorithms perform search in two spaces —
a discrete network topology space and a continuous weight space.
Dimensions of the topology space are: the number of tuples, their
length and input connections. Dimensionality of the weight space de- Weight space and

topology spacepends directly on the number of weights and grows with the number
of n-tuples and their lengths. We search both spaces in parallel as it
gives us more flexibility than searching only one of them. However,
to avoid excessive complexity, we limit topology changes just to input
assignment — the number of n-tuples and their length stay the same
throughout learning. Although the majority of methods applied to
train neural networks are based on a fixed structure and search only
the weight space, there are some exceptions which explore topology
space too [183, 204].

In accordance with the twofold nature of the policy space, we em-
ploy two types of operators: genetic (CEL) and gradient-based (TDL).
The former group includes:

• weight mutation — each weight (LUT entry) undergoes Gaussian
mutation (σ = 0.25) with probability pmw = 0.05,

• topology mutation — each input (board location) is replaced, with
probability pmt = 0.01, by another input from its neighborhood,

76 coevolutionary temporal difference learning

• topology crossover — sexual reproduction with probability px =

1.00 — two individuals mate and exchange genes, i.e., entire
tuples with look-up tables.

The only gradient-based operator works in the weight space and
consists in running a single self-play game incorporating TD(0) al-
gorithm (see Section 6.2.1). We use learning rate α = 0.001 and force
random moves with probability ε = 0.1.

6.3.1.3 Learning Algorithms

temporal difference learning TDL (Section 6.2.1) operates
solely in the weight space using a single network and self-play TD(0)
as the only search operator.

evolutionary learning EL (Section 6.2.2) is a generational
evolutionary algorithm with population of 50 individuals. It operates
in a loop of: 1) evaluation – the fitness of each individual is calculated
as a sum of points obtained in 50 randomized games against the swh

player (cf. Section 5.1.3.1), 2) selection – evaluated individuals are
subject to tournament selection with tournament size 5, 3) recombi-
nation – individuals undergo topology crossover, and 4) mutation –
individuals are modified by weight and topology mutation.

coevolutionary learning CEL (Section 6.2.2) is a coevolu-
tionary algorithm with population of 50 individuals. The algorithm
operates in a similar fashion to EL, except for the evaluation phase,
where a round-robin tournament is played between all individuals,
with wins, draws, and losses rewarded by 3, 1, and 0 points, re-
spectively. The total number of awarded points becomes individual’s
competitive fitness. For each pair of individuals, two games are played,
with players swapping the roles of the black and the white player.

evolutionary temporal difference learning ETDL com-
bines EL and TDL. Similarly to EL, it uses topology mutation and
topology crossover, but instead of weight mutation, it employs the
self-play TDL training. By default, in each TDL phase, a budget of
5000 training games is allocated to the players in the population and
thus each individual plays 100 games.

coevolutionary temporal difference learning CTDL is
a hybrid of CEL and TDL (see Section 6.2.3). The algorithm operates
as ETDL but uses competitive fitness like CEL. Notice that CTDL
extends CEL in the same way as ETDL extends EL. Moreover, CEL
and CTDL (also: EL and ETDL) differ only in the way they search the
weight space (weight mutation vs. TDL).

6.3 learning n-tuple networks for othello 77

Furthermore, where possible, the parameters for the above algo-
rithms were taken directly from related works [117, 120, 126]. In some
cases the parameters were determined by preliminary experiments.
This includes the value of σ for weight mutation and the number of
TDL games in a single phase of hybrid algorithms.

6.3.1.4 Performance Measures

To monitor the progress of learning, 50 times per run (approximately
every 60 000 games), we appoint the individual with the highest fit-
ness as the best-of-generation individual (for TDL, the single policy
maintained by the method is the best-of-generation by definition). By
the best-of-run individual we mean the best-of-generation individual
of the last generation. We identify method’s performance with the
performance of its best-of-run players. In particular experiments, the
performance is calculated using the following measures (see Section
5.1.3 for details):

1. Performance against a heuristic player, i.e., percentage score
against the swh player (see Section 5.1.3.1).

2. The number of points in a round-robin tournament between
the teams of best-of-generation players produced by particular
algorithms (see Section 5.1.3.2).

3. The place taken in a round-robin tournament involving the best
entries from the online Othello League (Section 5.1.3.3).

In the following sections (6.3.2–6.3.4) we employ, respectively, these
three performance measures to evaluate the learning methods.

It should be emphasized that the outcomes of performance as-
sessments are unavailable to learning algorithms and thus do not
influence the learning process. In a machine learning perspective, the
opponents used in the above measures form a testing set and are
intended to verify the generalization capability. The only exception
to this rule are EL and ETDL, where fitness assessment uses the same
opponent as the first performance measure.

6.3.2 Performance Against a Heuristic Player

The first performance measure is the percentage of points (1.0 point
for a win, 0.5 for a draw, calculated with respect to the maximum
possible total score) obtained in 1 000 randomized games (500 as black
and 500 as white) against the swh player (see Section 5.1.3.1). Since
all policies in our experiments are deterministic we force both players
to make random moves with probability ε = 0.1.

78 coevolutionary temporal difference learning

EL CEL TDL CTDL ETDL

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

10%

20%

30%

40%

50%

60%

70%

80%

7x4 9x5 12x6 7x4 9x5 12x6 7x4 9x5 12x6 7x4 9x5 12x6 7x4 9x5 12x6

Network size

Pe
rf

or
m

an
ce

Figure 6.1: Comparison of learning methods for three network sizes. The
performance measured against the swh player is shown as violin
plots. Each black box spans from the first to the third quartile
(the interquartile range or IQR), while the whiskers extend to
the highest and lowest observations within 1.5·IQR from the box.
Narrowings of the box around the median indicate 95% confi-
dence interval. White circles denote the mean performance.

6.3.2.1 Scalability

In the first experiments we focus on the scalability with respect to the
policy representation size. Figure 6.1 illustrates how methods’ perfor-
mance against the heuristic player changes when moving from 7× 4
to 9× 5 and to 12× 6 n-tuple networks. The figure shows violin plots
[87] that summarize the distribution of final performance obtained
with particular methods.

Interestingly, increasing the network size is not necessarily bene-
ficial for all tested methods. Only the TDL-based methods are able
to improve their performance by utilizing the possibilities offered by
larger networks. On the contrary, EL and CEL perform even worseIncreasing the

network size with larger networks than with the smaller ones. We hypothesize that
the weight mutation operator is not efficient enough to elaborate fast
progress in the larger (higher-dimensional) weight search space. This
hypothesis is supported by all plots — only the methods involving
weight mutation (EL, CEL) have such problems.

To make sure that this is not due to possibly unfavorable settings
of weight mutation, we performed another experiment with different
standard deviations (σ) of weight mutation. Results for EL presented
in Fig. 6.2 show that our choice (σ = 0.25) is among the best values
of deviation. Importantly, no matter what value of σ is used, the

6.3 learning n-tuple networks for othello 79

7x4 9x5 12x6

●

●
● ●

●

●

●

●

●

●

●

●

●

●

50%

60%

70%

80%

0.0 0.1 0.25 0.5 0.0 0.1 0.25 0.5 0.0 0.1 0.25 0.5

Mutation rate

Pe
rf

or
m

an
ce

Figure 6.2: EL with different σ of weight mutation for three network sizes.
The performance measured against the swh player is shown as
violin plots. Each black box spans from the first to the third
quartile (the interquartile range or IQR), while the whiskers ex-
tend to the highest and lowest observations within 1.5·IQR from
the box. Narrowings of the box around the median indicate 95%
confidence interval. White circles denote the mean performance.

performance is lower with the larger networks. Conversely, when no
weight mutation is used (σ = 0), larger networks allow for achieving Verifying mutation

ratebetter results. In this case the weights remain unchanged, and the evo-
lutionary process modifies only the topologies of networks. Although
this implies that weights remain fixed for an entire evolutionary run
and therefore the total number of strategies that can be represented
by individuals is more limited, the resulting search problem is easier
and evolution eventually benefits from the larger network size.

Finally, the hybrid methods perform either comparably (CTDL) or
better (ETDL) with larger networks. Apparently, using TDL to search
the weight space of n-tuple networks is more advantageous than ap-
plying random mutations, especially when the search space is larger. Hybridization

benefitsHybridization allows evolutionary components to focus entirely on
searching the topology space while leaving the continuous weight
space to a dedicated gradient-based algorithm which works well on
this problem when applied separately. Gradient-based update pro-
ceeds for each weight separately and remains effective no matter how
many of them have to be optimized.

80 coevolutionary temporal difference learning

7x4 9x5 12x6

20%

30%

40%

50%

60%

70%

80%

0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000

Training episodes (x 1000)

Pe
rf

or
m

an
ce

CEL EL TDL CTDL ETDL

Figure 6.3: Comparison of learning methods for three network sizes. The av-
erage performance of the best-of-generation individuals against
the swh player shown as a function of the number of training
episodes (games). Semi-transparent ribbons around the curves
indicate 95% confidence intervals for the mean.

6.3.2.2 Method Comparison

After answering the question whether larger representations pay off,
we ask which method works best. Figure 6.3 compares all the meth-
ods for the three considered representation sizes. The results for theSmallest networks

smallest 7 × 4 network demonstrate that the CTDL hybrid in the
long run significantly outperforms the non-hybrid algorithms: TDL
and CEL. Moreover, as also observed in previous research [120], TDL
learns rapidly, whereas CEL advances slower but eventually reaches
a similar or even slightly higher performance level.

However, while the superiority of CTDL over its constituents is
still observable for 9 × 5 networks, for the 12 × 6 ones there is no
difference between TDL and CTDL, which both score between 65%
and 70%. This level is similar to that reported by Manning [126] forLarger networks

12× 6 networks trained with the Nash Memory approach (between
66% and 68%). This indicates a ceiling effect [211] in evaluation of
self-learning methods with the WPC-heuristic performance measure.
We hypothesize that the randomized swh player does not offer suf-
ficiently diversified challenge to differentiate the policies produced
by these algorithms. To verify this claim and to differentiate the al-
gorithms in terms of their performance, we conducted a series of
performance assessments on a pool of opponents, detailed in Sections
6.3.3 and 6.3.4.

6.3 learning n-tuple networks for othello 81

CTDL ETDL TDL CEL EL overall

CTDL 64.4% 63.5% 91.9% 95.7% 78.9%

ETDL 34.6% 53.4% 92.7% 95.4% 69.0%

TDL 35.6% 46.8% 89.7% 93.9% 66.5%

CEL 7.8% 6.2% 9.6% 72.9% 24.1%

EL 3.8% 4.0% 5.9% 26.2% 10.0%

Table 6.1: Results of the round-robin tournament between the teams of in-
dividuals from the last generations. Each number represents the
percentage of obtained points; the percentages may not total 100%
since there were 3 points for win and 1 for draw.

Importantly, when the performance is measured by playing against
the swh player, the evolutionary algorithms (EL and ETDL) perform
better or not worse than the other ones. This is however not surpris- Evolutionary

overfitting?ing, given that these methods have been guided by the fitness func-
tion using the very same opponent (swh). As we will demonstrate
in subsequent sections, these observations tell us very little about the
performance of the trained players on another, more sophisticated,
sample of opponents.

Last but not least, let us notice that ETDL performs better that EL
for larger policy representations. This observation is another evidence
supporting our claim that TDL mutation is much more efficient than
weight mutation.

6.3.3 Round Robin Tournament

To widen the range of assessment opponents, we let the considered
methods generate opponents for each other. Technically, every 60 000
training games we create teams that embrace all the best-of-generation
strategies found by all 24 runs of particular methods. Next, we play a Generational

round-robin
tournament

round-robin tournament between the teams (see Section 5.1.3.2). The
score of a team is the overall sum of points obtained by its players
(according to the three points for a win reward scheme, cf. Table 5.3). As
the tournaments are played multiple times along evolutionary runs,
we call this method generational round-robin tournament.

Notice that this assessment scheme is relative: gain for one team
implies loss for its opponent team. A team can be judged good due
to its virtues, but also due to the weaknesses of other teams. Note also
that generational round-robin tournament allows us to drop random-
ization of moves, since the presence of multiple opponents provides
enough behavioral variability.

82 coevolutionary temporal difference learning

Round−robin tournament Othello League tournament

10%

20%

30%

40%

50%

60%

70%

80%

0 1000 2000 3000 0 1000 2000 3000

Training episodes (x 1000)

Pe
rc

en
ta

ge
 s

co
re

 in
 th

e
to

ur
na

m
en

t

CTDL
ETDL
TDL
CEL
EL

Figure 6.4: Generational round robin tournament and generational Othello
League tournament for all methods using 12× 6 networks. Per-
centage score is the score of a team of best-of-generation individ-
uals normalized by the maximum possible score.

Figure 6.4 plots the relative performance of all the algorithms us-
ing the 12× 6 network. Noteworthy, the policies developed by TDL,Relative

performance
analysis

CTDL and EL, which played at the same level against the swh player
(cf. Fig. 6.3) reveal varying levels of skills when evaluated against a
different pool of opponents. As these opponents uncover previously
unobserved differences between the methods and have been trained
using different algorithms, we hypothesize that they are more behav-
iorally diversified. Let us also emphasize that the teams confronted
here are composed of the same best-of-generation individuals that pro-
duced the results reported in Fig. 6.3, i.e., we assess here the outcomes
of the same runs of learning algorithms.

In the tournament confrontation, the CTDL hybrid is clearly the
winner and beats its constituent methods, TDL and CEL. Also, its ad-
vantage over the competitors increases over time. Interestingly, CTDL
defeats both evolutionary methods. The superiority of CTDL is clearly
demonstrated in Table 6.1, which shows the detailed results of the
last round-robin tournament. This finding supports our intuition ex-Overfitting

pressed in the previous section that ETDL and EL tend to overfit: they
perform best against the swh player, but fail when faced with another
set of players that is likely to be more diversified. On the other hand,
ETDL is still quite good, and in particular slightly better than TDL.
We cannot say the same about EL, which wins only around 10% of
games. Apparently, it is the self-learning TDL component of ETDL
that reduces the negative effects of overfitting.

6.3 learning n-tuple networks for othello 83

CTDL ETDL

0

2

4

6

8

10

12

14

16

18

20

22

24

0 1000 2000 3000 0 1000 2000 3000

Training episodes (x 1000)

C
ou

nt
rank

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Figure 6.5: Frequency distribution of ranks obtained by ETDL and CTDL
best-of-generation individuals in a round-robin competition with
Othello League players. Bar height indicates how many times a
particular rank was obtained by the 24 evolved players.

6.3.4 Othello League Tournament

One of our goals was to create a policy that would win in a direct
confrontation with the best entries in the Othello League (see Section
5.1.2.1). To verify if this goal was attained, we employed a pool of top
14 Othello League contestants (cf. Section 5.1.3.3). Each of our best-of-
generation players was assessed by playing against every opponent in
the pool with wins, draws, and losses rewarded by 3, 1, and 0 points,
respectively. Note that each player faces every other player twice —
once as black and once as white. Overall points in the

league tournamentFigure 6.4 shows the performance of the trained policies expressed
as a percentage of the maximum score possible to attain when con-
fronted with the league pool. Each method (represented by 24 best-of-
generation players) could score up to 14× 24× 3× 2 = 2016 points
(100%). Note that this assessment ranks the methods roughly in the
same order as in the generational round robin tournament. Once
again we can observe that ETDL turns out inferior to CTDL when
the opponents are different from the strategy it was taught with. Frequency

distribution of
league ranks

The total number of points is a valuable relative performance mea-
sure, but it does not inform us about the absolute places taken in
the tournament by our best-of-generation players. Figure 6.5 shows
how many times the 24 players produced by, respectively, ETDL and
CTDL occupy particular ranks in the league. Clearly, CTDL leads to
winning the tournament much more often than ETDL.

84 coevolutionary temporal difference learning

Name Size Played Won Drawn Lost

epTDLmpx_12x6 12× 6 100 89 1 10

prb_nt30_001 30× 6 100 84 0 16

prb_nt15_001 15× 6 100 83 3 14

epTDLxover 12× 6 100 81 4 15

t15x6x8 15× 6 100 79 3 18

SelfPlay15 12× 6 100 77 0 23

tz278_2 278× 2 100 76 3 21

Nash70 12× 6 100 72 4 24

x30x6x8 30× 6 100 71 4 25

pruned-pairs-56t 56× 2 100 71 1 28

Table 6.2: Othello League ranking (as of the end of August 2013).

The above experiments have shown that the policies produced by
ETDL are less versatile than the ones produced by CTDL. However,
when evaluated against the swh player, ETDL appears remarkably
successful. As we could see in Fig. 6.3, in an average run it attained
the performance level of 80%. Moreover, one of the runs produced aTh best player in the

Othello League player that reached 87.1% and took the lead when submitted to the
online Othello League under the name of epTDLmpx_12x6. Table 6.2
shows the results1 of the top ten entries in the league as of the end of
August 2013. All players in the table are based on the same n-tuple
network architecture, but the networks they employ vary in size.

6.3.5 Analysis of Network Topology

Besides comparing the performance of learning algorithms, we were
also interested in the internal representation of the best policies. For
this reason, we examined topologies of the produced n-tuple net-
works and gathered statistics on the best-of-run players evolved by
the CTDL method. Figure 6.6 demonstrates how many times a par-Frequency of board

fields occurrences ticular field of the Othello board was covered by the tuples of the
best policies. Shading reflect the number of times a field appeared
in networks. Certainly, tuples cumulate around the corners, which
appear to be the most important fields on the board. Also, topology
mutations pressed networks to abandon the central fields which, on
the contrary, have less influence on the board evaluation and four of
them are already occupied at the beginning of the game.

1 Since in the online league (see Section 5.1.2.1) players play only 100 games, there is
a difference between our estimation of epTDLmpx_12x6 performance (87.1%) and
89.5 points obtained in the league.

6.3 learning n-tuple networks for othello 85

494 300 199 167 167 199 300 494
300 300 152 120 120 152 300 300
199 152 72 88 88 72 152 199
167 120 88 54 54 88 120 167
167 120 88 54 54 88 120 167
199 152 72 88 88 72 152 199
300 300 152 120 120 152 300 300
494 300 199 167 167 199 300 494

504 302 203 166 166 203 302 504
302 290 155 118 118 155 290 302
203 155 68 79 79 68 155 203
166 118 79 64 64 79 118 166
166 118 79 64 64 79 118 166
203 155 68 79 79 68 155 203
302 290 155 118 118 155 290 302
504 302 203 166 166 203 302 504

510 301 199 165 165 199 301 510
301 292 156 119 119 156 292 301
199 156 72 80 80 72 156 199
165 119 80 58 58 80 119 165
165 119 80 58 58 80 119 165
199 156 72 80 80 72 156 199
301 292 156 119 119 156 292 301
510 301 199 165 165 199 301 510

Figure 6.6: Frequency of board field occurrences in n-tuples.

Figure 6.7 presents the topology of the best CTDL 12 × 6-tuple
policy. The arrangement may seem sparse, but due to the 8-fold sym- Topology of the best

playermetry mirroring (not shown here but discussed in Section 5.1.2), this
strategy in fact covers almost all board fields. Most tuples watch the
combinations of fields that are known to be strategically important
in Othello: neighboring fields close to corners, or the corners on two
opposite sides of the board.

6.3.6 Results Summary

Although our best ETDL-evolved player has taken the lead in the
Othello League, it fares much worse when facing head-to-head the
other players from the League and the players evolved by means
of coevolutionary algorithms. This phenomenon may be explained
in terms of solution concepts [56]. ETDL uses the evaluation function
based on the swh player, and so optimizes the individuals against this
specific opponent. The policies it trains do not have a chance to play
with different opponents and learn from such experience. Clearly, Solution concepts

perspectiverandomization of the swh player, intended to increase behavioral di-
versity, does not help in this regard. Formally, ETDL implements the
specific solution concept of maximization of expected score against the
swh player2, which, at least for the game of Othello, does not seem to
be a good predictor of general Othello-playing skills (expected utility
solution concept, cf. Section 5.1.3.4). This observation applies also to
the way the Othello League ranks players, and limits the conclusions
that may be drawn from that ranking.

2 In Othello with randomized moves.

86 coevolutionary temporal difference learning

Figure 6.7: The tuples of the best CTDL player superimposed on the Othello
board.

In contrast, CTDL, a self-learning method equipped with dynamic
evaluation function and based on coevolution and temporal differ-
ence learning, yields policies that generalize much better and suc-
cessfully compete with a variety of opponents: evolved, coevolved,
trained by TDL, and the top players submitted to the Othello League.Generalization

performance In particular the last ones, by implementing various approaches and
submitted by different researchers, can be claimed to represent a
richer repertoire of behaviors. Having said that, we do not argue that
CTDL implements any known solution concept. However, the results
of extensive round-robin tournaments indicate that it is closer to the
solution concept of maximization of expected utility for 1-ply Othello
than any other method considered here, in particular the top-ranked
strategies from the Othello League.

Lucas and Runarsson [120] have found that coevolution applied to
policies represented as WPCs learns much slower than TDL, but even-
tually converges to solutions of similar quality. The results reported
in Section 6.3.2 shed new light on this issue. The performance gapSearch space

dimensionality between the coevolutionary algorithms and TDL strongly depends
on the dimensionality of the search space. For 7× 4-tuple networks
(567 weights), the coevolutionary algorithm (CEL) in the long run
indeed achieves results comparable to TDL, but TDL proves far better
for larger search spaces of 9× 5 and 12× 6 networks (2187 and 8748
weights, respectively). Its gradient-based learning rule is relatively
insensitive to the number of variables of consideration, while coevo-
lution does not seem to be able to catch up, even in the long run.

6.4 learning weighted piece counters for the game of go 87

The evolutionary algorithm (EL), despite obtaining higher absolute
score against the swh player, also tends to attain worse performance
for larger networks. The common factor that appears to be responsi-
ble for these difficulties is the weight mutation operator, which seems
to work reasonably well only in smaller search spaces (cf. Fig. 6.2). Weight mutation

operatorOn the other hand, some form of mutation is necessary for the evo-
lutionary approach (Fig. 6.2 shows that without mutation the score
is even worse). This points to the need of designing better mutation
operator for the given search space. Indeed, even random mutation
proved effective in high-dimensional spaces in some previous studies
[63, 102].

6.4 learning weighted piece counters for the game of

small-board go

In this section we attempt to verify if CTDL proves beneficial also for
the game of small-board Go and policies represented by WPCs (see
Section 5.2.3). In contrast to the previous section, here we focus solely
on hybridizing coevolution with temporal difference learning and not
on the comparison with evolutionary methods (like EL or ETDL). For
this reason, the reported experimental result concern only the TDL,
CEL and CTDL methods. We conduct also a preliminary experiment
to find the advantageous values of the λ parameter for the TD(λ)

algorithm.

6.4.1 Experimental Setup

Similarly as for Othello (cf. Section 6.3.1), all algorithms were im-
plemented within our coevolutionary algorithms library called cECJ
[191]. It was assumed that the uttermost element influencing the time
of training is the time required to play a game, so the time consumed
by such operations as selection, mutation, evaluation, has been ne-
glected. In other words, our unit of computational effort is a single
game. To provide fair comparison, all runs were stopped when the
number of games played reached 2 000 000. For statistical confidence,
each experiment was repeated 25 times.

6.4.1.1 Policy Representation

Since we are mainly interested in analyzing the relative improve-
ments that the hybridized CTDL method can bring when compared
to its constituents, the absolute player’s performance is of secondary
importance. Therefore, we employ here WPC, the least sophisticated
policy representation among those considered in this thesis.

88 coevolutionary temporal difference learning

6.4.1.2 Learning Algorithms

coevolutionary learning CEL uses a generational coevolu-
tionary algorithm with population of 50 individuals, each being a
5× 5 WPC matrix initialized with random weights drawn from the
[−1, 1] range. In the evaluation phase, a round-robin tournament is
played between all individuals, with wins, draws, and losses rewarded
by 3, 1, and 0 points, respectively. For each pair of individuals, two
games are played, with players swapping the roles of the black and
the white player. The evaluated individuals are subject to tournament
selection with tournament size 5, and then, with probability 0.03, their
weights undergo Gaussian mutation (σ = 0.25). Next, individuals
mate using one-point crossover, and the resulting offspring form the
subsequent generation. As each generation requires 50 × 50 games,
each run lasts for 800 generations to get the total of 2 000 000 games.

temporal difference learning TDL is an implementation of
the gradient-descent temporal difference algorithm TD(λ) described
in Section 6.2.1. The weights are initially set to 0 and the learner is
trained solely through self-play, with random moves occurring with
probability ε = 0.1. The learning rate was set to α = 0.01; the value
of trace decay λ will be determined in Section 6.4.2.

coevolutionary temporal difference learning CTDL is
a combination of CEL and TDL (see Section 6.2.3), which both use the
same parameters as described above. The individuals are initialized
randomly like in CEL. The algorithm alternates the TDL and CEL
phases until the total number of games attains 2 000 000. In a single
TDL phase each individual plays 8 games, so there are 50× 50 + 8×
50 = 2900 games per generation, which leads to 690 generations.

6.4.1.3 Performance measures

To monitor the progress of learning, 50 times per run (approximately
every 40 000 games), we appoint the individual with the highest fit-
ness as the best-of-generation individual and assess its performance
(for TDL, the single policy maintained by the method is the best-of-
generation by definition). In particular, the performance is calculated
using the three following measures (see Section 5.2.4 for details):

1. Probability of winning against a predefined, human-designed
WPC heuristic policy (see Section 5.2.4.1).

2. Probability of winning against the Liberty player (Section 5.2.4.2).

3. The number of points in a round-robin tournament between the
teams of policies produced by particular methods.

6.4 learning weighted piece counters for the game of go 89

λ against WPC heuristic against Liberty Player

0.00 0.420± 0.129 0.496± 0.116

0.20 0.444± 0.123 0.532± 0.102

0.40 0.465± 0.125 0.547± 0.104

0.60 0.483± 0.130 0.559± 0.102

0.80 0.497± 0.134 0.560± 0.098

0.90 0.543± 0.131 0.564± 0.093

0.95 0.599± 0.140 0.567± 0.089

0.96 0.597± 0.143 0.557± 0.089

0.97 0.613± 0.133 0.563± 0.086

0.98 0.630± 0.148 0.557± 0.084

0.99 0.617± 0.157 0.554± 0.094

1.00 0.545± 0.195 0.548± 0.109

Table 6.3: Probability of winning against WPC heuristic and Liberty Player
for a policy found by TD(λ) with different trace decays λ.

To calculate the first two measures, the best-of-generation policy
plays 1 000 games against the opponent player (500 as black and 500
as white, with probability of random moves ε = 0.1). It should be em-
phasized that the interactions taking place in all assessment methods
do not influence the learning individuals.

6.4.2 Preliminary Experiments

In the first experiments, the best value of trace decay λ was deter-
mined by running TDL with various settings of this parameter. Tech-
nically, because the randomized self-play causes the performance of
the TDL learner to vary substantially with time, we decided not to
rely on the final outcome of the method alone. To make the estimates
more robust, we sampled each run every 40 000 games for the last
800 000 games and averaged the performances of strategies (thus, the
performance of each run was estimated using 20 individuals).

Table 6.3 shows the results averaged over 25 runs (this holds for
all experiments, unless stated otherwise). For WPC-heuristics, the
winning rate is maximized for λ = 0.98, while for Liberty Player,
this happens for λ = 0.95. Because the outcomes of games against
the Liberty Player turn out to be less sensitive to λ than for WPC-
heuristics, and the differences for λ ∈ [0.6; 0.99] are very small for the
former opponent, we chose 0.98 as the optimal value for λ to be used
in all further experiments.

90 coevolutionary temporal difference learning

vs. WPC heuristic vs. Liberty Player

●

●

●

●
●

●

●

●

●

●

0.3

0.4

0.5

0.6

0.7

0.8

CEL TDL CTDL CEL TDL CTDL

Method

Pe
rf

or
m

an
ce

Figure 6.8: Comparison of learning methods. Violin plots show the perfor-
mance of the best-of-generation individuals measured as the
probability of winning against (a) WPC heuristic and (b) Liberty
Player. Each black box spans from the first to the third quartile
(the interquartile range or IQR), while the whiskers extend to
the highest and lowest observations within 1.5·IQR from the box.
Narrowings of the box around the median indicate 95% confi-
dence interval. White circles denote the mean performance.

6.4.3 Method Comparison

In the main experiment, CTDL was compared with its constituent
methods: CEL and TDL. Figure 6.8 shows the distribution of final
performance achieved by these methods measured by playing against
the randomized external players: WPC heuristic and Liberty Player.
Both measures agree that CEL is significantly worse than CTDL and
produces policies that win barely more than 50% of games. Interest-
ingly, TDL seems as good as CTDL when playing with WPC heuristic,
but is significantly worse (and comparable with CEL) when crossing
swords with Liberty Player. The best of CTDL players attained more
than 65% winning rate with both external players.

Though the performance of all methods in absolute terms is rather
moderate, this should be attributed, in the first place, to the simplicity
of WPC, which is not necessarily the most suitable representation
for the highly non-positional game of Go. Let us also notice that the
performance of the optimal WPC policy for this game is unknown, so
judging the above probabilities as objectively good or bad would be
inconsiderate.

6.4 learning weighted piece counters for the game of go 91

CTDL CEL TDL total

CTDL 56.5% 57.0% 56.8%

CEL 42.5% 53.0% 47.7%

TDL 41.0% 45.5% 43.3%

Table 6.4: Results of the round-robin tournament between the teams of in-
dividuals from the last generations. Each number represents the
percentage of obtained points; the percentages may not total 100%
since there were 3 points for win and 1 for draw.

6.4.4 Round Robin Tournament

The above comparison demonstrates that the fusion of CEL and TDL
can be beneficial in terms of the absolute performance against ex-
ternal heuristic players. To gain insight in the relative performance
of policies, we played a round-robin tournament between the three
teams representing particular methods, where each team member
confronts all 2× 25 = 50 members from the opponent teams for a
total of 100 games (50 as white and 50 as black). The final score of
a team is determined as the sum of points obtained by its players in
overall 2 500 games, using the three-point-for-a-win reward scheme
(see Table 5.3). Thus, the maximum number of points possible to get
by a team in a single tournament is 2 500× 3 = 7 500.

Table 6.4 presents the detailed results of a round-robin tourna-
ment among the teams of best-of-run individuals, i.e., the best-of-
generation individuals found in the last generation, after 2 000 000
games. Not all our previous conclusions were confirmed in this rela-
tive performance assessment. Most notably, although TDL was found
clearly better than CEL when gauged against the randomized WPC
heuristic player, it is now the worst method in the field. Importantly,
CTDL does confirm its superiority and wins in direct confrontations
with its two constituent methods.

6.4.5 Results Summary

The results presented in this section confirm the observations from
Section 6.3, where we demonstrated that hybridizing coevolution with
TD(0) proves beneficial when learning n-tuple networks for the game
of Othello. Here, we come to similar conclusions with learning WPCs
for the game of small-board Go. Additionally, we can observe that
extending the lookahead horizon by using TD(λ) with λ close to 1
can boost the performance of TDL, and has a positive impact also on
the performance of CTDL. Consequently, there is growing evidence
to support our claim that hybridizing coevolution with temporal dif-
ference learning can be beneficial.

92 coevolutionary temporal difference learning

6.5 discussion and conclusions

This chapter is an attempt to bridge the gap between coevolutionary
learning and self-play temporal difference learning — two implicit
forms of shaping that have been widely used for learning game-
playing policies. The proposed approach of coevolutionary temporal
difference learning is an interesting mixture that can be analyzed
from many perspectives. Regarding biological inspirations, CTDL canBiological

perspective be considered as a realization of Lamarckian coevolution, since organ-
isms (policies) learn here throughout their life (TDL learning phase)
to pass the acquired traits on to the offspring. As in nature, learning
occurs at many scales of space and time, on two adjacent levels of
individuals and populations [1].

From another perspective, the proposed hybridization performs
simultaneous search in two different modes: local (intra-game) and
global (inter-game). To conduct the search in the former mode, it
employs gradient-based local search operator that works with a single
solution at a time and trains it by a randomized self-play. For the inter-Search perspective

game mode, our method relies on population of policies, makes them
play against each other, and uses the outcomes of games to guide the
process of random sampling of the search space in subsequent gener-
ations. Therefore, CTDL hybridizes two radically different techniques
that complement each other in terms of exploration and exploitation
of the search space.

The empirical evaluation of CTDL demonstrates that, at least for
the considered games and policy representations, coevolutionary learn-
ing algorithm can autonomously select and maintain a dynamic train-
ing environment that cause the resulting policies generalize better
than the policies trained by an evolutionary approach. Put anotherCoevolutionary

shaping way, the shaping process as realized here by coevolution turns out
to be effective. We can only hypothesize that the major reason for
this is greater behavioral diversity of coevolutionary opponents. What
nevertheless follows from the experimental results is that the coevolu-
tionary opponents are diversified “in the right way”, i.e., they guide
the learning process towards the more versatile policies.

However, to find the candidates for a sample of opponents in the
first place, an effective search operator is indispensable, particularly
when the dimensionality of representation is high. The gradient-based
search operator proved most useful in this respect, in contrast to
the purely random mutation. The resulting hybrid, CTDL, may beEffective search

operator then seen as a successful combination of effective individual learning
mechanism (TDL) with an appropriate method for filtering out the
right opponents (CEL). This hybrid seems to scale well with the di-
mensionality of the search space, i.e., the policies it yields generalize
better for larger representations. In case of learning n-tuple networks,
this hybridization turns out truly advantageous when coevolution

6.5 discussion and conclusions 93

operates exclusively in the network topology search space, leaving
the search in the space of weight values entirely to TDL.

Another lesson learned from this chapter is that assessing players Assessment
discrepanciesusing various performance measures can lead to qualitatively differ-

ent outcomes, even if all of them take care of making the opponents
diverse. Thus, great caution should be taken when drawing conclu-
sions from such results.

Finally, although our evolved policies would most probably yield
to other contemporary players that use more sophisticated represen-
tations, we need to emphasize that our primary objective was to Focus on relative

gainshybridize two algorithms that learn fully autonomously and study
the relative gains that result from their synergy. To quote Arthur L.
Samuel’s declaration:

It should be noted that the emphasis throughout all of these
studies has been on learning techniques. The temptation to im-
prove the machine’s game by giving it standard openings or
other man-generated knowledge of playing techniques has been
consistently resisted (Samuel [169], p. 215).

7
S H A P I N G I N E V O L U T I O N A RY L E A R N I N G

This chapter provides the core contribution of the thesis, namely,
difficulty-based shaping methods for generalized reinforcement learn-
ing domains. The goal of learning in such domains is not to perform
well in a single task but to generalize across many related tasks sam-
pled from the given target task distribution. The proposed shaping
approach consists in providing artificially distorted training task dis-
tributions that allows to improve the performance of evolutionary
learning algorithms. The introduced measure of task difficulty allows
to shape increasingly more demanding task distributions.

To learn a policy for a multi-task domain, we use an evolutionary
approach which relies on modeling a learning problem in terms of
optimization. Thus, we start by investigating what contributes to the
difficulty of such optimization problems and how the existing shap-
ing approach of incremental evolution allows to scale the problem
difficulty (see Section 7.1). By contrast to the incremental evolution
approach, which typically requires human supervision, in Section
7.2 we propose a set of more autonomous shaping methods. Most
of these methods provide training tasks according to an easily com-
putable task difficulty measure. Apart from defining this measure,
we formalize the problem of multi-task learning and discuss how it
is conventionally approached by the means of direct evolution.

Section 7.3 briefly discusses the methodology of empirical evalua-
tions and comparisons of shaping methods. The following sections
7.4 – 7.6 provide the results of experiments conducted in three do-
mains including the game of Othello and the problem of cart pole
balancing. The results demonstrate that training on purpose-built
task distributions is more effective than learning directly on the target
distribution.

7.1 introduction

The motivation for this chapter originates from the question: what
can be done to improve the results of an evolutionary algorithm on a
given problem with respect to a specific performance measure?

A typical approach is to modify the algorithm by tuning its param-
eters. Evolutionary algorithms involve numerous settings (including
population size, variation operators, selection scheme) that need to
be configured properly to attain satisfactory performance. Since de-
vising such a configuration manually is usually nontrivial, various
‘rule-of-thumb’ recommendations, good practices and techniques of

95

96 shaping in evolutionary learning

Search space
Fi

tn
es

s

(a) Deceptive fitness landscape.

Search space

Fi
tn

es
s

(b) Neutral fitness landscape showing the
needle-in-a-haystack problem.

Figure 7.1: Examples of difficult fitness landscapes. Circles represent indi-
viduals and arrows show how they change by following the
fitness gradient. The figure is adapted from Weise et al. [216].

automated parameter tuning have been proposed in the past [50].
Ultimately, if the configured algorithm still does not achieve the ex-
pected performance, it can be entirely replaced by a different one. Pa-
rameter tuning and algorithm selection can be also automated using
hyper-heuristics [26].

It may seem that there are no alternative answers to the question
posed above. Indeed, of the three mentioned elements (algorithm,
problem, performance measure), only the first one appears to be in ex-
perimenter’s control. Contrary to this belief, there is actually another
option: rather than adjusting the algorithm to a particular problem,
we can take a complementary approach and modify the problem to
make it easier for a particular algorithm to reach the original opti-
mum. Such approach can be seen as an implementation of shaping in
the realm of problem solving.

In the following sections, we investigate what makes the problem
difficult to solve by evolutionary methods (Section 7.1.1) and how to
mitigate difficulties by applying shaping in the form of incremental
evolution (Section 7.1.2). Finally, in Section 7.1.3 we identify weakness
of existing incremental learning methods and propose an unsuper-
vised variant of shaping for evolutionary learning in a generalized
domain.

7.1.1 Problem Difficulty

The efficiency of evolutionary algorithms, and heuristic optimization
methods in general, on a given problem, is largely affected by the
shape of the objective function. Many nontrivial optimization prob-Fitness landscapes

lems have been found difficult to solve because of deceptiveness or
neutrality in the fitness landscape [216], meant as visualization of the
objective function in the search space. Examples of fitness landscapes
considered as difficult are illustrated in Fig. 7.1.

7.1 introduction 97

Search space

Fi
tn

es
s

(a) Smoothening the fitness landscape.

Search space

Fi
tn

es
s

(b) Local structure showing neutrality.

Figure 7.2: Needle-in-a-haystack landscapes.

One source of problem difficulty is deception. While the original
definition of deception was formulated by Goldberg [68] in the con-
text of the building blocks hypothesis [88], intuitively it can be used
to describe problems in which an evolutionary algorithm does not
reach the desired objective in a reasonable amount of time [113]. In Deception

deceptive fitness landscapes (see Fig. 7.1a), the gradient (often meant
only informally) of the objective function points to the wrong direc-
tion in large part of the search space. As a result, by strictly following
the objective function the algorithm gets trapped in local optima and
is unlikely to find the path to the globally optimal solution.

Another difficult fitness landscape is presented in Fig. 7.1b. In this
case, although the objective function does not guide the search away
from the optimum, it remains extremely uninformative. A large part
of the landscape is neutral, i.e., it does not provide any information
on gradient because all candidate solutions get the same fitness value. Neutrality

Since the search algorithm, with its perception usually limited to a
part of the landscape, cannot be reasonably steered by the objective
function, it usually has to resort to random search. A similar difficulty
has been encountered in the field of evolutionary robotics where it is
referred to as the bootstrap problem [141, 144]. The problem occurs if
all individuals in the early stage of evolution perform equally poorly
when attempting to perform a complex behavior.

An extremely neutral fitness landscape is featured by the needle-in-
a-haystack problem investigated by Hinton and Nowlan [86]. In such a
problem, there is only one point of higher fitness which forms a single
spike in the landscape. The authors show that useful fitness gradient Needle in a haystack

can be introduced by combining evolution with individual lifetime
learning (which can be done by, e.g., hybridizing an evolutionary
algorithm with local search techniques — cf. Chapter 6). In this way,
as the authors state, “learning alters the shape of the search space in
which evolution operates”. Figure 7.2a shows the smoothened fitness
landscapes, as ‘perceived’ by the hybrid algorithm. The fitness in the
areas around the spike has been boosted, making the optimum easier
to reach by some sort of (potentially randomized) learning.

98 shaping in evolutionary learning

Importantly, the fitness landscape may reveal different problem-
atic features in different regions of the search space. For instance,
the fitness function illustrated in Fig. 7.2b provides an informative
gradient for almost entire search space. However, after reaching aFitness landscape

features neutral fitness plateau, finding the optimum resembles the needle
in a haystack problem again. Noteworthy, the shape of the fitness
landscape depends not only on the objective function but also on the
structure of the search space which is defined by choosing a specific
genetic encoding of solutions and designing search operators.

7.1.2 Incremental Evolution

One approach that has been proposed to alleviate the difficulties
of deceptive and neutral fitness landscapes is incremental evolution
[140]. Typically, this approach consists in dividing a complex task
into a sequence of subtasks which may represent various problem
simplifications. In reinforcement learning, subtasks may correspondIncreasingly

complex subtasks to intermediate behaviors that should be mastered by the agent, and
which are typically easier to evolve than the target one. The con-
cept of incremental evolution has been particularly common in the
field of evolutionary robotics [145, 206]. Mouret and Doncieux [141]
classify the works in this area into four main approaches including,
among others, staged evolution and environmental complexification, both
of which conform to our definition of shaping.

Staged evolution is the most intuitive incremental procedure and
consists in splitting the original task into (typically a few) ordered
subtasks. Each subtask defines a fitness function to be used at a par-
ticular stage of learning. It is the role of the experimenter to decideStaged evolution

when to switch to the next subtask and thus change the objective of
the evolutionary algorithm. An early successful example of such ap-
proach is given by Harvey et al. [79] who trained vision-based robots
to distinguish between triangular and rectangular objects and move
towards the former ones. The authors employed three stages in which
robots learned recognition, pursuit and discrimination between the
two geometric shapes. Since these stages correspond to particular
types of behaviors required in the target task, this approach is also
referred to as behavioral decomposition [34].

Environmental complexification operates in a similar manner to
staged evolution but the difficulty of subtasks is changed more con-
tinuously by modifying some numeric task-specific parameters. ForEnvironmental

complexification instance, Gomez and Miikkulainen [72] provide an increasingly de-
manding sequence of tasks in a prey capture domain by gradually
increasing prey mobility. In particular, learning started there with
an immobile prey, and then the number of initial prey moves and
prey speed increased. The authors made a distinction between an
evaluation task which is used to evaluate agent’s fitness at some stage

7.1 introduction 99

of the learning process, and the goal task which the agent is learned
to perform. The agent is trained on a succession of evaluation tasks
which constitute steps towards solving the task of ultimate interest.

The bottom line is that subtasks are supposed to specify a sequence
of increasingly difficult fitness landscapes culminating in that of the
target task. Therefore, an evolutionary algorithm can start from a Increasingly difficult

fitness landscapessimplified version of the task and then gradually progress to more
challenging ones. As a result, the evolutionary search can be guided
through advantageous paths in the solution space and should, in
principle, be more likely find the optimum.

7.1.3 Unsupervised Shaping

Despite several successful applications of incremental evolution ap-
proaches [73, 103, 148, 229], the main problem with most of them is a
requirement of expert domain knowledge. Typically, such expertise is Incremental

evolution
requirements

indispensable to build a ‘pedagogical’ sequence of tasks with increas-
ingly demanding objectives and design the switching criteria which
determine when to shift from one task to another. This requirement
was accurately formulated by Lehman and Stanley [113]:

Some researchers incrementally evolve solutions by sequentially
applying carefully crafted objective functions to avoid local op-
tima. These efforts demonstrate that to avoid deception it may
be necessary to identify and analyze the stepping stones that
ultimately lead to the objective so that a training program of
multiple objective functions and switching criteria can be engi-
neered. However, for ambitious objectives, these stepping stones
may be difficult or impossible to determine a priori. Additionally,
the requirement of such intimate domain knowledge conflicts
with the aspiration of machine learning (Lehman and Stanley
[113], p.190).

The need of handcrafting both fitness functions and switching criteria
causes that existing incremental evolution methods can be seen as
supervised approaches that require substantial human intervention.
This can be one of the reasons of their limited popularity. Thus, a
key question arises: how can the incremental evolution approach be
engineered autonomously, without human supervision?

Here we address this question in the context of evolving behaviors
for generalized reinforcement learning domains [219, 220]. We assume Generalized

reinforcement
learning domains

that a problem is defined as a distribution of related MDP tasks and
the goal is to find a policy that performs well on average across the en-
tire domain. In such a setting, subtasks for incremental evolution can
be naturally represented as subsets of tasks from the given domain.
We expect to improve the efficiency of evolutionary algorithm by us-
ing carefully selected tasks to evaluate fitness of policies at successive
stages of learning.

100 shaping in evolutionary learning

However, we still need to select the right subsets of evaluation tasks
and decide when to switch between them. In the following sectionAutonomous

incremental
evolution

we show how these two design choices can be made autonomously
to remove this burden from the human supervisor. In particular, we
introduce a simple measure of task difficulty which is relatively easy
to calculate and does not require fitness landscape analysis. Moreover,
we propose a set of incremental evolutionary methods based on this
difficulty measure that attempt to build progressively more demand-
ing subsets of tasks. Ultimately, we employ coevolution to adaptively
change the set of evaluation tasks as the population becomes increas-
ingly more competent.

7.2 difficulty-based shaping in generalized domains

In this section we propose a set of methods that realize shaping by
providing training tasks that can be expected to facilitate learning of
the given target task(s). In Section 7.2.1 we formalize the goal of learn-
ing by modeling a distribution of target tasks in the form of general-
ized reinforcement learning domain. Next, in sections 7.2.2 and 7.2.3
we show how to apply evolutionary approach, in both shaped and
unshaped variant, to learn policies for generalized domains. Finally,
Sections 7.2.4 and 7.2.5 introduce task difficulty and difficulty-based
task pools, respectively, which are crucial for most of the shaping
methods presented in Section 7.2.6.

7.2.1 Generalized Reinforcement Learning Domain

Although typically reinforcement learning is applied to mastering
single tasks, many real-world scenarios require the agent to deal with
multiple different but related tasks. To model such scenarios we canMulti-task learning

scenarios use the notion of generalized domain [219] (or generalized environment
[220]) which embodies a distribution over related MDP tasks that
vary with respect to some aspect of the problem. For instance, in
the generalized helicopter hovering domain [105] the agent faces en-
vironments with different wind velocity. Similarly we could define,
for that instance, a parameterized Othello-playing domain where the
parameter would control the distribution of opponents.

Following the definition proposed by Whiteson et al. [219], a gen-
eralized domain G = 〈T ,P〉 consists of:

• T — a set of MDP tasks. We assume that all tasks in T share
the same state space S and action space A, so we can use the
same policy π : S→ A across the entire domain. However, each
task τ ∈ T fully specifies its individual transition function Tτ,
reward function Rτ and initial state distribution Iτ. However, in
the considered experimental domains, the tasks differ only in
one of these components, while the other two remain constant.

7.2 difficulty-based shaping in generalized domains 101

• P — a probability distribution over T . The distribution can be
defined implicitly by describing how a new task is generated.

There are several learning models that have been previously ap-
plied in such multi-task domains [182, 194, 228]. Typically, the agent
experiences a sequence of MDPs drawn from distribution P and is
allowed to adapt its policy online while interacting with a specific
task in the sequence. In this chapter, by contrast, we assume that,
after prior learning, agent’s policy stays fixed while being evaluated
in a series of tasks sampled from the domain. Consequently, the goal Cross-task policies

of learning is to find an optimal cross-task policy, i.e., such that maxi-
mizes the expected return in tasks drawn from the given generalized
domain:

π∗ = arg max
π

E [J(π, τ) | τ ∼ P] , (7.1)

where J(π, τ) is the expected return obtained by the agent following
policy π in task τ = 〈S, A, Tτ, Rτ, Iτ, γ〉:

J(π, τ) = Eπ

[
∞

∑
k=0

γkrk+1 | R = Rτ, T = Tτ, s0 ∼ Iτ

]
. (7.2)

In practice, to fully specify such a multi-task learning problem we
need to define also the policy representation which determines the
space of possible solutions to the problem.

7.2.2 Evolutionary Algorithms in Generalized Domains

Assuming that in a generalized domain G the task distribution P is
known a priori (according to so called open generalized methodology
[220]), we can naturally cast the multi-task learning problem as an
optimization problem. In fact, by treating each task τ ∈ T as a test Test-based problems

which is used to evaluate fitness of policies, the problem can be also
seen as a test-based problem (see Section 4.2.2).

A common example of test-based problems are games, where the
set of tests contains all possible opponents, and the objective is to
maximize the expected utility, i.e., the average score on all tests [40]. Expected utility

Since many games concern sequential decision making and can be
formulated as MDPs, such test-based problems can be equivalently
modeled as generalized domains with uniform distribution over a
set of game-playing tasks with different opponents.

In most nontrivial test-based problems, the large number of tests
precludes computationally feasible calculation of objective function
(e.g. the expected utility). For this reason, solving problems of this Computational

feasibilityclass with evolutionary computation requires substituting the origi-
nal objective function with a computationally cheaper fitness func-
tion that drives the search process towards a possibly similar (and
preferably the same) goal.

102 shaping in evolutionary learning

EnvironmentEnvironment

Training
Environments

Training Interactions

Agent

Policy

Performing behavior

Agent

Policy ⇡l

Shaping method

Population

fitness
behavior

policy

Evolutionary
learning algorithm

Distribution of
target environments

Distribution of
training environments

⇡b

⇡b

Figure 7.3: A general scheme of shaping in evolutionary multi-task learning.

In case of evolving cross-task policies for generalized domains with
large or infinite set of tasks, fitness can be evaluated by averaging the
rewards obtained only in a limited number of tasks. The questionHow to choose

training tasks? that one needs to answer when designing such a fitness function is:
how to choose these evaluation (training) tasks? The answer to this
question is of utmost importance, as it is the distribution of tasks that
allows us to shape the fitness landscapes and, accordingly, guide the
search process.

A straightforward answer to this question is to select the evaluation
tasks by sampling the set of tasks T according to the given target
task distribution P . Evaluating a policy using such a sample of tasksThe unshaped

approach allows to calculate an unbiased estimate of the expected return in
the entire domain. Employing the target task distribution for training
purposes will be from now on called the unshaped approach. A sim-
ilar approach was recently used by Chong et al. [33], who aimed at
maximizing the expected utility of game-playing policies. To this end,
they evaluated the fitness of policies by averaging their score against
uniformly sampled opponents.

7.2 difficulty-based shaping in generalized domains 103

7.2.3 Shaping in Generalized Domains

In contrast to the unshaped approach, which evaluates fitness using
the target task distribution, our shaping approach employs alterna-
tive (training) task distributions while preserving the same goal of
learning. We expect that it may be beneficial to distort the fitness The shaping

approachfunction of the learning problem, even if the objective function is
known and can be precisely approximated. Most of the proposed
methods employ many training task distributions at successive stages
of learning. The motivation for such methods corresponds to that of
incremental evolution (cf. 7.1.2) — we attempt to gradually shape
difficult fitness landscape to make the problem easier to solve by
evolutionary algorithms.

Following the abstract scheme of shaping illustrated in Figure 4.1,
Figure 7.3 presents a more concrete blueprint for shaping, which par-
ticularly involves an evolutionary algorithm in a multi-task setting. General shaping

schemeAs illustrated in the figure, the goal of learning is to perform well
in the entire domain defined by the probability distribution over the
set of target tasks (environments). The shaping method makes use of
this target distribution and provides the learning algorithm with a
modified training distribution. Additionally, the role of the shaping
method may be more dynamic by exploiting the feedback from the
learning algorithm (illustrated with a dashed line). For instance, the
provided training distribution may depend on the average perfor-
mance of the policies learned so far.

The main issue is how to identify such training tasks that allow for
efficient learning. Since the number of tasks in a domain is typically
very large, selecting good evaluation tasks manually just by inspect-
ing their specification is practically infeasible. Thus, in the following Task selection

criteriasections we introduce an easily computable measure of task difficulty,
which allows to group and order tasks within a domain. On this basis
it is possible to reasonably select training tasks even manually. How-
ever, our main objective is to design unsupervised shaping methods
that avoid incorporating human knowledge at all.

7.2.4 Task difficulty

Shaping methods require measurable criteria according to which the
training tasks could be selected. For this purpose, we introduce the
measure of expected task difficulty, that can be calculated without ref-
erence to any external source of knowledge. Intuitively, an MDP task Intuitive notion of

difficulty(environment) can be said to be difficult if a random policy is expected
to get a low return in it. On the other hand, easy tasks generally allow
policies to get higher expected returns. Clearly, tasks within a domain
may differ with respect to their difficulty, and thus an inherent char-
acteristic of a domain is its difficulty distribution.

104 shaping in evolutionary learning

In order to formalize and measure difficulties of tasks within the
given domain G = 〈T ,P〉, we make the following assumptions:Formalized measure

of difficulty
1. All tasks in T share the same state space S and action space A,

so we can define a space of domain policies Π = {π | π : S→ A}.

2. All tasks in T are episodic and and the total reward per episode
is limited from above by a domain-specific constant C.

Without loss of generality, we can assume that C = 1 and define the
difficulty of task τ as the following function D : T → R

D(τ) = DΠ(τ) = E [1− J(π, τ) | π ∈ Π] . (7.3)

Typically, in non-trivial problems it is computationally infeasible
to calculate task difficulty explicitly, because the space of policies is
very large and transition function may be nondeterministic. Instead,Approximate task

difficulty we can only measure approximate task difficulty by using a finite sample
of policies P ⊂ Π:

D̂P(τ) =
1
|P| ∑

π∈P
(1− J(π, τ)) . (7.4)

If P is uniformly sampled from P , D̂P is an unbiased estimator of D.
The measure of task difficulty allows us to estimate the domain

difficulty distribution (difficulty distribution for short), i.e., the distribu-
tion of tasks in a given domain with respect to their approximated
difficulty. To estimate such distribution, we discretize the range ofDomain difficulty

distribution task difficulty, which by assumption 2 is [0, 1], splitting it into family
of n disjoint intervals of equal width, i.e, B = {Bi | i = 0, . . . , n− 1},
where:

Bi =

[i

n , i+1
n

)
i = 0, ..., n− 2[n−1

n , 1
]

i = n− 1
(7.5)

Each such interval constitutes a difficulty bin to which tasks from a
domain can be assigned according to their (approximate) difficulty.
As a result, we can identify a subset of tasks of a given difficulty:

TB = {τ ∈ T | D(τ) ∈ B} . (7.6)

Figure 7.4 illustrates the process of estimating difficulty distribu-
tion by drawing a sample of tasks T from a domain and dividing
them into subsets {TB | B ∈ B} according to Equation 7.6. InsteadEstimating difficulty

distribution of using the exact task difficulty D, it is approximated by sampling
the space of policies and calculating the approximate difficulty (see
Equation 7.4). Eventually, by counting tasks assigned to particular
subsets, we can visualize difficulty histogram to roughly assess the
difficulty distribution.

7.2 difficulty-based shaping in generalized domains 105

nu
m

be
r o

f t
as

ks
 in

 a
 b

in

bins with tasks of certain difficulty0 1

T
draw a task from

the domain

PMDP Agent

assign the task to difficulty range
according to the average policy return

sample the
space of policiesInteractions

estimated domain
difficulty distribution

Figure 7.4: An outline of estimating domain difficulty distribution.

7.2.5 Difficulty-Based Task Pool

As already mentioned, the concept of expected task difficulty is intro-
duced in order to equip the shaping method with measurable criteria
for selecting the training tasks. Indeed, most shaping methods pro- Training difficulty

distributionposed in this chapter work by providing training tasks according to a
training difficulty distribution, that intentionally differ from the domain
difficulty distribution, but both are defined over the common set of
difficulty bins B. Given such a distribution X , each time the learn-
ing algorithm requires an evaluation task, a difficulty bin is sampled
B ∼ X and a shaping method supplies a task τ of a corresponding
difficulty, i.e., such that D(τ) ∈ B. Since generating ad hoc a task of
a desired difficulty is generally nontrivial, a precomputed difficulty-
based task pool is employed for this aim.

The task pool is created once for a domain and it can be reused by
any difficulty-based shaping method. Ideally, for each difficulty bin
B the task pool contains a corresponding task set TB of the same size
N, i.e., ∀B∈B |TB| = N. Building such a pool can be realized similarly Building the task

poolto estimating domain difficulty distribution (see Fig. 7.4): a task is
drawn from a domain, its difficulty is approximated by interactions
with randomly sampled policies, and it is assigned to a corresponding
difficulty bin B and added to the task set TB. This process is repeated
until all tasks sets reach capacity N. Typically some task sets can be
easily filled, but filling others is computationally infeasible. For this
reason, in practice we limit the task pool difficulty range, so that e.g.
∪B = [0.1, 0.9], to avoid necessity of generating the extremely easy or
the difficult tasks which are few and far between.

106 shaping in evolutionary learning

Building difficulty-based task pool can be computationally demand-
ing, especially when both N and the number of bins are high. Nev-
ertheless, this is a one-off process — once the pool task sets have
been filled, they can be used ad infinitum for shaping in this domain.Task pool

applications Importantly, such task pools have more applications than just shap-
ing. In particular, they can be used for multi-criteria assessment of
learned policies (cf. Section 7.4.3.3). Indeed, each difficulty bin B can
be associated with a single criterion that indicates the performance of
a given policy in tasks (T B) of this difficulty. We employed this idea
to propose performance profiles which are essentially a multi-objective
way of evaluating solutions for test-based problems [94].

7.2.6 Difficulty-Based Shaping Methods

In this section, we propose several difficulty-based shaping methods
which act as providers of training tasks that are then used by the
evolutionary algorithm to calculate fitness of evolving policies (cf. Fig.
7.3). Most of these methods maintain training difficulty distributions
(in short: training distributions) defined over the set of difficulty bins
B. On a technical note, the distributions are realized by means ofImplementation of

difficulty
distributions

difficulty-based task pools. Thus, each time a set of training tasks
is needed, they are sampled from the pool according to the specific
training distribution. In all shaping methods introduced here, sam-
pling with replacement is used, so a task can be sampled many times.
The number of training tasks sampled at each generation, typically
much smaller than the number of tasks in the pool, is one of the
learning algorithm’s parameters.

For instance, drawing a sample task from a uniform difficulty dis-
tribution U (0.5, 0.9) boils down to drawing a task from the union of
corresponding task sets in the pool U = {τ ∈ TB | B ⊂ (0.5, 0.9)}. In
the following we will assume that there are n = 100 difficulty bins
and each of them covers difficulty range of width 0.01. We will use
percentage points to identify the sets of task in the pool, i.e, we will
refer to union U by saying that task difficulty is in range (50, 90).

In Fig. 7.5, we propose a taxonomy of difficulty-based shaping
methods. Most importantly, we divide them into static and dynamic.Taxonomy of

shaping methods Static methods need a difficulty-based task pool and one or more
predefined training distributions, which are used in a fixed order
during training. Such methods strongly rely on the selection and
ordering of training tasks as specified by an experimenter. Dynamic
methods, by contrast, do not require so much effort when setting up,
because they attempt to provide training tasks adaptively, on the basis
of the current level of learners. They employ to this aim an additional
feedback from the learning algorithm.

In the following subsections we describe particular shaping meth-
ods in detail.

7.2 difficulty-based shaping in generalized domains 107

Difficulty-based shaping

Static
Predefined selection of
training distributions

Dynamic
Adaptive selection of
training distributions

Single-stage
Employing a single

distribution

Multi-stage
 Switching

distributions at
fixed time points

• staged
• overlapped
• cycled

• uniform
• normal
• triangular

• performance
heuristic

• distinctions
heuristic

Hyper-Heuristic
Choosing from a
set of predefined

distributions

• coevolving tasks
• coevolving task

distribution

Coevolution
Generating new

distributions

Section 7.2.6.1 Section 7.2.6.2 Section 7.2.6.3 Section 7.2.6.4

Figure 7.5: A classification of difficulty-based shaping methods.

7.2.6.1 Single-Stage Shaping

Single-stage shaping is the simplest of the considered approaches
and consists in replacing the domain difficulty distribution with a
predefined training distribution and using that distribution for the
entire learning process. In this work, we employ three well-known
distributions, illustrated in Fig. 7.6:

• uniform distribution in the specified range of difficulty [a, b),
denoted as uniform(a, b) (Fig. 7.6a and 7.6b),

• normal distribution, specified by its mean µ and standard devia-
tion σ, denoted as normal(µ, σ) (Fig. 7.6c),

• triangular distribution, specified by range [a, b) and mode c, de-
noted as triangular(a, c, b). (Fig. 7.6d).

7.2.6.2 Multi-Stage Shaping

Multi-stage shaping uses a sequence of training distributions which
are switched as learning proceeds. As a result, difficulty of provided
training tasks varies with the generation of the evolutionary algo-
rithm. This approach allows to create a series of distributions charac-
terized by progressive difficulty, what realizes the shaping as meant
in most works on incremental evolution (cf. Section 7.1.2).

108 shaping in evolutionary learning

20% 40% 60% 80% 100%
Task difficulty

0.00

0.01

0.02

0.03

0.04

0.05

Pr
ob

ab
ili

ty

(a) uniform(50, 90)

20% 40% 60% 80% 100%
Task difficulty

0.00

0.01

0.02

0.03

0.04

0.05

Pr
ob

ab
ili

ty

(b) uniform(60, 85)

20% 40% 60% 80% 100%
Task difficulty

0.00

0.01

0.02

0.03

0.04

0.05

Pr
ob

ab
ili

ty

(c) normal(70, 10)

20% 40% 60% 80% 100%
Task difficulty

0.00

0.01

0.02

0.03

0.04

0.05

Pr
ob

ab
ili

ty

(d) triangular(10, 70, 90)

Figure 7.6: Examples of training difficulty distributions.

We assume that a multi-stage shaping method holds k fixed compo-
nent training distributions (components) and uses them in a prescribed
order during learning. We employ only uniform training distribu-Component training

distributions tions as components. We consider the following variants of multi-
stage shaping (see Fig. 7.7) :

• staged(a, b, k) — each component training distribution features
the tasks with difficulty from an interval of width (b − a)/k.
The components’ intervals do not overlap and cover together
the specified range of difficulty [a, b). Each stage lasts the same
number of generations and corresponds to a part of the diffi-
culty range. Figures 7.7a and 7.7b show how the staged(40, 90, 5)
method works if the learning algorithm runs for 500 genera-
tions. For instance, the first component training distribution
uniform(40, 50) is used for the first 100 generations.

• overlapped(a, b, k, w) — a variation of the staged method in which
component training distributions cover parts of the difficulty
range of specified width w and thus may partially overlap. Fig-
ure 7.7c shows overlapped(40, 90, 5, 20) using uniform compo-
nent distributions in the ranges [40, 60), [50, 70), [60, 80), [70, 90),
[80, 100).

7.2 difficulty-based shaping in generalized domains 109

20% 40% 60% 80% 100%
Task difficulty

0.00

0.05

0.10
Pr

ob
ab

ili
ty

generations:
0-100
100-200
200-300
300-400
400-500

(a) Probability mass function for task diffi-
culty in staged(40, 90, 5).

0 100 200 300 400 500
Generation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ta
sk

di
ffi

cu
lt

y

(b) Difficulty progression over generations in
staged(40, 90, 5).

0 100 200 300 400 500
Generation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ta
sk

di
ffi

cu
lt

y

(c) Difficulty progression over generations
in overlapped(40, 90, 5, 20).

0 100 200 300 400 500
Generation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ta
sk

di
ffi

cu
lt

y

(d) Difficulty progression over generations
in cyclic(40, 90, 5, 50).

Figure 7.7: Training distributions provided by multi-stage shaping methods.

• cyclic(a, b, k, g) — a cyclic variation of the staged method with
non-overlapping difficulty intervals of the component distribu-
tions. Each component is used for g successive generations after
which it is replaced by the next one. After every k·g generations
the cycle is repeated starting from the first component. For ex-
ample, Fig. 7.7d illustrates cyclic(40, 90, 5, 50).

7.2.6.3 Hyper-Heuristic Shaping

This shaping method is inspired by the hyper-heuristic approach, in
particular by the class of methods which is referred to as ‘heuristics
to choose heuristics’ [26]. The general idea is to provide a fixed set of Selection heuristic

low-level heuristics to a high-level selection method which attempts
to switch between them. Most importantly, the selection method is
responsive by relying on a feedback from the low-level heuristics.

To apply this idea for shaping, we allow a set of component training
distributions (see previous subsection) to act as low-level heuristics. Low-level heuristics

Although, strictly speaking, they are not search operators, they influ-
ence the search process by changing the fitness function.

110 shaping in evolutionary learning

Similarly to the staged shaping approach we provide a set of k
uniform component training distributions covering given range of
difficulty [a, b) with non-overlapping difficulty intervals. However, in
contrast to staged shaping there is no predefined order of using them.Component

distributions Every g generations a high-level selection heuristic makes a decision
and chooses which distribution will be used for subsequent g gener-
ations. For this aim, we employ two different selection heuristics:

• distinctions(a, b, k) — at each generation (g = 1) this selection
heuristic samples the tasks from the component training distri-
butions, counts how many distinctions between policies in the
current population makes each of them and selects the compo-
nent which resulted in the largest number of distinctions. The
concept of distinctions is borrowed from coevolutionary algo-
rithms [41, 58]. Here we will say that a task τ ∈ T distinguishes
between two policies πa, πb ∈ P if and only if policy πa gets
significantly higher return in this task than policy πb:

dist(τ, πa, πb)⇐⇒ J(πa, τ)− J(πb, τ) > Y, (7.7)

where Y is a problem-specific constant 0 < Y ≤ C defined
by the experimenter. By making distinctions between policies,
tasks are believed to build a learning gradient. To check if a
nondeterministic task makes a distinction, it is necessary to
simulate more than one interaction episode with each policy
and compare the estimated expected policy returns.

• performance(a, b, k, g) — this selection heuristic maintains statis-
tics describing the influence of using particular component train-
ing distribution on the performance of evolving policies. For
instance, the performance can be measured as an average policy
return on the target task distribution. Every g generations the se-
lection heuristic inspects the most recent use of each component
distribution and chooses the one which resulted in the largest
performance improvement.

Note that, when compared to other shaping methods, the hyper-
heuristic ones need an extra computational effort for invoking the
selection heuristic. However, in our experiments we ignore this addi-Computational effort

tional effort and count only the interactions performed for the pur-
pose of fitness evaluation.

7.2.6.4 Coevolutionary Shaping

Hyper-heuristic shaping is responsive by using the feedback from
the learning process to select the component training distributions.
However, those distributions remain fixed, as they were predefined
prior to learning. Therefore, the overall training experience provided

7.2 difficulty-based shaping in generalized domains 111

by hyper-heuristic shaping is still limited. In certain contexts, it is pos-
sible to make the training episode, meant as an interaction between a Adaptive training

distributionslearner and task, to affect not only the former, but also the latter. In
this way, the task difficulty distribution can be dynamically adjusted
to the capabilities of learners.

The idea of adaptive adjustments of training difficulty distributions
can be implemented by means of coevolutionary algorithms, which
rely on viewing a multi-task reinforcement learning problem as a test-
based problem (cf. Section 7.2.2). In this context, in a two-population Two-population

coevolutioncoevolutionary algorithm (see Section 4.2.1), the role of shaping is
played by a population of tests which attempts to adaptively provide
a learning gradient for coevolving policies. Tests represent tasks and
their fitness is evaluated by counting distinctions these tasks make
in the latest population of policies. Distinctions are defined as in
distinctions-based hyper-heuristic approach (see Section 7.2.6.3).

In contrast to other shaping approaches, coevolutionary shaping
is self-sustaining because it does not require predefined training task
distributions. On the other hand, to effectively evolve useful tasks, we Requirements

need to specify tests population details including individual repre-
sentation, selection scheme and variation operators. In particular, we
propose the two following variants of coevolutionary shaping which
differ in test representation:

• coev-task — A conventional application of coevolutionary algo-
rithm to a test-based problem, in which the individuals in the
test population embody tasks. Tasks undergo conventional evo-
lutionary workflow that includes selection and domain-specific
mutation and crossover operators. Importantly, this is the only
shaping approach considered here which does not require a
precomputed difficulty-based task pool. Instead, it attempts to
synthesize tasks by itself and to scale their difficulty online to
provide increasingly complex challenges while the learning pro-
gresses.

• coev-diff — an alternative idea is to assume that the tests embody
not single tasks, but entire training difficulty distributions. For
simplicity, we consider here a simple variant of this approach,
where a tests represents a single difficulty bin (cf. Section 7.2.4).
In such case, an interaction between a candidate solution (policy
π) and a test (difficulty bin B ∈ B) consists in drawing a task
τ ∈ TB from a corresponding set in a difficulty-based task pool
and calculating the policy return J(π, τ). Although, in contrast
to coevolution of tasks, this approach requires a precomputed
task pool, there is no need of choosing a specific training distri-
bution.

112 shaping in evolutionary learning

7.3 empirical evaluation of shaping methods

In the following sections we demonstrate how shaping methods per-
form in three different multi-task domains. The first two domains
concern the board game of Othello (see Section 5.1), while the third
one is based on the cart pole-balancing problem (described in Sec-
tion 5.3). Sections 7.4 to 7.6, which present the results of applyingEvaluation overview

shaping methods to particular domains, are organized in the same
manner. In each of them we start by defining a multi-task domain
and estimating the domain difficulty distribution. Afterwards, we
report the outcomes of computational experiments and apply statis-
tical analysis to compare the performance of policies learned with
different shaping methods. Shaping methods turn out to significantly
improve evolutionary learning in a multi-task domain, and this result
constitutes one of the main contributions of this thesis.

Accordingly to one of the main assumptions of our shaping ap-
proach, the learning algorithm itself is not a subject to modification,
so it does not change between particular methods. For all experimentsCommon learning

algorithm we use the (µ + λ) evolution strategies described in Section 2.2.3, and
presented as a pseudocode in Listing 2.3. The algorithm begins with
a population of µ + λ randomly generated individuals — real vectors
of parameters for neural networks that represent behavior policies.
In every generation, each of the µ fittest individuals produces λ/µ

offspring through a straightforward uniform perturbation operator.
Detailed experimental setups are provided in the following sections.

We emphasize that in all setups within a single domain the evo-
lutionary operators of selection and mutation and their parameters
are the same. The differences between them lie only in the choice ofDifferences in fitness

assignment training tasks for fitness evaluation. The baseline for all comparisons
is the conventional unshaped approach, in which fitness is calculated
as the average policy return in a sample of tasks drawn directly from
the target domain according to domain distribution. All the other
considered setups employ the shaping methods (see Section 7.2) to
provide evaluation tasks in a different way. In particular, we examine
the performance of static shaping methods, in which tasks are sam-
pled from predefined difficulty distribution(s) and dynamic shaping
methods, like coevolution, which provide tasks adaptively to build
the learning gradient for evolving policies.

Despite using different fitness functions to drive evolution, the ul-
timate goal of learning remains the same: maximization of expected
utility, i.e., the expected policy return in tasks from a given domain.
To objectively assess how well the evolved individuals perform onPerformance

measure that measure, we use the approximate measure of expected utility.
This measure is the average return obtained by a policy in 25 000
interaction episodes against the tasks drawn from a target domain.
From now on, the term ‘performance’ refers to this measure.

7.4 othello opponent domain 113

7.4 othello opponent domain

The first considered domain involves the game of Othello described
in Section 5.1. The goal of learning is to find a game-playing policy
that copes well against all possible Othello opponents. The multi-task
learning reinforcement problem is defined as follows:

• Task set T . Each task τ is an instance of Othello game with a
fixed opponent policy πo. Tasks across the domain vary only
with respect to the opponent which determines the transition
function of the underlying MDP. Since all other aspects of tasks,
including state space, action space and reward function, remain
constant, a task is posed by a game-playing policy of the oppo-
nent. Here we assume that policies are represented by Weighted
Piece Counters (WPCs) as described in Section 5.1.2.2. As a re-
sult, the space of tasks is equivalent to the parametric policy
space where each point represents a vector of 64 real-valued
WPC weights. Besides that, each task has two possible initial
states corresponding to playing white or black, respectively1.

• Task distribution P . Each element from the space of tasks T
is equally likely to be drawn. Note however, since tasks are
encoded as vectors of policy parameters, multiple vectors may
result in the same policy, i.e., the same state-action mapping. To
generate a random task, a random opponent policy is created by
drawing WPC weights uniformly from the interval [−10, 10].

• Domain policies Π. To represent a game-playing policy (candi-
date solution to the learning problem) we employ the WPC
architecture to act as a state evaluator in 1-ply setup (see Section
5.1.2.2). As a result, the parametric policy space is identical to
the space of tasks, and a random policy is generated in an ana-
logical way — by uniformly drawing WPC weights. Random
policies and random tasks are crucial for estimating domain dif-
ficulty distribution and constructing difficulty-based task pool.
Domains like this one, in which the roles of tasks and policies
are equivalent and thus interchangeable can be regarded as
symmetric. Importantly, in such domains difficulty of a task is
strictly related to the performance of its opponent policy.

• Interaction episode. An interaction episode corresponds to a sin-
gle game of Othello between a candidate solution policy and
an opponent policy πo defined by the task. The maximal total
reward that can be received by a policy is C = 1 when it wins
the game. In case of draw a policy gets reward equal to 0.5 and
there is no reward if the game is lost.

1 One could argue that playing versus black is a different task than playing versus
white player. Following this reasoning, we could alternatively encode a task as an
opponent policy and a color of player for which it is used.

114 shaping in evolutionary learning

Setting Value

Learning algorithm (µ + λ) Evolution Strategy

Population size µ = 25, λ = 25

Initialization ∼ U (−0.2, 0.2)

Mutation type uniform perturbation

Mutation strength δ = 0.1

Number of training tasks 50

Episodes per generation 5 000

Generations 500

Number of runs 100

Table 7.1: Experimental settings of evolutionary learning in the Othello op-
ponent domain.

7.4.1 Experimental Setup

As the learning algorithm, we employ (µ + λ) generational evolution
strategy, with µ = 25 and λ = 25, to evolve vectors of 64 real-valued
WPC weights. The algorithm starts by filling the initial populationLearning algorithm

parameters with individuals whose weights are randomly drawn from the range
[−0.2, 0.2]. The only search operator is a simple uniform perturbation
mutation that modifies all the weights using additive noise. The WPC
weight w

′
i of the offspring is obtained by adding a small random value

to the corresponding WPC weight of the parent:

w
′
i = wi + 0.1 · U (−1, 1), (7.8)

where U (−1, 1) is a real value drawn uniformly from the range [−1, 1].
Weights resulting from mutation are clamped to the interval [−10, 10],
effectively keeping the value within the respective bound. The exper-
imental settings are summarized in Table 7.1.

In the evaluation phase, each individual is faced with 50 tasks pro-
vided by the shaping method. In the case of unshaped learning, tasksEvaluation phase

details are generated uniformly according to the target task distribution P .
Importantly, since each task τ ∈ T has exactly two possible initial
states, it is explicitly used in two successive interaction episodes start-
ing from these states. In other words, when a policy faces a task
it plays one game as black and one game as white player. We use
the term ‘double game’ to refer to such a pair of interactions. The
average policy return in a total of 100 episodes is used to determine
individual’s fitness.

Each method requires the same computational effort of 5 000 in-
teraction episodes per generation ((25 + 25) individuals × (50 + 50)
training tasks). Each evolutionary run lasts for 500 generations, whatComputational effort

makes the total effort of 2 500 000 episodes (games) per run. For the

7.4 othello opponent domain 115

0% 20% 40% 60% 80% 100%
Expected task difficulty

0.00

0.01

0.02

0.03

0.04

0.05

Pr
ob

ab
ili

ty

Figure 7.8: Domain difficulty distribution of the Othello opponent domain.

purpose of statistical analysis, we performed 100 independent runs
for each considered shaping method. The detailed results of Kruskal-
Wallis and Mann-Whitney tests can be found in Appendix A.1. The
best-of-generation individual is the individual with the highest fitness
in the population. By the best-of-run player we mean the best player
of the last generation. We characterize method’s performance using
the performance of its best-of-generation player.

7.4.2 Domain Difficulty Distribution

To get insight into properties of tasks in the considered domain, we
estimated the domain difficulty distribution (see Section 7.2.4). Dis-
tribution illustrated in Fig. 7.8 was obtained by sampling 500 000 ran-
dom tasks and calculating their approximate difficulty (see Equation
7.4) on the basis of double games with a set of 1 000 random policies. Estimating a

distributionTask’s difficulty determines its assignment to one of 100 difficulty
bins, which correspond to difficulty ranges of width 1%.

Clearly, the resulting histogram resembles the normal distribution
with a mean value of 50.2% and a standard deviation of 7.91%. Since
this particular domain is symmetric and thus both random tasks and
random policies are sampled from the same space, we can interpret
the expected difficulty of a random task as the expected policy return
of a random (opponent) policy. In this context, the figure shows the Task difficulty

interpretationexpected performance of a random policy. The mean value of around
50% expresses the intuitive fact that a random policy is equally likely
to win and lose the game against another random policy. Moreover,
the estimated distribution indicates that most tasks in this domain
have close to average difficulty — strong opponent policies are few
and far between.

116 shaping in evolutionary learning

The estimated difficulty distribution strongly encourages the use
of shaping. As the unshaped approach samples the opponents uni-Motivation for

shaping formly from this distribution, it is unlikely for an individual to face
a difficult task in the evaluation phase. For this reason, the fitness
function will be often unable to differentiate between two policies
that, e.g., play well against the average opponents but one of them
is much better at beating the strong ones. This is unfortunate as,
preferably, we would like to lead the evolution towards the policies
that are able to win with skilled players without losing the capability
of winning with the opponents of average strength.

Importantly, the difficulty distribution indicates also that finding
the extremely difficult or easy tasks by random sampling is very hard.
This has substantial implications for building the pool of tasks used
by most of the proposed shaping methods. For that reason, we were
unable to fill all task sets TB in a difficulty-based task pool (cf. Section
7.2.5). To overcome this obstacle, the tasks of difficulty ≥ 81% orDifficulty-based task

pool ≤ 13% were obtained by multiple independent runs of dedicated
evolutionary algorithm. In this way, we filled 80 task sets, each of size
N = 1 000, corresponding to difficulty bins in range [10%, 90%).

7.4.3 Single-Stage Shaping Methods

In the first experiments, we examined the single-stage shaping meth-
ods which provide the training tasks with the same difficulty distribu-
tion for the entire learning process. Each of these methods, includingDistribution

parameters uniform, normal and triangular shaping (see Section 7.2.6.1), requires
a small number of parameters that determine the specific task distri-
bution. Although in principle we could perform a systematic search
in a parameter space to tune the method for the problem at hand, the
aim of this thesis is to demonstrate the usefulness of shaping rather
than meticulously tune method parameters. Therefore, for the sake of
simplicity we rely on an arbitrary series of preliminary experiments
to achieve reasonable method settings.

7.4.3.1 Overall Performance

The results of the single-stage shaping methods with selected param-
eters are presented in Fig. 7.9 as a violin plot, which combines a box
plot and a density trace [87]. The plot summarizes the distribution ofViolin plot

final performance obtained with particular methods.
The most important observation is that each of the proposed shap-

ing methods allowed evolutionary algorithm to learn stronger poli-
cies than those found with the conventional unshaped approach. How-
ever, the performance of particular shaping methods largely depends
on the selected parameters of training task distributions. If these
parameters are not chosen properly, shaping performs significantly
worse than the reference approach. In the case of this specific prob-

7.4 othello opponent domain 117

●●●●

● ●

●●

●

●●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

uniform(30,50)

normal(40,10)

UNSHAPED

uniform(70,90)

triangular(10,70,90)

uniform(50,70)

normal(70,10)

normal(60,10)

uniform(50,90)

triangular(50,60,90)

0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92
Performance

Figure 7.9: Performance of single-stage shaping methods shown as violin
plots. Each black box spans from the first to the third quartile
(the interquartile range or IQR), while the whiskers extend to
the highest and lowest observations within 1.5·IQR from the box.
Outliers beyond this range are denoted by black dots. Narrow-
ings of the box around the median indicate 95% confidence in-
terval. Methods are sorted descendingly according to their mean
performance (shown by white circles).

lem, we can generally observe that the learning algorithm benefits
from biasing distributions towards more difficult task and limiting
time number of easier tasks. For instance, the uniform(30, 50) and Impact of training

distributions
parameters

normal(40, 10) approaches, which focus solely on tasks of average
difficulty, are the weakest among considered methods. On the other
hand, the most of the successful configurations completely ignore the
tasks of difficulty lower than 50% and put emphasis on training only
in more challenging environments.

Nevertheless, the relative improvement gained by the best shaping
methods in comparison to unshaped approach is barely larger than
1%. We conducted a statistical analysis to verify our observations and
determine whether using shaping methods has a significant effect
on the performance of learned policies [42]. On the basis of density Statistical analysis

plots we assumed that particular samples of results have distributions
of similar shape (except for any difference in medians). Under this
assumption, we performed a Kruskal-Wallis test which confirmed
(p < 0.001) a significant difference in medians. A post-hoc analysis
using one-sided Mann-Whitney tests with Holm correction measured
the significance of pairwise differences between particular experimen-
tal setups. The results of pairwise comparisons are shown in Table 7.2.

118 shaping in evolutionary learning

tr
ia

ng
ul

ar
(5

0,
60

, 9
0)

un
ifo

rm
(5

0,
90
)

no
rm

al
(6

0,
10
)

no
rm

al
(7

0,
10
)

un
ifo

rm
(5

0,
70
)

tr
ia

ng
ul

ar
(1

0,
70

, 9
0)

un
ifo

rm
(7

0,
90
)

un
sh

ap
ed

no
rm

al
(4

0,
10
)

uniform(50, 90) 1.000

normal(60, 10) 1.000 1.000

normal(70, 10) 1.000 1.000 1.000

uniform(50, 70) 1.000 1.000 1.000 1.000

triangular(10, 70, 90) 0.485 1.000 1.000 1.000 1.000

uniform(70, 90) 0.106 0.485 0.532 0.872 1.000 1.000

unshaped 0.000 0.000 0.000 0.000 0.000 0.000 0.000

normal(40, 10) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

uniform(30, 50) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.228

Table 7.2: p-values obtained in one-sided pairwise Mann-Whitney test with
Holm correction. Each value lower than the significance level
α = 0.01 indicates that a method in a row has significantly lower
performance than another method in the corresponding column.

7.4.3.2 Learning Speed

The results discussed above concern the final performance of the
considered methods, but they do not describe how this performance
was achieved. To get more insight into the learning process, we as-Learning speed

assessment sessed the speed of learning by evaluating the methods not only at
the end of evolutionary run, but after each generation. Figure 7.10

shows the performance of selected methods as a function of compu-
tational effort (number of training episodes). Each point in the plot is
the performance of best-of-generation individuals averaged over 100
runs. Let us emphasize that, although this performance measurement
involved a large number of interactions in the target domain, it did
not influence individuals’ fitness; the learning process was driven
only by the tasks from a predefined training distribution.

Because the previous experiment showed that there is little differ-
ence in performance between the shaping methods that use similarly
biased (’located’) triangular and uniform distributions, the learning
speed was gauged only for a set of uniform shaping methods and
the unshaped approach. Although the considered methods achievePerformance over

time visibly different final performance, all of them except uniform(10, 30)
learn initially with a similar speed and reach the performance level
of 0.8 relatively quickly. Only above this level the learning curves
start to diverge and both uniform(30, 50) and unshaped methods learn
slower than the best uniform(50, 70) and uniform(70, 90), which stay
very close to each other throughout the entire evolution. Importantly,
all methods steadily improve their performance, and continue doing
so even in the late stages of runs.

7.4 othello opponent domain 119

0.65

0.70

0.75

0.80

0.85

0.90

0 500,000 1,000,000 1,500,000 2,000,000 2,500,000

Training episodes

Pe
rf

or
m

an
ce

uniform(50,70)
uniform(70,90)
unshaped
uniform(30,50)
uniform(10,30)

Figure 7.10: The performance of uniform shaping methods over time.

7.4.3.3 Multi-Criteria Performance Evaluation

In order to better understand the characteristics of particular methods
we broke down the performance measure into more detailed infor-
mation on how policies cope with the tasks of various difficulty. For Multi-criteria

assessmentthis purpose we employed the opponents drawn from uniform task
distributions not only to evaluate the fitness of evolving individuals,
but also to assess the performance of already learned policies.

In Figure 7.11 we can observe how the shaping methods perform
with respect to four distributions of tasks of increasing difficulty. Each
of these distributions can be considered as a separate performance
criterion, so that together they describe the characteristics of the de-
veloped polices in a more explanatory way than a single aggregated
performance measure. This figure sheds new light on the comparison
between the unshaped approach and uniform shaping.

In particular, let us focus on a pair of methods uniform(50, 70) and
unshaped. Although the difference in aggregated performance between Performance in

diverse tasksthese methods is only around 1% (see Figures 7.9 and 7.10), their
performance in tasks of varying difficulty turn out to substantially
diverge. The uniform(50, 70) method fares almost 10% better in very
difficult tasks (see Fig. 7.11d) and 3% better in the moderately diffi-
cult ones (see Fig. 7.11c). The unshaped approach, by contrast, is just
slightly more rewarding only in very easy tasks, while both methods
are comparable in tasks of difficulty in range [30, 50). Nevertheless,
attaining much higher performance in demanding tasks by shaping
methods is not sufficient for them to gain a substantial advantage in
terms of the overall performance, because in the target domain such
difficult tasks occur much more infrequently.

120 shaping in evolutionary learning

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

0 1,000,000 2,000,000

uniform(30,50)
uniform(10,30)
unshaped
uniform(50,70)
uniform(70,90)

(a) Performance in {TB | B ⊂ [10, 30)}

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0 1,000,000 2,000,000

unshaped
uniform(30,50)
uniform(50,70)
uniform(70,90)
uniform(10,30)

(b) Performance in {TB | B ⊂ [30, 50)}

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0 1,000,000 2,000,000

uniform(70,90)
uniform(50,70)
unshaped
uniform(30,50)
uniform(10,30)

(c) Performance in {TB | B ⊂ [50, 70)}

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1,000,000 2,000,000

uniform(70,90)
uniform(50,70)
unshaped
uniform(30,50)
uniform(10,30)

(d) Performance in {TB | B ⊂ [70, 90)}

Figure 7.11: Performance of shaping methods on different task distributions.

An interesting regularity observable in this analysis is that the poli-
cies that achieve the highest performance in the given range of task
difficulty were those ones that were taught on the slightly harder
tasks. For instance, in the difficulty range [30, 50) (see Fig. 7.11b) theTraining vs. target

task difficulty top performing policies are developed by uniform(50, 70), while in
range [50, 70) (see Fig. 7.11c) the best results are achieved by uni-
form(70, 90). In the context of Othello game, this observation confirms
an intuitive belief that in order to defeat a given opponent it is useful
to master game-playing skills against stronger players. On the other
hand, the difference in the level of play between the teacher and the
target opponent can not be too large. Indeed, if trained solely by
expert opponent one can miss the skills required to deal with the
easiest strategies. We hypothesize that for this reason uniform(70, 90)
is the worst method in terms of the performance on the easiest tasks.
Broadly speaking, the fitness evaluated only on difficult tasks is not
the best predictor of general multi-task solving abilities.

7.4 othello opponent domain 121

Clearly, dividing the set of target tasks into subsets of varying diffi-
culty allows to reveal the strong points of particular methods, which
could not be noticed using the measure of aggregated performance in
the entire target domain. Following this idea, we can further increase Performance profiles

the number of task subsets and thus consider even more criteria
in such multi-criteria method comparison. In our recent study [94],
this idea has been implemented as performance profiles which display
solution’s performance as a function of task difficulty.

Finally, although in principle the goal of learning is the overall
performance in a given domain, in practice we may be more con-
cerned about solving harder tasks. In this context, the above analysis Practical aspects

provides convincing evidence that, at least for Othello, we should
prefer shaping approach over the unshaped one, albeit at first sight
they perform nearly the same on average.

7.4.4 Multi-Stage Shaping Methods

In the next experiment we verify whether the best uniform shaping
setup identified in the previous section, i.e., uniform(50, 90), can be
improved by employing the multi-stage shaping approach. To this
aim, we split the task difficulty range [50, 90) into several intervals
and employ them in successive training phases to provide tasks of
systematically varying difficulty (see Section 7.2.6.2).

Figure 7.12 compares the performance of selected multi-stage shap-
ing methods with the reference unshaped and uniform(50, 90) ap-
proaches. Although multi-stage shaping outperformed the unshaped
approach, it did not allow to improve on performance of the single-
stage shaping. Moreover, some setups, including staged(50, 90, 20) led Staged shaping

to significantly inferior results. Generally, we can conclude that the
performance decreases with the growing number of stages and thus
with reducing the width of successive difficulty intervals.

The adverse effect of narrow difficulty intervals used at particular
stages of learning can be partially canceled by repeating these stages
in a cyclic manner. If the length of the training phase in such cyclic Cyclic shaping

shaping is relatively short, the obtained results closely resemble those
of the original single-stage method. This similarity can be noticed in
the violin plots of cyclic(50, 90, 2, 10) and uniform(50, 90).

An alternative approach which follows the idea of incremental evo-
lution but avoids the problem of narrow difficulty intervals is over-
lapped shaping. Let us recall that for instance overlapped(50, 70, 2, 30) Overlapped shaping

divides the learning process into two phases in which it employs
the following task distributions: uniform[50, 80) and uniform[60, 90).
By employing wide and overlapping ranges of tasks difficulty this
method was able to significantly improve the straightforward staged
shaping. However, when compared with the reference uniform(50, 90)
method, there was no significant increase in the mean performance.

122 shaping in evolutionary learning

●●

● ●●

●● ● ●●

●

●

●

●

● ● ●●

●●●

●

●

●

●

●

●

●

●

●

●

●

UNSHAPED

staged(50,90,20)

staged(50,90,4)

staged(50,90,10)

staged(50,90,2)

overlapped(50,70,10,20)

cyclic(50,90,10,5)

overlapped(50,80,5,15)

cyclic(50,90,2,10)

uniform(50,90)

overlapped(50,70,2,30)

0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93
Performance

Figure 7.12: Performance of multi-stage shaping methods shown as violin
plots. Each black box spans from the first to the third quartile
(the interquartile range or IQR), while the whiskers extend to
the highest and lowest observations within 1.5·IQR from the
box. Outliers beyond this range are denoted by black dots. Nar-
rowings of the box around the median indicate 95% confidence
interval. Methods are sorted in descending order according to
their mean performance (shown by white circles).

The above remarks are supported by statistical analysis. The results
of conducted tests can be found in Table A.1 in Appendix A.1.

7.4.5 Hyper-Heuristic Shaping Methods

The multi-stage shaping approach relies on a a priori selection of train-
ing task distributions and, what is even more important, assigning
them to successive phases of learning. Manual adjustment of settingsTowards

autonomous shaping that control shaping distributions and their usage during learning
requires a substantial amount of human effort and repeated computa-
tional experiments. Employing hyper-heuristic methods (see Section
7.2.6.3) is a first step towards autonomous shaping. Here, we still
need to equip a shaping method with a set of predefined training
distributions, but the method will try to automatically discover when
to switch from one distribution to another.

In the experiments we employ two types of hyper-heuristic shap-
ing, namely distinctions and performance methods, which differ in how
they choose a training distribution to provide the sample of tasks.Performance

shaping Figure 7.13 shows that neither of these methods was able to beat the
single-stage uniform(50, 90) shaping. However, according to statistical

7.4 othello opponent domain 123

●●

●

●

●

●● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

UNSHAPED

distinctions(50,90,8)

staged(50,90,4)

distinctions(50,90,4)

distinctions(50,90,2)

performance(50,90,4,10)

performance(50,90,4,20)

performance(50,90,4,30)

performance(50,90,4,40)

uniform(50,90)

0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93
Performance

Figure 7.13: Performance of hyper-heuristic shaping methods shown as vio-
lin plots. Each black box spans from the first to the third quartile
(the interquartile range or IQR), while the whiskers extend to
the highest and lowest observations within 1.5·IQR from the
box. Outliers beyond this range are denoted by black dots. Nar-
rowings of the box around the median indicate 95% confidence
interval. Methods are sorted in descending order according to
their mean performance (shown by white circles).

analysis conducted in the same way as in previous sections (cf. Table
A.2 in the appendix) we can claim that performance shaping signifi-
cantly improved upon the results of the staged(50, 90, 4) method.

The hyper-heuristic methods based on the notion of distinctions,
were much more sensitive to its parameter settings. Similarly to the Distinctions shaping

previous experiments, increasing the number of considered task dis-
tributions and at the same time reducing the width of corresponding
difficulty ranges resulted in decreased performance. Nevertheless, all
of the evaluated hyper-heuristic shaping methods were still signifi-
cantly superior to the conventional unshaped approach.

Let us emphasize that when compared with previously considered
shaping approaches, both methods can be regarded as ‘unfair’ as
they require additional interaction episodes for making these choices. Unequal

computational effortThe performance shaping method evaluates the policies in the target
domain, while the distinctions method calculates policies return on
all predefined distributions and only then chooses the best one. We
decided to ignore this extra computational effort and count only in-
teractions performed by the learning algorithm because the primary
aim of the experiment was to verify whether the failure of multi-
stage shaping may be ascribed to unfortunate assignment of training
distributions to successive learning phases.

124 shaping in evolutionary learning

0.72

0.76

0.80

0.84

0.88

0 500,000 1,000,000 1,500,000 2,000,000 2,500,000

Training episodes

Pe
rf

or
m

an
ce

coev−task(25,50) rate=10.0
coev−task(25,50) rate=20.0
coev−task(25+25) rate=20.0
coev−task(25+25) rate=10.0
coev−task(25,50) rate=1.0
coev−task(25+25) rate=1.0
coev−task(25,50) rate=0.1
coev−task(25+25) rate=0.1

Figure 7.14: Performance of coev-task shaping methods with different se-
lection schemes and mutation rates. Semi-transparent ribbons
around the curves show 95% confidence intervals for the mean.

7.4.6 Coevolutionary Shaping

The final experiment in the random-opponent Othello domain con-
sisted in employing coevolutionary shaping (see Section 7.2.6.4). ThisLower requirements

approach goes one step further beyond hyper-heuristic in terms of
being autonomous, since it does not require any predefined training
task distribution. However, in both variants of coevolutionary shap-
ing, namely coev-task and coev-diff, we need to specify how to search
the space of tests which, depending on the variant, is represented
directly by tasks themselves or indirectly by task difficulties.

A common experimental setting for both methods was to utilize the
distinctions to calculate the fitness of tests. Moreover, we fixed the size
of the tests population to be equal to the number of tasks required for
policies evaluation, i.e., 50. Therefore, during the evaluation phase,Experimental

settings each policy interacted with every test from the coevolving population
in a round-robin manner. Ultimately, the experimental setup of co-
evolutionary shaping methods was limited to two choices concerning
the population of tests. First, we had to choose the mutation operator
to effectively search the adopted space of tests. Second, as for the
selection scheme we considered between (µ + λ) with µ = λ = 25
and (µ, λ) with µ = 25 and λ = 50. The latter one, called comma
selection strategy, does not allow any of µ parents to be included in
the next generation, even if they are better than all λ offspring. As
a result, the entire population is replaced at each generation so the
tests used to evaluate policies change much faster.

7.4 othello opponent domain 125

0 100 200 300 400 500
Generation

0

20

40

60

80

100
Ta

sk
D

iffi
cu

lt
y

(a) coev-task(25, 50), mutation rate = 10.0

0 100 200 300 400 500
Generation

0

20

40

60

80

100

Ta
sk

D
iffi

cu
lt

y

(b) coev-task(25 + 25), mutation rate = 0.1

Figure 7.15: Difficulty distributions provided by coev-task shaping methods
over generations. Color saturation indicates relative occurrence
frequency of tasks of certain dificulty.

7.4.6.1 Coev-Task Methods

We start with the analysis of the coev-task method, where each test
individual is a single task. Since in this particular problem, tasks Initial coev-task

setupare represented in the same way as solutions (in the form of WPC)
we could use the same experimental setup for both populations, i.e.
(25 + 25)-ES with uniform weight mutation of rate 0.1 (see Section
7.4.1 for details). To determine whether such setup is reasonable, we
conducted a preliminary experiment with different mutation rates
and an alternative (µ,λ) selection scheme.

According to Fig. 7.14 it is favorable to employ the comma selection Preliminary
experimentstrategy and much larger mutation rates, as they result in both su-

perior performance and substantially lower variance. These settings
explicitly increased genotypic diversity within coevolving population.
Indeed, regarding the size of the task space ([−10, 10]64), such large
mutations make the provided tasks almost random.

To scrutinize the dynamics of task distribution in the coevolving
population, we assessed task difficulty in each generation by per-
forming interactions with 1 000 randomly sampled policies. Figure
7.15 shows heat maps illustrating how difficulty distribution evolved coev-task difficulty

distributionacross generations in case of two extreme values of mutation rate
and different selection strategies. When compared to difficulty of ran-
domly sampled tasks (cf. Fig. 7.8), training distributions provided by
coevolutionary shaping are biased towards more difficult tasks, even
in case of very large mutation rate. The important question is why
distribution in Fig. 7.15b resulted in significantly lower performance
than any other method considered before. Following earlier research
in coevolutionary learning [32], we hypothesize that it is the matter
of diversity within the coevolving population. If the mutation rate is
too small, tests quickly become too similar to each other and they do
not evaluate the individual’s expected utility in the entire domain.

126 shaping in evolutionary learning

●●

●

●● ●●

●●

●●●

●

●

●

●

●

●

●

●

●

●

UNSHAPED

coev−diff(25,50) rate=4.0

coev−diff(25+25) rate=4.0

coev−diff(25,50) rate=10.0

coev−diff(25,50) rate=20.0

coev−diff(25,50) rate=40.0

coev−task(25,50) rate=10.0

uniform(50,70)

uniform(50,90)

overlapped(50,70,2,30)

0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93
Performance

Figure 7.16: Performance of coev-diff shaping methods shown as violin
plots. Each black box spans from the first to the third quartile
(the interquartile range or IQR), while the whiskers extend to
the highest and lowest observations within 1.5·IQR from the
box. Outliers beyond this range are denoted by black dots. Nar-
rowings of the box around the median indicate 95% confidence
interval. Methods are sorted in descending order according to
their mean performance (shown by white circles).

7.4.6.2 Coev-Diff Methods

In the coev-diff coevolutionary shaping method, , each test is encodedcoev-diff test
representation as a single double value d which is interpreted as task difficulty mea-

sured in percentage points, and refers to a difficulty bin containing
d, i.e., B : d ∈ B. To evaluate a policy, a single task is drawn from
the corresponding task set TB in a pool, and a double game is played.
Mutating a test consists in adding a random value to d:

d′ = d + rate · U [−1, 1], (7.9)

where U [−1, 1] is a real value drawn uniformly from the range [−1, 1]
and rate is the mutation rate. As a result of mutation, the difficulty
bin a test points to is possibly changed.

The preliminary experiment with different selection schemes and
mutation rates revealed that this variant of coevolutionary shaping is
much less susceptible to changing these parameters. Nevertheless, itFinal comparison

was still advantageous to use relatively large mutation rate. Fig. 7.16

illustrates how coev-diff shaping methods perform when compared
with the reference unshaped approach and the best previously con-
sidered shaping methods. Both variants of coevolutionary shaping,
when properly tuned, were able to significantly outperform the un-
shaped approach (cf. Table A.3 in Appendix A.1).

7.4 othello opponent domain 127

0 100 200 300 400 500
Generation

0

20

40

60

80

100
Ta

sk
D

iffi
cu

lt
y

(a) coev-diff(25, 50), mutation rate = 40.0

0 100 200 300 400 500
Generation

0

20

40

60

80

100

Ta
sk

D
iffi

cu
lt

y

(b) coev-diff(25 + 25), mutation rate = 4.0

Figure 7.17: Difficulty distributions provided by coev-diff shaping methods
over generations. Color saturation indicates relative occurrence
frequency of tasks of certain dificulty.

Moreover, it is also interesting to observe how the distributions
of task difficulty change over generations in this coevolutionary ap-
proach. Figure 7.17 shows that the distributions converged towards coev-diff difficulty

distributionthe most difficult tasks in the pool. Apparently, these tasks were
making the most distinctions among the population of policies. The
speed of convergence depended on the mutation rate. Moreover, we
can observe that by using mutation rate of 40, the resulting difficulty
distribution shown in Fig. 7.17a covers the range [50, 90], which corre-
sponds to the best uniform(50, 90) method considered in Section 7.4.3.
We can also hypothesize that using distinctions as the only measure
of test fitness could be a flawed idea because it can make distribution
squeeze in the very narrow difficulty range.

Finally, when compared with the best static shaping methods, rep-
resented by specific overlapped and uniform setups (cf. Fig. 7.14), co-
evolutionary shaping is not significantly weaker. Importantly, from Practical point of

viewa practical point of view, the comparison between these approaches
should also involve the amount of human and computational effort
needed to prepare successful setups. In this respect, static shaping
methods require both computational power for building a difficulty-
based task pool and human supervision for specifying training dis-
tributions. Coevolutionary shaping, by contrast, allows us to avoid
some of these efforts. In particular, coev-task shaping creates training
tasks ad hoc without access to the precomputed task pool. On the
other hand, the process of tuning its test population parameters is
burdensome while designing mutation operators may require some
knowledge about the problem domain. The coev-diff method is much
less sensitive to parameter settings and operates on task difficulties,
which can be mutated by problem-independent operators. However,
it does require a task pool.

128 shaping in evolutionary learning

7.5 othello initial state domain

In the second Othello-based domain the goal is to learn a game-
playing policy that maximizes the expected return when playing with
the Standard WPC Heuristic Player (swh, described in Section 5.1.3.1)
starting from any valid game state. The multi-task learning problem
which describes this goal is defined as follows:

• Task set T . Each task τ ∈ T is an instance of Othello game
against the swh player with one-point initial state distribution.
Since the tasks across the domain differ only in the initial state,
each of them is represented as an Othello state, i.e., a board
encoded as a vector of 64 ternary-valued fields and the color
of the starting player. In principle, this entire domain could
be represented as a single MDP task with a properly specified
initial state distribution. However, for the sake of consistency
with other considered problems we decided to use the multi-
task setting.

• Task distribution P . Distribution of tasks is specified implicitly
by the way the random task, i.e., its initial state, is generated.
We adopted the following procedure to create a random but
valid Othello state. First, we generate a path in the game tree
by starting from the default Othello initial state (see Fig. 5.1a)
and making a sequence of random legal moves until reaching
the terminal state. Next, from the states encountered on such
random path we uniformly choose one state. However, to avoid
playing games that are already resolved (i.e., when one player is
certain to win the game), we excluded the last five states on a
random path.

• Domain policies Π. Similarly to the previous domain considered
in Section 7.4, to represent a game-playing policy (candidate
solution to the learning problem) we employ the WPC architec-
ture as a state evaluator in 1-ply setup (see Section 5.1.2.2). Let
us recall that for the purpose of estimating domain difficulty
distribution and constructing a task pool, a random policy is gen-
erated by uniformly drawing the WPC weights from the range
[−10, 10].

• Interaction episode. An interaction episode corresponds to a sin-
gle game of Othello between a candidate solution policy and
the swh policy, starting from the initial state defined by the task.
The rewards depend on the game outcome in the same way as
in Section 7.4. The maximal total reward of C = 1 is granted to
a policy when it wins a game. In case of draw, a policy receives
reward of 0.5, and there is no reward if the game is lost.

7.5 othello initial state domain 129

Setting Value

Learning algorithm (µ + λ) Evolution Strategy

Population size µ = 25, λ = 25

Initialization ∼ U (−0.2, 0.2)

Mutation type uniform perturbation

Mutation strength δ = 0.1

Number of training tasks 50

Episodes per generation 2 500

Generations 1 000

Number of runs 100

Table 7.3: Experimental settings in the Othello inital state domain.

7.5.1 Experimental Setup

We retain most of the evolutionary parameters from Section 7.4, such
as (µ + λ) selection strategy, population size of 50 and uniform muta-
tion operator. To evaluate individuals, each of them is faced with a se-
ries of 50 tasks provided by the shaping method. However, in contrast
to the opponent-based domain, here each task is used only for a single
interaction episode. Consequently, the computational effort, meant as
the number of training episodes per generation, is twice smaller than
before. We doubled the number of generations to 1 000 while keeping
the total effort equal to 2 500 000 training episodes (games) per run.
The experimental settings are summarized in Table 7.3.

We conducted a series of experiments to judge the performance
of shaping methods in this domain. However, contrary to the ex-
periments in the opponent-based Othello domain, we omitted the
hyper-heuristic shaping methods, as the experiment in Section 7.2.6.3
showed that they have limited practical value. Similarly as before, the
experimental results were subject of the statistical analysis including
Kruskal-Wallis and Mann-Whitney tests on each pair of considered
methods. The results of these tests for particular experiments can be
found in Appendix A.2.

7.5.2 Domain Difficulty Distribution

In analogy to Section 7.4.2, we started with estimating the domain
difficulty distribution. Distribution illustrated in Fig. 7.18a was ob-
tained by generating 100 000 random tasks (Othello initial states) and
calculating their approximate difficulty (see Equation 7.4) on the basis
of interactions with a set of 1 000 random policies. Each task was
assigned to one of 100 difficulty bins, which correspond to difficulty

130 shaping in evolutionary learning

0% 20% 40% 60% 80% 100%
Expected task difficulty

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Pr
ob

ab
ili

ty

(a) Initial states are chosen from all but the last 5 encountered states on a random
path through the game tree.

0% 20% 40% 60% 80% 100%
Expected task difficulty

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr
ob

ab
ili

ty

(b) Initial states are chosen from the first 20 encountered states on a random path
through the game tree.

Figure 7.18: Difficulty distributions in the Othello initial state domain.

7.5 othello initial state domain 131

ranges of width 1%. Recall that we refer to task difficulties using
percentage points, e.g., task difficulty of 60% means that randomly
sampled policies get on average 40% of possible points when playing
against swh from the initial state specified by this task.

The estimated distribution shown in Fig. 7.18a is skewed towards
the more difficult tasks. The mode of the distribution is equal to 80%,
which can be explained by the strength of the swh policy that plays
the role of opponent in this domain. In fact, swh is a fairly strong swh’s strength

policy — its expected utility in full games (starting from the default
initial state) against random opponents (estimated in an independent
experiment) equals to 0.7871± 0.0024.

Moreover, we can observe that long tails of the distribution span
the entire range of task difficulty. As a result, we were able to easily Filling task-pool

fill all 100 task sets {TB} in a difficulty-based task pool to the assumed
capacity of N = 1 000. Let us emphasize that building such a pool is
a required by most of the shaping methods proposed in this chapter.

Additionally, it is worth to notice the unusual peaks of the distribu-
tion for the tasks of difficulties 0% and 100%. These tasks correspond Resolved games

to games which are resolved (either already won or already lost).
Clearly, such tasks may occur when the game starts very deep in the
game tree with only a few moves left and no matter how the policy
plays the result is always the same.

Importantly, the domain difficulty distribution largely depends on
the procedure of random task generation, which is specified by the
domain (task distribution P). We can demonstrate how this distribu- Another distribution

tion would change if we limit the set of tasks with respect to their
initial depth in the game tree. Fig. 7.18b illustrates such distribu-
tion of tasks generated by choosing only among the first 20 states
encountered on a random path down the game tree. This distribution
is much more concentrated around the expected utility of the swh

policy. Moreover, since in such distribution all games last more than
30 moves, the resolved tasks of difficulty 0% or 100% are absent —
task difficulties occupy mostly the range [40, 90].

The observed change in difficulty distribution can be further ex-
plained by investigating the dependency between the depth of an
initial state in the game tree and the difficulty of the corresponding
task. For this purpose, we generated 100 000 random tasks. Figure
7.19 illustrates their expected difficulty as a function of initial state
depth. For instance, in tasks starting at depth 0 (i.e., starting from Depth dependency

the default initial state of the Othello game) the expected difficulty
is around 80% . Thus, as expected, random policies are able to gain
only 20% of all points when playing full Othello games against the
swh policy. However, quite surprisingly, it is easier to defeat swh

when games start from the states at odd depths, i.e. when playing as
white. Higher difficulty of tasks starting at even depths is reflected in
the ‘sawtooth’ shape of the red curve that plots the mean difficulty.

132 shaping in evolutionary learning

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56

E
x

p
ec

te
d

 t
as

k
 d

if
fi

cu
lt

y

Initial state depth

Figure 7.19: Expected task difficulty as a function of of its initial state depth.
The red line illustrates the average difficulty, boxes denote the
first and the third quartile while whiskers show the 9th and the
91st percentile.

The most important observation is that the average difficulty of
tasks evidently decreases with the growing depth of the initial state.
This is accompanied by an exponential growth of the number of
possible tasks and increasing variance of their difficulty. Contrary toTask difficulty

variance the tasks that start at shallow depth, where everything depends on
players policies, when starting a game deeper, the final game outcome
is to a large extent affected by the specific initial state. Ultimately, the
tasks starting very deep in the game tree exhibit very large difficulty
variance. In particular, the tasks at depths of over 52 cover the the
entire difficulty range.

7.5.3 Single-stage shaping

Similarly to Section 7.4.3, the first experiment in the Othello initial
state domain consisted in applying the simplest single-stage shaping
methods which rely on the handcrafted training task distributions.
However, as illustrated in Fig. 7.20, this time such straightforward
approach did not allow to significantly improve the learning per-
formance with respect to the unshaped approach. Moreover, the ob-
tained results indicate that this domain is generally much more chal-
lenging than the previously considered one: the average performance
of each of the considered methods did not exceed 0.55.

7.5 othello initial state domain 133

●

●●

●●●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

normal(85,5)

uniform(50,90)

triangular(70,80,95)

UNSHAPED

normal(70,10)

triangular(65,70,85)

normal(75,5)

uniform(70,80)

uniform(65,85)

triangular(60,70,95)

0.48 0.49 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58
Performance

Figure 7.20: Performance of single-stage shaping methods shown as violin
plots. Each black box spans from the first to the third quartile
(the interquartile range or IQR), while the whiskers extend to
the highest and lowest observations within 1.5·IQR from the
box. Outliers beyond this range are denoted by black dots. Nar-
rowings of the box around the median indicate 95% confidence
interval. Methods are sorted in descending order according to
their mean performance (shown by white circles).

Despite statistical insignificance, we can identify the training distri-
butions which resulted in the highest and lowest mean performance.
Noteworthy, like in the Othello opponent domain, the overall training
performance is relatively insensitive to the presence of easier tasks
in the shaping distribution. Here it was enough to train on tasks of
difficulty over 60%. On the other hand, extremely difficult training
task distributions, like this of normal(85, 5) resulted in decreasing the
performance.

These observations can be related to the notion of transitivity con-
sidered e.g. in games [25, 168]. In transitive games, if player A beats
player B and player B beats player C, then player A beats player C. Difficulty-based

transitivityHere, we would expect to observe some sort of difficulty-based tran-
sitivity, i.e., if a policy solves a harder task it should be also able
to deal with an easier one. In this sense, the Othello initial state
domain is apparently less transitive than the opponent domain. The
degree of transitivity in a given domain could be a useful guideline
for designing effective training distributions.

134 shaping in evolutionary learning

●

●

●●

● ●

●

● ●

●

●●●● ●●

●

●

●

●

●

●

●

●

●

●

staged(60,90,5)

staged(65,85,20)

UNSHAPED

overlapped(65,85,4,10)

cyclic(65,85,4,10)

uniform(65,85)

staged(65,85,4)

cyclic(65,85,4,50)

overlapped(55,75,20,10)

overlapped(60,80,4,10)

0.47 0.48 0.49 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59
Performance

Figure 7.21: Performance of multi-stage shaping methods shown as violin
plots. Each black box spans from the first to the third quartile
(the interquartile range or IQR), while the whiskers extend to
the highest and lowest observations within 1.5·IQR from the
box. Outliers beyond this range are denoted by black dots. Nar-
rowings of the box around the median indicate 95% confidence
interval. Methods are sorted in descending order according to
their mean performance (shown by white circles).

7.5.4 Multi-stage shaping

In the next experiment we used the best identified uniform setup,
i.e., uniform(65, 85) as a starting point for comparing three multi-
stage shaping methods. Figure 7.21 shows that neither dividing this
difficulty range into four parts in staged(65, 85, 4) nor iterating many
times over these four subranges in cyclic(65, 85, 4, 50), proved to be
successful. In fact, only the overlapped method benefited from the
incremental evolution technique. These results confirm our previousSuperiority of the

overlapped approach observations (see Section 7.12) that among the multi-stage shaping
methods the overlapped one results in the most effective learning.

That being said, it is quite surprising to see the relatively weak per-
formance of the overlapped(65, 85, 4, 10) method which does not differ
much in terms of its training task distribution settings from the best in
this field overlapped(60, 80, 4, 10). Noteworthy, a significant difference
in the obtained results occurs also between another pair of similar
setups, namely staged(60, 90, 5) and staged(65, 85, 4). To explain this
discrepancy we inspect the progress of learning by assessing the per-
formance of these methods after each generation of the evolutionary
algorithm.

7.5 othello initial state domain 135

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0 500,000 1,000,000 1,500,000 2,000,000 2,500,000

Training episodes

Pe
rf

or
m

an
ce

overlapped(60,80,4,10)
overlapped(55,75,20,10)
staged(65,85,4)
overlapped(65,85,4,10)
unshaped
staged(60,90,5)

Figure 7.22: The performance of multi-stage shaping methods over time.

The performance of the selected multi-stage shaping methods over
time is shown in Fig. 7.22. The learning curves quite clearly reflect the
temporal changes in training distributions2. When one training distri-
bution is switched to another, the learning speed tends to temporarily
increase. For instance, staged(60, 90, 5) changes the task distribution Performance over

timeevery 500 000 training episodes. After four stages of learning, i.e.,
2 000 000 episodes, this method is one of the best among the consid-
ered ones. However, the last stage in which training tasks are sampled
from the difficulty range [84, 90) leads to substantial decrease in per-
formance. A similar, albeit less significant drop in performance can
be observed in the case of overlapped(65, 85, 4, 10) which in the last
stage of learning provides tasks of difficulty in range [80, 90).

These observations allows to conclude that using the tasks of dif-
ficulty over 85% for training may lead to some degree of forgetting
of the previously learned skills. Therefore, the inferior performance
of staged(60, 90, 5) and overlapped(65, 85, 4, 10) with respect to their
slightly altered counterparts can be ascribed mainly to the last phase
of learning. Additionally, it is worth to notice the learning curve of Evolutionary

forgetting?the overlapped(55, 75, 20, 10) method which reveals the slowest but the
most stable learning progress. As a result, despite being the weakest
most of the time, in the final learning stage it managed to surpass
almost all the other methods.

2 By using the overlapped configurations, the transitions between successive training
distributions are more ‘smooth’, and thus less noticeable in the figure, than in the
case of staged methods.

136 shaping in evolutionary learning

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0 500,000 1,000,000 1,500,000 2,000,000 2,500,000

Training episodes

Pe
rf

or
m

an
ce

coev−diff rate=10.0
coev−diff rate=5.0
unshaped
coev−task depth−rate=5
coev−task depth−rate=2
coev−task move−rate=5
coev−task move−rate=2

Figure 7.23: The performance of coevolutionary shaping methods over time.

7.5.5 Coevolutionary Shaping

Finally, we consider the coevolutionary shaping methods. Although
these methods can be seen as the most self-sustaining among all the
considered ones, they still require setting several parameters for the
population of tests (tasks). To this end, we tried to retain most of
the settings that were found useful in the previous application of
coevolutionary shaping (see Section 7.4.6).

Particularly, as for the population of tests, we preserved both its
size (50) and the comma selection strategy with µ = 25 and λ = 50.
Additionally, in the case of coev-diff methods we employed the same
uniform perturbation operator because tests were represented as sin-
gle double values corresponding to task difficulties. In fact, the onlyTests population

parameters parameter left that needed to be determined was the mutation op-
erator for the coev-task method. In this domain, the space of tasks
was no longer equivalent to the space of policies, so we could not
use the same search operator in both populations. Consequently, we
proposed two dedicated operators that implement mutation of indi-
viduals representing Othello states:

• move operator — Starting from a given state (current individual),
this operator performs up to k randomly selected legal moves
down the game tree. If a terminal state is reached in the course
of such mutation process, the current state is discarded, and a
completely new state is drawn according to the domain-specific
random state generation procedure.

7.5 othello initial state domain 137

0 200 400 600 800 1000
Generation

0%

20%

40%

60%

80%

100%

Ta
sk

D
iffi

cu
lt

y

Figure 7.24: Difficulty distribution provided by coev-task shaping with the
depth mutation operator (depth rate = 2) over generations.
Color saturation indicates relative task occurrence frequency.

• depth operator — Given a state at depth d, this operator gener-
ates a completely new random state at depth d′ ∈ [d− k, d + k]
using the domain-specific random state generation procedure.

Figure 7.23 illustrates the performance of the coevolutionary shap-
ing methods, each of which was examined with two mutation rate
values. Among the different variants of the coev-task method, the
depth operator was significantly more effective than the move operator. Performance

comparisonHowever, no matter how configured, the coev-task approach resulted
in lower performance than the reference unshaped approach. The
coev-diff method, by contrast, was again one of the most successful
in the field. Although initially it progressed slightly slower, after
approximately 500 000 training episodes it surpassed the unshaped
method and later only increased the advantage over the other other
methods. Similarly as in Section 7.4.6.2, we found the coev-diff method
less sensitive to parameter settings than coev-task.

To explain the inferior performance of coev-task, we investigated the
difficulty of the training tasks provided by particular variants of this
method. Figure 7.24 demonstrates that at the beginning, especially coev-task difficulty

distributionsbetween roughly 50th and 100th generation, the distribution of tasks
evolved with the depth mutation operator resembles the target domain
difficulty distribution (cf. Fig. 7.18a): it is concentrated in a narrow
region, with a peak (the darker area) just above 80%. For this reason,
the initial learning progress of this setup is almost identical to that
exhibited by the unshaped approach (see Fig. 7.23). Only later the
difficulty distribution gets more dispersed.

138 shaping in evolutionary learning

0 200 400 600 800 1000
Generation

0%

20%

40%

60%

80%

100%

Ta
sk

D
iffi

cu
lt

y

Figure 7.25: Difficulty distribution provided by coev-task shaping with the
move mutation operator (move rate = 2) over generations. Color
saturation indicates relative task occurrence frequency.

The training difficulty distribution evolved by the means of the
move mutation operator is illustrated in Fig. 7.25. The graph displays
interesting regularities which appear to occur cyclically every few
tens of generations. It can be observed that over time the task diffi-Cyclic regularities

culties oscillate between three values — 0%, 50% and 100%, and then
suddenly scatter over a wide range of difficulties. This phenomenon
can be attributed to the characteristics of the mutation procedure and
the dependency between task difficulty and the initial state depth
illustrated in Fig. 7.19.

By examining the distribution shown in Fig. 7.25 at the very early
generations we can observe that most tasks are of difficulty between
40% and 70% (supposedly because they make the most distinctions).
Due to the strength of the swh opponent, such relatively easy tasks do
not appear frequently at shallow depths of the game tree (cf. Fig. 7.19).Explanation of

regularities Therefore, we can assume that initially the evolutionary selection pro-
motes tasks starting from the states in the lower part of the game tree.
However, after several generations, mutation of these states pushes
them downward the game tree and causes them to get very close
to the end of the game. In such situations it is often the case that
the game outcome is already determined as victory (task difficulty
of 0%) or defeat (difficulty of 100%). Moreover, in relatively many
states, especially with just two empty board locations, the chances of

7.5 othello initial state domain 139

● ● ●

●

●●

●

●

● ●

●●●● ●●

●

●

●

●

●

●

●

●

●

●

●

coev−task move−rate=5

coev−task depth−rate=5

UNSHAPED

coev−diff rate=20.0

uniform(65,85)

triangular(60,70,95)

staged(65,85,4)

coev−diff rate=5.0

overlapped(60,80,4,10)

coev−diff rate=10.0

0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58
Performance

Figure 7.26: Performance of coevolutionary shaping methods shown as vio-
lin plots. Each black box spans from the first to the third quartile
(the interquartile range or IQR), while the whiskers extend to
the highest and lowest observations within 1.5·IQR from the
box. Outliers beyond this range are denoted by black dots. Nar-
rowings of the box around the median indicate 95% confidence
interval. Methods are sorted in descending order according to
their mean performance (shown by white circles).

winning the game are exactly equal for both players3 (task difficulty
of 50%). Next, when such tasks are to be mutated, the move operator
often generates completely new tasks in their place (due to reaching
the terminal state in the game tree). Task difficulties became dispersed
again, and start converging to the three mentioned difficulty values,
leading to the observed cyclic behavior.

Noteworthy, the dramatic changes in difficulty distribution evolved
with the move operator are reflected in the learning curves shown in
Fig. 7.23. Clearly, a few sudden drops in performance can be spotted
in the initial period of learning. In the later generations this phe- Consequences of

regularitiesnomenon is not so apparent because as the tasks get more difficult
they can be more diversified with respect to the depth of their initial
states (cf. Fig. 7.19) and they do not reach terminal states at the same
time (probably for the same reason, the cyclic behavior becomes less
prominent in the later stages of evolutionary search, Fig. 7.24). Nev-
ertheless, all things considered, this investigation demonstrates that
the move operator is essentially flawed and certainly should be re-
designed.

3 This is what Othello owes its name: even if player’s scores dramatically differ at a
given point of the game, a single move can still change the game outcome.

140 shaping in evolutionary learning

0 200 400 600 800 1000
Generation

0%

20%

40%

60%

80%

100%

Ta
sk

D
iffi

cu
lt

y

(a) coev-diff, mutation rate = 5.0

0 200 400 600 800 1000
Generation

0%

20%

40%

60%

80%

100%

Ta
sk

D
iffi

cu
lt

y

(b) coev-diff, mutation rate = 20.0

Figure 7.27: Difficulty distributions provided by coev-diff shaping methods
over generations. Color saturation indicates relative occurrence
frequency of tasks of certain dificulty.

The coev-diff shaping methods employ universal mutation to search
for the most learnable task difficulties. Figure 7.26 illustrates how
they perform when compared with the best previously considered
approaches. Clearly, the well-configured coev-diff method (with mu-Comparison of the

best methods tation rate equal to 5 or 10) achieves one of the highest performances
in this comparison. Recall that this method requires much less pa-
rameter tuning than e.g. the overlapped approach. In fact, there is only
a mutation rate to be fixed, but as shown in the figure, it does not
need to be determined in a very fine-grained tuning. In preliminary
experiments we achieved a comparable performance with any muta-
tion rate between 2 and 10. Only increasing the rate to 20 resulted in
a significant drop in the final performance.

We analyzed the difficulty distribution provided by the coev-diff
shaping methods with two different values of the mutation rate. Thecoev-diff difficulty

distributions results of this assessment are illustrated in Fig. 7.27. As expected,
larger mutation rate caused the difficulty distribution to be much
more dispersed. At first sight, the distribution shown in Fig. 7.27b
may be compared with that provided by the uniform(50, 90) method
evaluated in Section 7.5.3. However, if we examine carefully the color
intensity, we note that this distribution is not flat but rather bell-
shaped. This characteristic can explain the difference in results ob-
tained by these two methods.

Finally, let us note that both distributions presented in Fig. 7.27

conform to the original definition of shaping meant as the method
of successive approximations. Initially most of the training tasks areIncreasing

difficulties relatively easy but their difficulty increases over time and in a longer
run the mean task difficulty roughly matches that in a target domain
difficulty distribution. The above experiments provide evidence that
training in such increasingly complex environments is significantly
more effective than learning directly in the target domain.

7.6 pole balancing dynamics domain 141

7.6 pole balancing dynamics domain

The last domain considered in this chapter involves the problem of
pole balancing described in Section 5.3. The objective is to learn a
policy that maximizes the expected return in a domain of pole balanc-
ing tasks with different physical properties. The multi-task learning
problem which describes this goal is defined as follows:

• Task set T . Each task τ ∈ T is a single pole balancing task formu-
lated as an MDP in Section 5.3.2. The tasks across the domain
differ with respect to selected physical parameters, namely: the
length of the pole l ∈ [0.1, 1.0], the mass of the pole m ∈
[0.1, 1.0] and the mass of the cart M ∈ [1.0, 10.0]. Since these pa-
rameters directly influence the dynamics of the cart-pole system,
the tasks in the domain vary with respect to the transition func-
tion. All other elements of MDPs remain constant, so the space
of tasks is essentially a three dimensional real space, where each
dimension corresponds to a single problem parameter. Table 5.5
shows the remaining pole balancing parameters, including track
length, failure angles and friction coefficients. Values of these
parameters are based on previous works [13, 72].

• Task distribution P . Each task is equally likely to be drawn from
the considered three dimensional problem configuration space.
A random task is generated by uniformly drawing value of each
parameter from the real intervals given above.

• Domain policies Π. We emply neural networks to represent poli-
cies for the pole balancing domain. Although in general we as-
sumed a multilayer architecture (see Section 2.2.1.1), the prelim-
inary experiments revealed that it is enough to use a single non-
linear neuron to effectively operate in this domain. Given the
four state variables (x, ẋ, θ, θ̇), the neuron outputs the amount
of force to push the cart (with force direction encoded by the
sign). For the purpose of estimating domain difficulty distribu-
tion and constructing a task pool, a random policy is generated
by uniformly drawing network weights from the range [−6, 6].

• Interaction episode. An interaction episode corresponds to a sin-
gle simulated trial of pole balancing. Each such trial starts from
the state (0, 0, 1°, 0) and lasts until the task is failed or until 100
time steps have passed. Because the reward of 1 is given at each
time step before a failure, the maximal policy return achievable
in a single episode C = 100.

142 shaping in evolutionary learning

Setting Value

Learning algorithm (µ + λ) Evolution Strategy

Population size µ = 10, λ = 10

Initialization ∼ U (−6.0, 6.0)

Mutation type uniform perturbation

Mutation strength δ = 0.1

Number of training tasks 20

Episodes per generation 400

Generations 1000

Number of runs 100

Table 7.4: Experimental settings of evolutionary learning in the cart pole
balancing domain.

7.6.1 Experimental Setup

To learn policies for the pole balancing domain, we employed (µ + λ)

evolution strategy, with µ = 10 and λ = 10, which evolved weights
for a single nonlinear neuron. After drawing initial weight valuesPopulation of

solutions from the range [−6.0, 6.0], the space of possible weight configurations
was searched by uniform mutation operator:

w
′
i = wi + δ · U (−1, 1), (7.10)

with the mutation strength δ equal to 0.1.
In the evaluation phase, each candidate solution was used as a cart

control policy in a series of 20 training tasks. In the case of unshaped
learning, the tasks were generated uniformly from the task space.
Otherwise, they were provided by a shaping method. RegardlessFitness evaluation

of the source of training tasks, single fitness assignment required
simulating 400 training episodes in total ((10 + 10) individuals × 20
training tasks). Because each evolutionary run comprised 1 000 gener-
ations, the overall computational effort added up to 400 000 training
episodes. The experimental settings are summarized in Table 7.4.

We conducted a series of experiments to empirically evaluate the
performance of the methods presented in this chapter. However, in
this domain we focused only on two shaping approaches, namely,
single-stage static shaping and coevolutionary shaping. These two
approaches were found the most robust in previous experiments. Sim-Limiting the scope of

comparison ilarly to the Othello domains, we executed 100 independent runs
of each method and the obtained results were subject to statistical
analysis involving Kruskal-Wallis and Mann-Whitney tests on each
pair of considered methods. The results of these tests for particular
experiments can be found in Appendix A.3.

7.6 pole balancing dynamics domain 143

0% 20% 40% 60% 80% 100%
Expected task difficulty

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Pr
ob

ab
ili

ty

Figure 7.28: Domain difficulty distribution in the pole balancing dynamics
domain.

7.6.2 Domain Difficulty Distribution

First, we generated 100 000 random tasks to estimate the domain dif-
ficulty distribution. Each task was confronted with 1 000 randomly
sampled policies represented by single neurons. The average return
obtained by random policies was used to approximate the difficulty
of the task (according to Equation 7.4). Recall that the return of a
policy is determined by the number of time steps until failure. For
instance, if a random policy balances the pole for 20 time steps on
average, the difficulty of the task is equal to 80% (because a single
episode can last maximally 100 time steps).

Figure 7.28 illustrates the distribution of tasks with respect to their
difficulty. Although a random policy is able to balance a pole for
40− 60 time steps on average for most of the tasks, the distribution Skewed distribution

is positively skewed with task difficulty extending with a long tail
towards the higher values. The distribution indicates that challenging
tasks can be generated without much difficulty, while it is strenuous
to find such easy tasks that a random policy keeps the pole upright
for more than 70 time steps (i.e., corresponding to task difficulty of
30% or less).

As a result, we were unable to fill all task sets in a difficulty-based
task pool to a assumed capacity N = 1 000. Ultimately, the task pool Unfilled task pool

comprised only 62 task sets corresponding to difficulties in the range
[37%, 98%]. Noteworthy, even in the extremely difficult tasks, it takes
a few time steps for the pole to reach the failure angle. For this reason
the range of task difficulties does not extend to 100%.

144 shaping in evolutionary learning

●● ●● ●

● ●

● ●● ● ●● ●● ●● ●●

●● ●●●● ●●●

● ●●● ●●● ● ● ●

● ●● ●●●● ●● ●●●

● ●● ●● ●

●●● ●●●● ●●●● ●●● ●●

●●●●● ●●●

●

●

●

●

●

●

●

●

●

 uniform(60,80)

 uniform(50,80)

UNSHAPED

 uniform(50,90)

 uniform(60,90)

 uniform(70,90)

 uniform(50,95)

 uniform(70,95)

 uniform(60,95)

90 92 94 96 98 100
Performance

●

●● ●● ●● ●●

● ●● ●●● ●

● ●● ● ●● ● ●

● ●●

●●● ●●● ●● ●● ●●● ● ●

●● ●●● ●●●

●

●

●

●

●

●

●

●

●

98.0 98.5 99.0 99.5
Performance

Figure 7.29: Performance of uniform shaping methods. Each black box
spans from the first to the third quartile (the interquartile range
or IQR), while the whiskers extend to the highest and lowest
observations within 1.5·IQR from the box. Outliers beyond this
range are denoted by black dots. Methods are sorted descend-
ingly according to the median of their performance (shown by
white circles). White squares mark the mean performance.

7.6.3 Single-Stage Shaping

In the initial experiment, we employed selected single-stage shaping
methods. For the sake of simplicity, we limited the scope of consid-
ered methods only to those based on the uniform task distribution.
This decision was motivated by the fact that in the previously consid-
ered domains the uniform approach was not found significantly worse
than the triangular or the normal one.

Figure 7.29 compares the final performance of single-stage shaping
with that achieved by the unshaped approach. Although the majority
of policies obtain very high return, there are also relatively many
outliers which make the violin plots very wide and thus difficult
to compare. For this reason we provide also a magnified view of
the most interesting region of the plot, which allows to observe the
differences in means and medians between the learning methods.

The results confirm our previous observations that even the straight-
forward single-stage shaping approach, if properly tuned, can signifi-
cantly outperform the conventional learning method. Indeed, we can
observe that most shaping methods resulted in both higher mean
and lower variance of the final performance. The best policies were
produced by training on a wide spectrum of tasks, including the
very difficult ones which were found to be crucial. For instance, the
superiority of uniform(50, 95) over uniform(50, 90) can be ascribed to
training on tasks of difficulty between 90% and 95%.

7.6 pole balancing dynamics domain 145

● ●● ● ●● ●● ●● ●●

●● ●●● ●●● ●●● ●● ●●●●●

●●● ● ●●● ●●

● ●● ●● ●

● ●●●● ●● ●●

●●● ●●●● ●●●● ●●● ●●

●●●●● ●●●

●

●

●

●

●

●

●

UNSHAPED

 cevo−diff rate=5.0

 cevo−diff rate=10.0

 uniform(50,95)

 cevo−diff rate=20.0

 uniform(70,95)

 uniform(60,95)

90 92 94 96 98 100
Performance

● ● ●● ● ● ●●

●●● ●

●●

●●● ●

●●● ●● ● ●● ● ●●● ● ●

●● ●●● ●●●

●

●

●

●

●

●

●

98.5 99.0 99.5
Performance

Figure 7.30: Performance of coevolutionary shaping methods. Each black
box spans from the first to the third quartile (the interquartile
range or IQR), while the whiskers extend to the highest and low-
est observations within 1.5·IQR from the box. Outliers beyond
this range are denoted by black dots. Methods are sorted de-
scendingly according to the median of their performance (white
circles). White squares mark the mean performance.

7.6.4 Coevolutionary Shaping

The second approach examined in the pole balancing domain is co-
evolutionary shaping. Here, we focus solely on the coev-diff method,
which was found the most successful among all dynamic shaping
methods applied in the Othello domains.

The population of tests contained 20 individuals, to provide a fair
comparison with the uniform and unshaped methods that used sam-
ples of 20 training tasks. Tests were evolved by means of (µ, λ) evolu-
tion strategy with µ = 10 and λ = 20. They were mutated by the same
uniform perturbation operator as before (cf. Section 7.4.6.2) and their
fitness was calculated as the number of distinctions they made among
the individuals in the current population of policies. We assumed
that a test (task) made a distinction between two policies if their
returns differed by more than Y = 2 (see Equation 7.7). Intuitively,
a distinction occurred if one policy was able to balance a pole at least
two time steps longer than another.

Figure 7.30 shows the performance obtained by coev-diff shaping
methods with varying mutation strength. Like in the opponent-based
Othello domain, it was beneficial to use larger mutation rates and
thus ensure greater diversity of training tasks. Importantly, each of
the considered coev-diff methods achieved significantly higher perfor-
mance than the unshaped approach. On the other hand, they did not
outperform the best single-stage shaping methods.

146 shaping in evolutionary learning

7.7 discussion

Let us rephrase the original research question with which we began
this chapter: how can we improve the results of evolutionary algo-
rithms applied to multi-task reinforcement learning problems? We
have attempted to answer this question by referring to the concept
of shaping. Specifically, we have modified the distribution of train-
ing tasks employed to evaluate the evolving policies. By doing so
we expected to shape the fitness function and make it easier for an
evolutionary algorithm to explore other areas in the solution space.

From the machine learning perspective, the rewards gathered in
interactions with evaluation tasks constitute the training experience
used by the learning algorithm to improve the policies. Therefore,Machine learning

perspective modifying the distribution of evaluation tasks indirectly guides the
learning process. The role of proposed shaping methods was to pro-
vide such tasks that facilitate learning by letting the population of
agents gather the informative training experience.

The main question was how to select evaluation tasks from a poten-
tially infinite domain. To answer this question we introduced the mea-
sure of task difficulty which allows to order the tasks in the given do-
main. Conceptually, the abstract notion of task difficulty conforms toThe role of difficulty

measure motivations of shaping and incremental evolution methods which in
principle aim at making tasks easier to solve. Practically, the measure
of task difficulty is easily estimated and allows to devise numerous
shaping methods that do not require intimate domain knowledge.

Most of the proposed difficulty-based shaping methods were able
to significantly improve the learning performance when compared
to the conventional unshaped approach. Moreover, in two out of the
three experimental domains, the straightforward single-stage shaping
was enough to gain the performance benefits. Although some of theBenefits and costs of

shaping considered shaping methods require careful parameter configuration,
the parameters are typically domain-independent, so they do not
require intricate knowledge of the problem. Among the considered
methods, coevolutionary shaping can be regarded as the most au-
tonomous because it does not need predefined training task distribu-
tions. Coevolution strives to adaptively provide such training tasks
that construct a learnable gradient for the population of learners.
Importantly, the coevolutionary approach proved quite general in
beating other methods in all three domains.

The common conclusion from the experiments conducted in three
different multi-task domains is that the evolutionary learning algo-
rithm tends to benefit from focusing fitness evaluation on challenging
tasks. A shaped fitness function that encourages solving such tasksCommon

observations allowed evolution to find the policies that are generally better with
respect to the expected utility (return) in the entire domain. This ob-
servation is somewhat surprising because, technically, the unshaped

7.7 discussion 147

approach is tailored to maximize expected utility by employing its
unbiased estimate to steer evolution; in other words, it learns from
the same distribution of tasks on which it is later assessed. On the
other hand, the observed results confirm an intuitive belief that if a
policy copes with a difficult task it will be able to handle related but
less demanding tasks too. These observations point to the need of
investigating further the concept of difficulty-based transitivity, and
measuring the degree to which solving a difficult task implies solving
the easier ones too.

The applicability of difficulty-based shaping is limited to domains
containing tasks of diversified difficulty. Indeed, in order to build
a useful difficulty-based task pool, which is required by most shap-
ing methods, randomly generated tasks should fill many difficulty
bins. Therefore, the domain should include tasks that enable random Limitations of

difficulty-based
shaping

policies to get very different returns. For instance, it would be hard
to apply shaping methods for a domain of relatively challenging
tasks, like, e.g., double pole balancing, where random policies are
very unlikely to keep the poles upright for more than a few time
steps. As a result, all tasks would be considered as equally difficult
and shaping methods would not be able to construct any training
task distributions. The only method that could successfully operate in
such a domain is coev-task which does not require predefined training
distributions, but constructs them dynamically.

Finally, the introduced measure of task difficulty was found useful
for two additional purposes. First, it allows to perform multi-criteria
assessment of trained policies with respect to how well they deal with
tasks of different difficulties. In this context, a single task difficulty Applications of

difficulty measuredistribution can be used as a separate criterion for comparing the per-
formance of policies. For instance, we have observed that, although at
first sight the improvement elaborated by our shaping methods is not
particularly large, they attain much higher performance in the most
difficult tasks. The second application of task difficulty measure is
‘reverse engineering’ of task distributions in coevolutionary shaping.
By investigating the difficulty of tasks in the coevolving population,
we were able to better explain the reported results.

8
S H A P I N G I N T E M P O R A L D I F F E R E N C E L E A R N I N G

The previous chapter introduced a number of shaping methods that
provide training tasks according to the proposed measure of task
difficulty. These methods rely on a heuristic assumption that task
difficulty alone constitutes a sufficient criterion to synthesize such
training task distributions that can facilitate learning. In this chapter,
rather than relying on heuristic measures, we consider the problem
of selecting the training tasks optimally with respect to the assumed
learning algorithm.

The motivation for this chapter is similar to that of the previous one:
we expect that it is possible to identify training tasks that make the
learning process more effective by letting the agent to observe more
informative training experience. This leads to mapping the original
learning problem of optimizing an agent’s policy into a dual problem
of finding the best input for the policy learning algorithm, while pre-
serving the ultimate goal of learning — maximization of an adopted
quality measure.

However, in contrast to the previously assumed perspective, here
we do not assume the availability of a generalized domain from which
the training tasks can be selected. Instead, given a single target task,
we need to derive a family of related tasks hoping to identify such
variations of the target task that allow to gather useful training expe-
rience. By related tasks we mean tasks that vary with respect to one of
the elements of the underlying MDP (see Section 3.2.2). For instance,
given a game-playing task with a specific opponent, we consider a
family of related tasks with different opponents or another set of
tasks with modified initial state distribution.

We start this chapter by framing the tasks experienced by the agent
during learning as the shaping task sequence (see Section 8.1). On this
basis, we formalize the problem of optimal shaping sequence (Section
8.1.1) and design a coevolutionary method which attempts to find
such a sequence of training tasks for a temporal difference learn-
ing algorithm (Sections 8.1.2 – 8.1.3). In Section 8.2 we consider two
types of shaping tasks that can be used to facilitate learning of game-
playing policies for the game of Othello. Finally, in Section 8.3 we pro-
vide detailed experimental setup and apply the proposed methods to
learning Othello policies. The results demonstrate that training on the
identified task sequences results in both faster learning and increased
final performance.

149

150 shaping in temporal difference learning

Shaping method

TD learning

⇡Learned policy

algorithm

EnvironmentEnvironment

Training Interactions

Agent

Policy ⇡

behavior
policy

Target task

Performing behavior

Agent

Policy ⇡

transition sample

⌧0⇡
(s, a, r, s0)

Training tasks {⌧i} s = {⌧1, ⌧2, . . . , ⌧m}
Shaping task sequence

Figure 8.1: The outline of shaping for temporal difference learning

8.1 optimization of shaping task sequences

Like in the previous chapter, we start by referring to Fig. 4.1 to see
how the shaping setup considered here fits into our unified shaping
framework. As illustrated in Fig. 8.1, the goal of learning in this setupThe perspective of

the shaping
framework

is to perform well on a given single target task τ0. To this aim, the
temporal difference learning algorithm maintains a single policy π

and adjusts it after every action taken in the training environment.
The adjustment is based on the recently collected training experience
represented as a tuple of the form (s, a, r, s′). Each such tuple cor-
responds to an observed environmental transition and describes the
consequences of taking action a in state s, i.e., a received reward r and
a successive state s′.

In a typical unshaped approach, the training interactions take place
directly and only in the target task τ0. The considered shaping ap-
proach relies on viewing the task τ0 as only one member of a family
of tasks T that contains all possible variations of τ0 with respect
to selected problem-specific parameters. Consequently, the family TA family of task

variations forms a problem configuration space [173]. Here we assume that the
parameters may influence the transition function or the initial state
distribution but all the tasks share the same state space S and action
space A. As a result, when learning a policy π : S → A, training
experience can be gathered not only in the target task τ0, but in any
other task τi ∈ T .

8.1 optimization of shaping task sequences 151

In this framework, the role of a shaping method is to identify
such variations of the original goal task τ0 that can facilitate the
learning process by letting the agent to gather more informative train-
ing experience. However, in contrast to the approaches described in
the previous chapter, here we are not interested in how the shap-
ing method operates. Instead, we focus solely on its final effect — Shaping task

sequencesthe resulting shaping task sequence s which includes m training tasks
{τi ∈ T | 1 ≤ i ≤ m}. In the following section we consider how the
shaping sequence influences the results obtained by the learning al-
gorithm and we formalize the problem of optimal shaping sequence.

8.1.1 Optimal Shaping Task Sequence

In the supervised approach to classification problems, a learning algo-
rithm can be regarded as a function that given a set of labeled training
examples constructs a classifier [6]. Such perspective is adopted in
batch reinforcement learning [55, 109], where training experience, repre- Batch reinforcement

learningsented as a set of tuples of the form (s, a, r, s′), is fixed and given a pri-
ori. Consequently, the batch-mode reinforcement learning algorithm
Lbatch can be framed as a mapping from a set of n such transition
samples F = {(si, ai, ri, s′i) | 1 ≤ i ≤ n ∧ si ∈ S ∧ s′i ∈ S ∧ ai ∈ A} to a
decision making policy π : S→ A:

Lbatch : (S× A×R× S)n → π. (8.1)

In the most general formulation of the batch reinforcement learning
problem, no assumptions are placed on the way the set of transitions
is generated. In particular, they do not need to form connected trajec-
tories and can be sampled from one or more interaction episodes.

The problem of selecting an optimal input for the batch-mode rein-
forcement learning algorithm is considered by Rachelson et al. [158].
The authors attempt to identify a set of transitions which, when sup-
plied to the given learning algorithm, lead to the optimal behavior
with respect to the specific performance measure. In this method Optimal sample

selectionthe learning proceeds independently from the selection of training
experience — the learner cannot affect the way the experience is
gathered. In other words, the learning algorithm is assumed to work
in an offline manner, i.e., it exploits a fixed, prepared in advance
set of training examples (sample of transitions), without a need of
dynamically interacting with the environment.

Our shaping approach abstracts from the character of the learning
algorithm and is more coarse-grained — instead of selecting single
transitions, we attempt to identify useful training tasks which can be
used as a source of informative training experience. Particularly, in Optimal training

task selectionthe online case, the training experience is not given a priori, but is
alternately sampled during interactions in a training task and then
used for adjusting the policy. Essentially, in the proposed shaping

152 shaping in temporal difference learning

approach training interactions take place not only in a single target
task τ0 but in a sequence s of related tasks from a family of tasks T .
Importantly, besides the shaping task sequence, training experience
(sampled transitions) depends also on the exploration strategy used
to determine actions taken in such training environments. However,
if we assume that this strategy remains fixed or is specified by the
learning algorithm, we can redefine the learning algorithm as a func-
tion of the shaping task sequence:

L : T m → π. (8.2)

From now on, we will use L in this particular meaning. In this context,Optimal shaping
task sequence the ultimate goal of the shaping method is to identify the optimal

shaping task sequence, i.e., such sequence s = {τ1, τ2, . . . , τm} that
maximizes the expected return obtained in the target task τ0 by the
policy πs learned on this sequence of training tasks:

s∗ = arg max
s∈T m

E [J(πs, τ0) | πs = L(s)] . (8.3)

Elegant as it is, such formulation requires clarifying two important
practical issues. First, the mapping from a shaping task sequence s
to a decision making policy πs realized by the learning algorithm L
can be non-deterministic. The learning process may be random due
to stochasticity of the transition and reward functions of the MDP or
the environment exploration strategy such as ε-greedy policy. Second,Practical issues

the mapping implemented by the algorithm L is rarely a single-step
process. In the online learning scenario considered here, the algo-
rithm works incrementally and improves the policy gradually after
observing consecutive transition samples.

8.1.2 Learning from a Shaping Sequence

Algorithm 8.1 presents an implementation of the temporal difference
learning algorithm L which constructs a policy πs from a given shap-
ing task sequence s. After initializing the policy in some arbitrary way,
the algorithm processes the consecutive tasks of the shaping sequence
in nc cycles. Each task is used for ne successive training episodes. InTemporal difference

learning algorithm the online temporal difference learning variant considered here (see
Section 2.2), policy improvement is interleaved with training environ-
ment exploration. As a result, each training episode consists in taking
a series of actions leading to a terminal state with a single learning
step taking place after each state transition. The policy learning step
in line 10 can be implemented according to a concrete TD-update rule
(cf. Section 2.2.2). Note also that in the considered pseudocode learn-
ing is realized in an on-policy manner, i.e., a policy being learned is
also employed to take actions in the training environments.

8.1 optimization of shaping task sequences 153

Algorithm 8.1 Temporal difference learning from a shaping sequence

Require: s = {τ1, τ2, . . . , τm}, nc, ne

1: function L(s)
2: πs ← Initialize Policy()

3: for c = 1 to nc do
4: for all τi ∈ s do
5: for e = 1 to ne do
6: s← Initialize State(τi)
7: while ¬Is Terminal State(s) do
8: a← πs(s)
9: s′, r ← Take Action(s, a, τi)

10: πs ← TD-Update Policy(πs, (s, a, r, s′))
11: end while
12: end for
13: end for
14: end for
15: return πs

16: end function

8.1.3 Coevolutionary Selection of Shaping Sequences

The selection of training tasks included in the shaping sequence is
essential for the effectiveness of the learning process. Exposing the
learner to the right training experience is particularly important when
a problem involves a large state space or when the learner has limited
learning capacity and can easily forget what it once has learned. In
such situations the shaping sequence can guide the training experi-
ence gathering phase towards such parts of the common state space
S that are most representative. Clearly, one training task may allow
the learner to sample transitions from certain areas of the state space
S while another task can make reaching these areas impossible.

In absence of objective guidelines that would help choosing the
shaping sequence, we delegate this task to an evolutionary algorithm,
which maintains a population of individuals, each defining a sequence
of tasks. Evaluating fitness of individuals consists of two phases. In Two phases of

sequence evaluationthe first phase (policy derivation), each task sequence is mapped to
the policy by means of the learning algorithm 8.1, i.e., πs = L(s). In
view of such mapping, the shaping sequence s can be regarded as
the genotype of an individual, while its phenotype is the policy πs

derived from s, i.e., trained on tasks from this sequence. In the second
phase (policy evaluation), the policies created in this way are evalu-
ated on the target task τ0, possibly multiple times if indeterminism
is involved. The fitness of an individual could be defined as, e.g., the
average reward obtained by πs in a series of such episodes in τ0. In
this way, the evolutionary process searches the space of training task
sequences towards an optimal shaping sequence (cf. Equation 8.3).

154 shaping in temporal difference learning

Algorithm 8.2 Coevolutionary optimization of shaping sequences.

1: P ← Population Of Random Shaping Sequences

2: while ¬ Termination Condition do
3: Π← ∅
4: for all s ∈ P do
5: π ← L(s)
6: Π← Π ∪ π

7: end for
8: F ← Round-Robin Tournament(Π)
9: S ← Select Best Shaping Sequences(P , F)

10: P ← Recombine And Mutate(S)
11: end while
12: return Get Best Shaping Sequence(P)

However, since we apply the above optimization procedure in a
competitive environment [5], we can restrain the evolutionary algorithm
from using the target task for fitness evaluation purposes. Instead ofEvaluation in a

competitive
environment

maximizing the expected reward in a single static task, a competitive
nature of the domain allows us to evaluate policies in the environ-
ments formed by other policies being learned in parallel. This idea
can be implemented using coevolutionary algorithms (see Section
4.2.1), in which the fitness of an individual depends on the outcomes
of its interactions with the other individuals in the population.

Technically, we implement single-population competitive coevolu-
tion [154] which is presented in Algorithm 8.2. After initializing the
population of shaping sequences with randomly created variations of
the target task, at each generation the set of policies Π is derived from
population individuals (lines 3-7) by means of the learning algorithmSingle-population

coevolution L described in Section 8.1.2. In the policy evaluation phase, each
strategy πs ∈ Π derived from the shaping sequence s plays a round-
robin tournament with all the other policies in Π (line 8). Total scores
received by particular policies determine the vector of their fitness
values F , which is then used to select the corresponding shaping
sequences as the parents of the next evolutionary generation.

Disregarding the choice of the algorithm used for optimizing shap-
ing sequences, the proposed approach can be then considered dual
with respect to traditional methods of policy learning. Rather thanDual approach to

learning aiming at acquisition of maximum knowledge from the target task
by, e.g., tuning the parameters of the training algorithm, the focus
of the method is on shaping, i.e., exposing the learner to the ‘right’
training experience represented by selected variations of the original
task. In this context, the choice of the actual learning algorithm L is
of secondary importance: its parameters, if any, remain fixed during
the entire training process, and it only serves as a means to assess the
usefulness of particular sequence of training tasks.

8.2 shaping task sequences in the othello domain 155

8.2 shaping task sequences in the othello domain

The critical question one needs to answer to implement the proposed
form of shaping is: how to create the variations of the target task τ0

that could expose the learner to different training experience than
that provided by the original task? Importantly, the tasks from the
family T of such variations are used to build shaping task sequences.
In this section we answer the above question by describing possible
modifications of the assumed target task τ0, which consists in playing
Othello against a predefined opponent (see Section 5.1).

8.2.1 Initial State Shaping Sequences

One possible variation of the target task τ0 consists in modifying its
initial state distribution. In the case of Othello, the state transition
graph is acyclic and thus a state space S can be regarded as a tree
with the initial game state s0 situated in its root. Typically, the tasks in Default initial state

this domain have one-point initial state distribution at s0 and concern
playing full games, starting from s0 being the default initial board
state (see Fig. 5.1a) and ending when the board is full or no player
can make a move. If such a target task is used directly for training
purposes, the set of states traversed in a single training episode is a
directed path from the root to a leaf in the game tree.

The conventional training scenario based on full games seems ob-
vious, as, in the end, we want to learn a policy capable of solving the
entire problem (i.e. playing the game from its beginning till the end).
However, for many problems the number of states that can be reached
in the initial steps of problem solving is low, and grows exponentially
with subsequent steps. As a result, a learner that starts from s0 is Motivation for

changing initial
states

doomed to overexplore the initial stages of problem solving while
underexploring the final ones. In this context, changing the initial
state of training tasks may be beneficial, as it allows to gather training
experience in regions of the game tree that are rarely reached when
starting from the default initial state.

For the above reasons, we consider shaping by changing the initial
state distribution. In this approach, given a target MDP task τ0 =

〈S, A, T, R, I, γ〉, training is conducted on a sequence s of tasks se-
lected from the family T that contains all possible variations of τ0 of
the form τ = 〈S, A, T, R, I′, γ〉. We will refer to such a sequence as Shaping sequences

initial state shaping sequence. Since we assume that both the original I
and modified I′ initial state distributions are one-point distributions,
each task in the initial state shaping sequence can be represented by a
single initial state. Specifically in Othello, an initial state corresponds
to a subtree of the game tree and a unique endgame limited to this
subtree. Importantly, endgames naturally include the final rewards,
which are essential to do any learning at all.

156 shaping in temporal difference learning

sm...s2s1 sm...s2s1 sm...s2s1 ...
Shaping sequences

s1

s2

s3
sm

s0

Temporal Difference Learning
Training episodes start from states defined by the shaping task sequence

Trained policies

Coevolutionary Optimization
Search for the best shaping sequence

for faster and more general learning. In practice this means that we search for a
sequence of endgames that provides the best possible learning gradient.

We expect that learning from the pre-selected experience will improve the
learning convergence and the final performance of the trained agents. We verify
this hypothesis on the problem of learning a strategy for the game of Othello.
Additionally, the dual problem definition can bring even more benefits. Firstly,
finding the set of initial states that results in particularly efficient learning indi-
cates that it gives a lot of information about this learning task. This resembles the
concept of underlying objectives of the problem, which here can be interpreted
as the crucial set of skills needed for successfully operating in the given environ-
ment. Secondly, the way the learning experience is generated in this approach
is an easy answer to the inherent exploration-exploitation trade-off. Performing
random moves to explore the environment (according to so called "-greedy action
selection scheme) could no longer be needed if the set of initial states is diverse
enough.

2 Shaping by Initial State Selection

We consider sequential decision problems, which are defined by a state space S, a
set of possible actions A, a default initial state so 2 S, a subset of terminal states,
and a reward function that is typically non-zero only for the terminalstates.
Additionally, the environment specifies the transition function f : S ⇥ A ! S,
which can be non-deterministic. Our objective is to automate the process of
learning agents ⇡ 2 ⇧ that solve such problems, i.e., maximize the expected
reward. An agent’s behaviour is determined by its policy ⇡ : S ! A that for
each state chooses an action that leads to one of the subsequent states. As a
result, the set of states observed by an agent in a single episode is a directed
path in the transition graph that spans S. This path (starting in s0 and ending
in one of the terminal states) forms a sample of experience that can be used for
improving the policy.

We assume that an incremental learning algorithm T : S ⇥⇧ ! ⇧ is given
that, provided with a current policy ⇡k and an initial state si 2 S, produces
an improved policy ⇡k+1. In the online variant considered here, the learning
process is interleaved with traversing the state graph. Thus, an application of T
(a training episode) consists in a simulation of agent’s single traversal through
S, starting in si and learning after each state transition. It is usually assumed,
particularly in the domain of board games, that the training process starts from
the default initial state, i.e., T is always applied to s0. This seems obvious, as,
in the end, we want to learn a policy capable of solving the entire problem
(e.g. playing the full game). However, for most problems the number of states
available in the initial steps of problem solving is low, and grows exponentially
with subsequent steps. As a result, a learner that starts from s0 is doomed to
overexplore the initial stages of problem while underexploring the final ones.

The basic tenet of the proposed approach is that training a policy on a
well-assorted, properly diversified and representative set of partial tasks can

for faster and more general learning. In practice this means that we search for a
sequence of endgames that provides the best possible learning gradient.

We expect that learning from the pre-selected experience will improve the
learning convergence and the final performance of the trained agents. We verify
this hypothesis on the problem of learning a strategy for the game of Othello.
Additionally, the dual problem definition can bring even more benefits. Firstly,
finding the set of initial states that results in particularly efficient learning indi-
cates that it gives a lot of information about this learning task. This resembles the
concept of underlying objectives of the problem, which here can be interpreted
as the crucial set of skills needed for successfully operating in the given environ-
ment. Secondly, the way the learning experience is generated in this approach
is an easy answer to the inherent exploration-exploitation trade-off. Performing
random moves to explore the environment (according to so called "-greedy action
selection scheme) could no longer be needed if the set of initial states is diverse
enough.

2 Shaping by Initial State Selection

We consider sequential decision problems, which are defined by a state space S, a
set of possible actions A, a default initial state so 2 S, a subset of terminal states,
and a reward function that is typically non-zero only for the terminalstates.
Additionally, the environment specifies the transition function f : S ⇥ A ! S,
which can be non-deterministic. Our objective is to automate the process of
learning agents ⇡ 2 ⇧ that solve such problems, i.e., maximize the expected
reward. An agent’s behaviour is determined by its policy ⇡ : S ! A that for
each state chooses an action that leads to one of the subsequent states. As a
result, the set of states observed by an agent in a single episode is a directed
path in the transition graph that spans S. This path (starting in s0 and ending
in one of the terminal states) forms a sample of experience that can be used for
improving the policy.

We assume that an incremental learning algorithm T : S ⇥⇧ ! ⇧ is given
that, provided with a current policy ⇡k and an initial state si 2 S, produces
an improved policy ⇡k+1. In the online variant considered here, the learning
process is interleaved with traversing the state graph. Thus, an application of T
(a training episode) consists in a simulation of agent’s single traversal through
S, starting in si and learning after each state transition. It is usually assumed,
particularly in the domain of board games, that the training process starts from
the default initial state, i.e., T is always applied to s0. This seems obvious, as,
in the end, we want to learn a policy capable of solving the entire problem
(e.g. playing the full game). However, for most problems the number of states
available in the initial steps of problem solving is low, and grows exponentially
with subsequent steps. As a result, a learner that starts from s0 is doomed to
overexplore the initial stages of problem while underexploring the final ones.

The basic tenet of the proposed approach is that training a policy on a
well-assorted, properly diversified and representative set of partial tasks can

for faster and more general learning. In practice this means that we search for a
sequence of endgames that provides the best possible learning gradient.

We expect that learning from the pre-selected experience will improve the
learning convergence and the final performance of the trained agents. We verify
this hypothesis on the problem of learning a strategy for the game of Othello.
Additionally, the dual problem definition can bring even more benefits. Firstly,
finding the set of initial states that results in particularly efficient learning indi-
cates that it gives a lot of information about this learning task. This resembles the
concept of underlying objectives of the problem, which here can be interpreted
as the crucial set of skills needed for successfully operating in the given environ-
ment. Secondly, the way the learning experience is generated in this approach
is an easy answer to the inherent exploration-exploitation trade-off. Performing
random moves to explore the environment (according to so called "-greedy action
selection scheme) could no longer be needed if the set of initial states is diverse
enough.

2 Shaping by Initial State Selection

We consider sequential decision problems, which are defined by a state space S, a
set of possible actions A, a default initial state so 2 S, a subset of terminal states,
and a reward function that is typically non-zero only for the terminalstates.
Additionally, the environment specifies the transition function f : S ⇥ A ! S,
which can be non-deterministic. Our objective is to automate the process of
learning agents ⇡ 2 ⇧ that solve such problems, i.e., maximize the expected
reward. An agent’s behaviour is determined by its policy ⇡ : S ! A that for
each state chooses an action that leads to one of the subsequent states. As a
result, the set of states observed by an agent in a single episode is a directed
path in the transition graph that spans S. This path (starting in s0 and ending
in one of the terminal states) forms a sample of experience that can be used for
improving the policy.

We assume that an incremental learning algorithm T : S ⇥⇧ ! ⇧ is given
that, provided with a current policy ⇡k and an initial state si 2 S, produces
an improved policy ⇡k+1. In the online variant considered here, the learning
process is interleaved with traversing the state graph. Thus, an application of T
(a training episode) consists in a simulation of agent’s single traversal through
S, starting in si and learning after each state transition. It is usually assumed,
particularly in the domain of board games, that the training process starts from
the default initial state, i.e., T is always applied to s0. This seems obvious, as,
in the end, we want to learn a policy capable of solving the entire problem
(e.g. playing the full game). However, for most problems the number of states
available in the initial steps of problem solving is low, and grows exponentially
with subsequent steps. As a result, a learner that starts from s0 is doomed to
overexplore the initial stages of problem while underexploring the final ones.

The basic tenet of the proposed approach is that training a policy on a
well-assorted, properly diversified and representative set of partial tasks can

for faster and more general learning. In practice this means that we search for a
sequence of endgames that provides the best possible learning gradient.

We expect that learning from the pre-selected experience will improve the
learning convergence and the final performance of the trained agents. We verify
this hypothesis on the problem of learning a strategy for the game of Othello.
Additionally, the dual problem definition can bring even more benefits. Firstly,
finding the set of initial states that results in particularly efficient learning indi-
cates that it gives a lot of information about this learning task. This resembles the
concept of underlying objectives of the problem, which here can be interpreted
as the crucial set of skills needed for successfully operating in the given environ-
ment. Secondly, the way the learning experience is generated in this approach
is an easy answer to the inherent exploration-exploitation trade-off. Performing
random moves to explore the environment (according to so called "-greedy action
selection scheme) could no longer be needed if the set of initial states is diverse
enough.

2 Shaping by Initial State Selection

We consider sequential decision problems, which are defined by a state space S, a
set of possible actions A, a default initial state so 2 S, a subset of terminal states,
and a reward function that is typically non-zero only for the terminalstates.
Additionally, the environment specifies the transition function f : S ⇥ A ! S,
which can be non-deterministic. Our objective is to automate the process of
learning agents ⇡ 2 ⇧ that solve such problems, i.e., maximize the expected
reward. An agent’s behaviour is determined by its policy ⇡ : S ! A that for
each state chooses an action that leads to one of the subsequent states. As a
result, the set of states observed by an agent in a single episode is a directed
path in the transition graph that spans S. This path (starting in s0 and ending
in one of the terminal states) forms a sample of experience that can be used for
improving the policy.

We assume that an incremental learning algorithm T : S ⇥⇧ ! ⇧ is given
that, provided with a current policy ⇡k and an initial state si 2 S, produces
an improved policy ⇡k+1. In the online variant considered here, the learning
process is interleaved with traversing the state graph. Thus, an application of T
(a training episode) consists in a simulation of agent’s single traversal through
S, starting in si and learning after each state transition. It is usually assumed,
particularly in the domain of board games, that the training process starts from
the default initial state, i.e., T is always applied to s0. This seems obvious, as,
in the end, we want to learn a policy capable of solving the entire problem
(e.g. playing the full game). However, for most problems the number of states
available in the initial steps of problem solving is low, and grows exponentially
with subsequent steps. As a result, a learner that starts from s0 is doomed to
overexplore the initial stages of problem while underexploring the final ones.

The basic tenet of the proposed approach is that training a policy on a
well-assorted, properly diversified and representative set of partial tasks can

⌧m

⌧m

si

⌧2⌧1

⌧1

⌧0
Game
tree

Figure 8.2: A conceptual diagram of coevolutionary optimization of shaping
sequences containing tasks with modified initial states.

The abstract scheme of optimizing initial state shaping sequences is
illustrated in Figure 8.2. The outer loop corresponds to Algorithm 8.2
which basically performs a population-based search in the space of
possible shaping sequences. Each sequence contains m training tasks
which differ only with respect to their initial states. The inner loop il-
lustrates the temporal difference learning algorithm 8.1 used to derive
a single policy πs from each shaping sequence s in the population,
by playing games starting from states in s. The learning algorithmOptimizing initial

state shaping
sequences

iterates over the elements of the sequence nc times (cf. Algorithm 8.1).
The performance of the policy πs calculated by playing against the
other policies obtained in this way is assigned as a fitness to the shap-
ing sequence s. Thus, we evaluate the shaping sequences by judging
the relative performance of policies created with their guidance.

8.2.2 Opponent Shaping Sequences

Another way of shaping in the Othello domain consists in providing
tasks that differ with respect to the game-playing opponent. This ap-
proach can be useful, e.g., if the original opponent is an expert level
player and the learner hardly ever receives any rewards, which are
necessary ingredient of useful training experience. In the considered
shaping approach, the learner is allowed to gather training experience
in a sequence of tasks with different (potentially less demanding)
opponents.

8.3 experimental setup and results 157

Changing the opponent in a game-playing task may expose the
learner to completely different training experience than that provided
by the original task. In this context, an opponent acts as a trainer Motivation for

changing opponentswhich attempts to guide the learner through pedagogical paths in
the game tree. The role of such trainers is particularly important in
large state spaces. Indeed, if the learner can not visit the entire state
space, it should at least be directed to such regions from which it can
learn the most.

Since changing the opponent influences the transition function of
the MDP task, the considered task variations take the form τ =

〈S, A, T′, R, I, γ〉. We will call a sequence of such tasks an opponent
shaping sequence. Technically, each task in such a sequence can be
represented simply as an opponent policy.

8.3 experimental setup and results

In this section we provide the empirical evidence of the effective-
ness of learning from shaping task sequences. In the experiments,
we assume that the target task τ0 concerns playing the Othello game
against the standard WPC heuristic player (swh) described in Section
5.1.3.1. We consider two types of shaping sequences discussed in pre-
vious section, which differ in the task aspect being modified, namely
initial state shaping sequences and opponent shaping sequences.

The complete process of developing a game-playing policy using
the considered shaping approach involves two stages. First, the coevo- Two stages of policy

developmentlutionary method from Section 8.1.3 attempts to evolve the optimal
shaping sequence for the given learning algorithm L (see Algorithm
8.1). Second, the best sequence s found in this way is employed to
learn a policy π = L(s), which becomes the final outcome of the over-
all learning process. Note that although the same learning algorithm
L is employed in both stages, it can use different number of training
episodes (t = ne × nc) in each of them. For instance, it is reasonable
to use lower number of training episodes (denoted as t1) in the first
stage, for roughly estimating the fitness of shaping sequences, and
larger (t2) in the second stage, for learning the final policy.

The performance of developed policies is measured as the percent-
age of points (according to Othello League scoring scheme, cf. Table
5.3) obtained in 1 000 games (500 as black and 500 as white) against Performance

measurethe swh player (see Section 5.1.3.1). Since all policies in our exper-
iments are deterministic, as well as the game of Othello itself, we
force both players to make random moves with probability ε = 0.1.

In the following we first describe the experimental settings of co-
evolutionary shaping sequence optimization process and details of
the algorithm L used to devise policies from evolving task sequences.
Then we experimentally compare the performance of learning from
optimized shaping sequences to training directly in the target task.

158 shaping in temporal difference learning

Finally, we investigate the properties of the best sequences to find
out what kind of tasks are most advantageous to use as the source of
training experience.

8.3.1 Experimental Setup

policy representation To represent game-playing policies for
Othello, we employ weighted piece counters (WPCs, Section 5.1.2.2).

learning from shaping sequences To learn a game-playing
policy π = L(s) from the shaping sequence s we employ the algo-
rithm presented in Algorithm 8.1. Before learning, policies are initial-
ized by setting all WPC weights to zeroes. The weights are modifiedTD update rule

after every observed transition by the gradient-descent TD(0) tem-
poral difference update rule with the learning rate parameter set to
α = 0.01 (cf. Equation 2.14). TD(0) configured in this way was pre-
viously applied for Othello [120, 192], proving capable of producing
relatively good players in short training times.

Given a shaping sequence s consisting of m tasks and a total num-
ber t of training games to play, we considered two schemes of repeat-
ing tasks from a shaping sequence (cf. Algorithm 8.1). In the sequentialRepeating tasks from

a shaping sequence scheme there is only one cycle (i.e., nc = 1) and each task τi is used
for the successive ne = t/m training episodes. Conversely, in the
cyclic scheme, there are nc = t/m cycles, each of which consists in
experiencing τi just once. We decided to use the cyclic scheme which
proved more effective in the preliminary experiments.

The number of training games used by L in the first stage (evalu-
ating fitness of a shaping sequence) is set to t1 = 5 000, while in theThe number of

training games second stage (learning a final policy) to t2 = 10 000. The number m
of tasks in a shaping sequence varies between initial state sequences
and opponent sequences and is equal to 50 and 5, respectively.

shaping sequence optimization Shaping sequences forming
input to the learning algorithm L are optimized by the means of
the coevolutionary algorithm 8.2. The initial population comprise 50
shaping sequences, each composed of m tasks featured either by a
modified initial state or by a different game-playing opponent. Coevo-
lutionary run involves 100 generations bred by crossover followed by
mutation. Both operators depend on the type of shaping sequencesCoevolutionary

algorithm
parameters

and are described in the corresponding sections below. Evaluation
consisted of learning policies from all the shaping sequences and
playing a population-wide round-robin tournament between policies
created in this way. The policies scored 3, 1, or 0 points for winning,
drawing, and losing, respectively. The total score earned in the tour-
nament forms individual’s fitness, which was then subject to tourna-
ment selection of size 5.

8.3 experimental setup and results 159

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2000 4000 6000 8000 10000

P
er

fo
rm

an
ce

Training episodes

learning from initial states shaping sequences

learning from full games

Figure 8.3: The average performance of the learners trained with the best
initial state shaping sequences (one plot per sequence) vs. the av-
erage performance of the learners trained from full games, as a
function of the number of training episodes. The performance is
calculated as the average score against the swh player.

8.3.2 Initial State Shaping Sequences

In the first experiment we applied the shaping approach based on
initial state modification (see Section 8.2.1). Each initial state shaping
sequence contained 50 tasks. Technically, they were represented only
by their initial states, as all other aspects of training tasks remain
the same. Initially, the states were randomly sampled from Othello
games played between two random players. The crossover operator Mutation and

crossoverwas uniform and homologous, so an offspring inherited 25 randomly
selected states from the first parent and the rest from the second one,
and the order of states was preserved. Mutation was applied to the
offspring with probability 0.05 per state and consisted in replacing a
state with a newly generated random state.

Although the ultimate goal of learning was to play well against the
swh player, the training was realized without reference to this hand-
crafted strategy. Instead, we employed the self-play training paradigm
(cf. Section 6.2.1), which allows to learn a policy autonomously, with Self-play training

paradigmzero knowledge built in. Thus, learning a policy π = L(s) from
the initial state shaping sequence s involved a series of self-teaching
episodes, in which policy being learned played against itself starting
from a particular state in a sequence1.

1 Consequently, training tasks differ from the target task with respect to both the
opponent and the initial state.

160 shaping in temporal difference learning

0

10

20

30

40

50

0 10 20 30 40 50 60

Initial state depth

N
um

be
r

of
 ta

sk
s

Figure 8.4: The histogram showing the distribution of tasks in the best initial
state shaping sequences with respect to the depth of their initial
states (20 sequences × 50 tasks = 1000 tasks in total).

Figure 8.3 visualizes the performance of learning from the best ini-
tial state shaping sequences compared with learning from full games
(in both cases self-play training is employed). Let us emphasize that
this graph characterizes the post-evolution training based on best-of-
run individuals (best state sequences found). Every thin blue curvePerformance

comparison depicts the mean performance of a strategy trained using the best
shaping sequence found in one of 20 coevolutionary runs. Each train-
ing episode corresponds to collecting experience through self-play
from a single initial state in a sequence interleaved with online learn-
ing from this experience with the TD(0) algorithm. Since shaping se-
quences are processed in the cyclic scheme, the k-th training episode
corresponds to learning from k mod m element in the sequence.

The thick red line in Fig. 8.3 depicts the behavior of the standard
self-play TDL, starting always from the default initial state s0, which
gathers experience by ε-greedy action selection scheme (with ε equal
to 0.1). The unshaped version of TDL clearly stalls much earlier than
the shaping approach, and attains substantially worse performance
at the end of training.

Finally, we investigated the best initial state shaping sequences pro-
duced by each of the 20 coevolutionary runs to see how their tasks dif-
fer with respect to the depth of initial states. Figure 8.4 demonstratesInspecting depth of

the best initial states that almost half of the considered 20× 50 = 1000 shaping tasks have
their initial states either very shallow (below the depth of 10) or very
deep (over the depth of 50) in the game tree (a typical Othello game
involves roughly 60 moves). Such distribution can be explained by
the fact that the tasks starting from deep initial states are relatively
information-rich, as there are only a few actions to be taken before
receiving a reward (and credit assignment is thus easier). Shallow

8.3 experimental setup and results 161

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2000 4000 6000 8000 10000

P
er

fo
rm

an
ce

Training episodes

learning from opponent shaping sequences

learning versus the heuristic player

learning by self-play

Figure 8.5: The average performance of the learners trained from the best
opponent shaping sequences (one plot per sequence) vs. the aver-
age performance of the learners trained against the target swh

opponent or against itself (through self-play), as a function of
the number of training episodes. The performance is calculated
as the average score against the swh player.

states, on the other hand, resemble the ultimate goal of learning, i.e.,
playing full games starting from the state s0 situated at the depth of
0 in the game tree.

8.3.3 Opponent Shaping Sequences

In the second experiment we verify the effectiveness of training on
selected variations of the target task which this time was modified
by exchanging the game-playing opponent. In contrast to initial state
modification, here all training episodes were started from the default
initial state s0, and only the training opponents could vary. Opponent
shaping sequences contained 5 tasks with varying opponent policies
represented as shared weighted piece counters (SWPCs, see Section
5.1.2.3). At the start of coevolution, the weights of policies were ini- Genetic operators for

opponent sequencestialized by drawing them randomly from the range [−10, 10]. Under
the uniform crossover operation applied here, an offspring inherited
each element of the sequence from the first or the second parent, with
equal probability, while preserving the order of elements. Mutation
was applied to the offspring with probability 0.2 per weight and
consisted in adding a random value from the range [−0.1, 0.1] to the
given weight.

162 shaping in temporal difference learning

0

3

6

9

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

Performance

D
en

si
ty

learning by self−play
learning versus the heuristic player
learning from the best initial state shaping sequence
learning from the best opponent shaping sequence

Figure 8.6: Estimated density of the distribution of final performance
achieved with conventional learning methods and through the
use of shaping methods.

Figure 8.5 shows the performance achieved by learning from the
best opponent shaping sequences. Analogously to Fig. 8.3, this re-
flects the post-evolution process of TD(0) learning, not evolution
itself. The performance was measured as the expected cumulativeMeasuring

performance reward obtained in a target task, which consisted in playing a full
Othello game against the swh player. Every thin blue curve depicts
the mean performance of a policy trained using the best shaping se-
quence found in one of 30 coevolutionary runs. Each training episode
consisted in a game with a consecutive opponent specified by the
shaping sequence, followed by learning from the observed state tran-
sitions. Clearly, the policies trained with the shaping approach were
able to outperform not only those obtained by the basic self-play TDL
but also those trained directly against the target opponent.

To verify whether the obtained results were statistically significant
we estimated the distribution of the final performance of particular
methods. Figure 8.6 illustrates the Gaussian kernel density estimates2

based on the performance achieved after 10 000 training episodes in
100 runs. Since the shapes of particular distributions were similar (ex-Distributions of the

final performance cept for any difference in medians), we conducted the Kruskal-Wallis
test followed by a post-hoc analysis using one-sided Mann-Whitney
tests with Holm correction. The tests confirmed that learning from the
best shaping sequence resulted in significantly higher performance
(p < 0.01) than that achieved by learning either by self-play or against
the target opponent.

2 The analyses were conducted using R version 2.5.13 (http://www.r-project.org).

http://www.r-project.org

8.3 experimental setup and results 163

0

4

8

12

16

20

0% 20% 40% 60% 80% 100%

Expected task difficulty

N
um

be
r

of
 ta

sk
s

Figure 8.7: The histogram showing the distribution of tasks in the best oppo-
nent shaping sequences with respect to their expected difficulty
(30 sequences × 5 tasks = 1000 tasks in total).

Similarly to the previous section, we investigated the characteristics
of the best evolved opponent shaping sequences. Here we measured
the expected difficulty (cf. Section 7.2.4) of the tasks included in the
shaping sequence, which in this particular case corresponded to the
strength of the opponents specified by such sequence. Figure 8.7 visu- Features of the best

shaping sequencesalizes the histogram based on the total of 30× 5 = 150 tasks contained
in the best opponent shaping sequences from all the coevolutionary
runs. Clearly, the distribution is concentrated mostly on the relatively
challenging tasks of difficulty over 60%. Such distribution confirms
our previous observations from Section 7.4 that stronger opponents
are generally more instructive and thus more useful for training.

Additionally, we assessed also the difficulty distribution within the
particular opponent shaping sequences. Figure 8.8 shows the heat
map corresponding to difficulties of the tasks in the best found se-
quences. By inspecting the columns of the figure, we can observe that Difficulty

distribution within
opponent sequences

the tasks within particular shaping sequences are quite diversified in
terms of their difficulty. Most sequences include at least one weaker
opponent representing difficulty of around 50% or even lower. Nev-
ertheless, no general pattern across the shaping sequences is evident
here. We expect that difficulty is not enough to judge the pedagogical
character of the task. Other measures of task ‘instructiveness’ could
be proposed based on, e.g., evaluating the diversity of the paths tra-
versed in the game tree when playing against particular opponents.

164 shaping in temporal difference learning

0 5 10 15 20 25 30
Shaping sequence

20% 30% 40% 50% 60% 70% 80% 90%
task difficulty

Figure 8.8: The heat map illustrating the distribution of task difficulties in
particular opponent shaping sequences. Each column of the map
corresponds to a single shaping sequence composed of 5 tasks.

8.4 discussion

The main premise of the proposed approach is that training a policy
on a well-assorted, properly diversified and representative set of tasks
can be more beneficial than confronting it directly with the target
task. The reason why learning from a shaping task sequence can be
advantageous is that the learner can be guided to informative state
transitions which allow to extract general knowledge useful in the
entire problem domain, including the target task.

In learning game-playing strategies, it is typically the role of a
trainer to guide the learner through the paths of the game tree from
which it can learn the most [53]. This chapter revolved around the ob-
servation that such a guidance can take on different forms. In general,Different forms of

guidance we are not looking for an ideal trainer here, but for an ideal training
experience. In the most natural setting, the experience is embodied
by a sequence of opponents (see Section 8.3.3). By coevolving such
sequences we tried to identify the most advantageous opponents
in terms of the relative performance of learners they instruct. In-
terestingly, the coevolutionary selection pressure favored sequences
comprised mainly of skillful opponents, which apparently allowed
learners to excel in a competitive environment.

In another shaping approach proposed here (see Section 8.3.2), the
role of guidance is delegated to a sequence of initial states. Self-play
training started from these states focuses the training experience on
the corresponding subtrees of the game tree. In particular, to alleviate
the problem of delayed reinforcement, it is beneficial to start deep
in the game tree and consider only a short sequence of decisions
followed by a reward. Eventually, the goal is to shape the learning
process so that it produces proficient learners prepared to perform
well in every region of the environment. This goal has been attained
in this study for the game of Othello: rephrasing a learning task in a
way that enables shaping led to better performing players.

8.4 discussion 165

We expect that learning from a pre-selected experience will con-
verge faster and improve the final performance of the trained agents
also for other interactive domains beyond Othello. Additionally, the
dual problem definition can bring even more benefits. Firstly, the
identified training tasks are a valuable source of knowledge about
problem structure. Indeed, a sequence of task variations can be con- Underlying

objectivessidered as an analog to the concept of underlying objectives of the prob-
lem [41, 92], which here can be interpreted as the set of skills needed
to successfully operate in the given environment. Secondly, diversi-
fication of training experience embodied by shaping sequences is a
natural answer to the exploration-exploitation trade-off (see Section 2.1).
Performing random moves to explore the environment (for instance,
according to the ε-greedy action selection scheme) may no longer
be needed if the shaping sequence leads to gathering experience in
different parts of the state space.

Throughout this chapter we have ignored the computational effort
needed by the proposed coevolutionary method to optimize shaping
sequences. It is worth to note that finding useful shaping sequences Computational effort

requires running the learning algorithm many times and thus is gen-
erally much more computationally demanding than the conventional
reinforcement learning approaches that rely on training directly in
the target task. Therefore, the practical significance of the proposed
method is limited. Nevertheless, this contribution can be considered
as a proof of concept that qualitative improvement of agent’s perfor-
mance is possible solely by adaptively modifying selected aspects of
the environment it operates in.

Moreover, once the shaping sequence is synthesized it can be reused
many times for arbitrary number of training episodes and potentially
also for different learning algorithms. For instance, training tasks Reusing shaping

sequencesfrom the best shaping sequences could be used as a means of evaluat-
ing the fitness of policies in evolutionary learning algorithms. On the
other hand, it would be interesting to verify whether shaping distribu-
tions that were found successful in the previous chapter would prove
useful for another learning algorithm, such as temporal difference
learning considered here.

9
C O N C L U S I O N S

The central motivation behind this thesis can be rephrased with the
following questions. Given a reinforcement learning algorithm and a
target task for which a decision-making policy is to be learned:

• How and to what extent can we improve learning effectiveness
(in terms of the performance on the target task) without chang-
ing the algorithm itself?

• What type of domain knowledge is required to increase the
learning effectiveness?

In this thesis, we have attempted to answer these questions by re-
ferring to the concept of shaping borrowed from behavioral psychol-
ogy. Rather than modifying the learning algorithm, the shaping ap-
proach consists in changing the training environment and exposing
the learner to the more informative training experience than that
available directly in the target task. By doing so we expected to pro-
vide an easier and faster path to learning, allowing given algorithm
to reach the desirable areas in solution space.

The take-away message from this dissertation is that by appropri-
ately changing the training environments it is possible to significantly
improve the learning process realized by off-the-shelf reinforcement
learning methods. In particular, we have employed different types of
neural networks to represent policies and two classes of model-free re-
inforcement learning algorithms, namely, evolutionary learning and
temporal difference learning. We have empirically demonstrated that
the proposed shaping methods can significantly improve the effective-
ness of these algorithms in three nontrivial reinforcement learning
domains. Importantly, none of the introduced shaping methods re-
quired manual construction of training tasks. Particularly, the coevo-
lutionary shaping approach was the most autonomous in this respect.
This stays in sharp contrast with most of the previous approaches
to shaping which relied on human supervision and extensive knowl-
edge of problem domain.

The original shaping approach applied in animal training concerns
simplifying the task that is too difficult to be learned directly. How-
ever, the experiments conducted in game-based domains reveal that
in order to gain general game-playing abilities it is actually beneficial
to focus on more difficult opponents rather than the easier ones. This
observation follows the intuitive belief that we can learn more from a
skillful teacher than from a beginner.

167

168 conclusions

9.1 contributions

The main contributions of this thesis may be summarized as follows:

• Presentation of the unified shaping framework which embraces
existing shaping approaches and outlines the role of shaping
with respect to the basic reinforcement learning framework. We
introduced a class of test-based reinforcement learning prob-
lems and discussed how approaching such problems with co-
evolutionary algorithms conforms to our notion of shaping.
[Chapter 4]

• Demonstration of the synergy between evolutionary search per-
formed by coevolution and gradient-based search carried out
by self-play temporal difference learning. By hybridizing these
two forms of shaping, the proposed method of coevolutionary
temporal difference learning outperformed its both constituents
in two game-playing domains. In particular, we show that using
temporal difference learning is crucial to support coevolution in
highly-dimensional search spaces.
[Chapter 6]

• Demonstration of discrepancies between policies’ assessments
obtained using various performance measures. In particular, we
showed that coevolutionary shaping methods exposed learn-
ers to richer training experience, that allowed them to achieve
higher generalization performance than that of learners trained
in a single environment. Moreover, we demonstrated that at-
taining much higher performance on demanding environments
may be not sufficient to gain a substantial advantage in terms
of the expected utility in the entire spectrum of possible tasks.
[Chapters 6 and 7]

• Introduction and formalization of the measure of reinforcement
learning task difficulty and the notion of difficulty distribution.
[Chapter 7]

• Design and verification of a set of difficulty-based shaping meth-
ods that provide training tasks from a precomputed task pool
according to either static or dynamic difficulty distribution. Most
of them were able to significantly improve the results achieved
by the conventional unshaped reinforcement learning approach.
Additionally, we analyzed the coevolutionary shaping methods
that do not require creating difficulty-based task pool but in-
stead were able to autonomously discover the useful training
environments on the go. Moreover, the introduced measure of
task difficulty allowed us to inspect the difficulty distribution of
the training tasks provided by coevolution.
[Chapter 7]

9.2 future work 169

• Formalization of the problem of optimal shaping task sequence.
This leads to mapping the original learning problem of optimiz-
ing an agent’s policy into a dual problem of finding the best
input for the given learning algorithm, while maintaining the
ultimate goal of learning.
[Chapter 8]

• Design and verification of a dedicated coevolutionary algorithm
for the problem of optimal shaping task sequence. The experi-
mental results demonstrate that temporal difference learning
from pre-selected training experience found by this algorithm
can be significantly more effective than learning from a raw
unshaped experience.
[Chapter 8]

• Implementation of the proposed shaping methods as a com-
mon software framework. The framework is easy to extend and
allows flexible experiment definition. The software integrates
with a well-known ECJ system and, thereby, may be helpful for
many ECJ users.

9.2 future work

The work presented in this thesis may be extended in many directions.
Let us point out a few of them in the following list:

• A hybrid method of coevolutionary temporal difference learn-
ing presented in Chapter 6 relies on a single-population coevo-
lutionary algorithm and self-play temporal difference learning.
An extension of interest might be to employ two-population
coevolution coupled with cross-population temporal difference
learning. Evolving training environments in a separate popu-
lation would allow for more flexible shaping schemes such as
those applied by difficulty-based shaping methods introduced
in Chapter 7.

• The performance assessments presented in Chapters 6 and 7

demonstrate that some policies perform better in easier tasks
while the others excel in more demanding environments. Ag-
gregating the policy performance to a single scalar value results
in losing the information about these characteristics. This points
to the need of more detailed, multi-criteria performance assess-
ment that could illustrate how a given policy copes with tasks of
various difficulty. Importantly, such multi-objectivization could
be exploited not only to evaluate an already learned policy but
also to drive the evolutionary learning process.

170 conclusions

• The shaping methods proposed in Chapters 7 and 8 provided
training tasks that were supposed to facilitate specific reinforce-
ment learning algorithms. An interesting area for future work
is to investigate whether training difficulty distributions or con-
crete shaping task sequences that were found useful in the con-
text of a given learning algorithm could be successfully reused
to improve the effectiveness of another algorithm. This would
confirm that identified training tasks are not algorithm-specific
but represent a general knowledge about the problem structure
and its underlying objectives.

A
S TAT I S T I C A L S I G N I F I C A N C E

a.1 othello opponent domain

ov
er

la
pp

ed
(5

0,
70

, 2
, 3

0)
un

ifo
rm

(5
0,

90
)

cy
cl

ic
(5

0,
90

, 2
, 1

0)
ov

er
la

pp
ed
(5

0,
80

, 5
, 1

5)
cy

cl
ic
(5

0,
90

, 1
0,

5)
ov

er
la

pp
ed
(5

0,
70

, 1
0,

20
)

st
ag

ed
(5

0,
90

, 2
)

st
ag

ed
(5

0,
90

, 1
0)

st
ag

ed
(5

0,
90

, 2
0)

uniform(50, 90) 1.000

cyclic(50, 90, 2, 10) 1.000 1.000

overlapped(50, 80, 5, 15) 1.000 1.000 1.000

cyclic(50, 90, 10, 5) 0.920 1.000 1.000 1.000

overlapped(50, 70, 10, 20) 0.920 1.000 1.000 1.000 1.000

staged(50, 90, 2) 0.124 0.374 1.000 1.000 1.000 1.000

staged(50, 90, 10) 0.056 0.130 0.374 0.722 1.000 1.000 1.000

staged(50, 90, 20) 0.000 0.000 0.001 0.002 0.024 0.093 0.186 0.561

unshaped 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.135

Table A.1: Multi-stage shaping methods compared in the Othello opponent
domain. Table shows p-values obtained in one-sided pairwise
Mann-Whitney test with Holm correction.

un
ifo

rm
(5

0,
90
)

pe
rf

or
m

an
ce
(5

0,
90

, 4
, 4

0)

pe
rf

or
m

an
ce
(5

0,
90

, 4
, 3

0)

pe
rf

or
m

an
ce
(5

0,
90

, 4
, 2

0)

pe
rf

or
m

an
ce
(5

0,
90

, 4
, 1

0)

di
st

in
ct

io
ns
(5

0,
90

, 2
)

di
st

in
ct

io
ns
(5

0,
90

, 4
)

st
ag

ed
(5

0,
90

, 4
)

di
st

in
ct

io
ns
(5

0,
90

, 8
)

performance(50, 90, 4, 40) 1.000

performance(50, 90, 4, 30) 1.000 1.000

performance(50, 90, 4, 20) 1.000 1.000 1.000

performance(50, 90, 4, 10) 1.000 1.000 1.000 1.000

distinctions(50, 90, 2) 0.455 1.000 1.000 1.000 1.000

distinctions(50, 90, 4) 0.079 0.431 0.431 0.479 1.000 1.000

staged(50, 90, 4) 0.001 0.006 0.006 0.005 0.039 0.321 0.928

distinctions(50, 90, 8) 0.000 0.002 0.003 0.003 0.010 0.101 0.379 1.000

unshaped 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.075

Table A.2: Hyper-heuristic shaping methods compared in the Othello op-
ponent domain. Table shows p-values obtained in one-sided pair-
wise Mann-Whitney test with Holm correction.

171

172 statistical significance

ov
er

la
pp

ed
(5

0,
70

, 2
, 3

0)
un

ifo
rm

(5
0,

90
)

un
ifo

rm
(5

0,
70
)

co
ev

-ta
sk
(2

5,
50
)

ra
te

=1
0.

0

co
ev

-d
iff
(2

5,
50
)

ra
te

=4
0.

0

co
ev

-d
iff
(2

5,
50
)

ra
te

=2
0.

0

co
ev

-d
iff
(2

5,
50
)

ra
te

=1
0.

0

co
ev

-d
iff
(2

5+
25
)

ra
te

=4
.0

co
ev

-d
iff
(2

5,
50
)

ra
te

=4
.0

uniform(50, 90) 1.000

uniform(50, 70) 0.620 1.000

coev-task(25, 50) rate=10.0 0.265 0.620 1.000

coev-diff(25, 50) rate=40.0 0.093 0.180 0.845 1.000

coev-diff(25, 50) rate=20.0 0.029 0.080 0.620 1.000 1.000

coev-diff(25, 50) rate=10.0 0.000 0.000 0.000 0.004 0.011 0.163

coev-diff(25 + 25) rate=4.0 0.000 0.000 0.000 0.005 0.010 0.121 1.000

coev-diff(25, 50) rate=4.0 0.000 0.000 0.000 0.000 0.000 0.021 1.000 1.000

unshaped 0.000 0.000 0.000 0.000 0.000 0.000 0.620 0.822 1.000

Table A.3: Coevolutionary shaping methods compared in the Othello oppo-
nent domain. Table shows p-values obtained in one-sided pair-
wise Mann-Whitney test with Holm correction.

A.2 othello initial state domain 173

a.2 othello initial state domain

tr
ia

ng
ul

ar
(6

0,
70

, 9
5)

un
ifo

rm
(6

5,
85
)

un
ifo

rm
(7

0,
80
)

no
rm

al
(7

5,
5)

tr
ia

ng
ul

ar
(6

5,
70

, 8
5)

no
rm

al
(7

0,
10
)

un
sh

ap
ed

tr
ia

ng
ul

ar
(7

0,
80

, 9
5)

un
ifo

rm
(5

0,
90
)

uniform(65, 85) 1.000

uniform(70, 80) 0.900 1.000

normal(75, 5) 0.605 1.000 1.000

triangular(65, 70, 85) 0.605 1.000 1.000 1.000

normal(70, 10) 0.330 1.000 1.000 1.000 1.000

unshaped 0.053 0.310 1.000 1.000 1.000 1.000

triangular(70, 80, 95) 0.001 0.020 0.176 0.330 0.511 0.563 1.000

uniform(50, 90) 0.000 0.000 0.005 0.008 0.020 0.009 0.238 1.000

normal(85, 5) 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.191 1.000

Table A.4: Single-stage shaping methods compared in the Othello initial
state domain. Table shows p-values obtained in one-sided pair-
wise Mann-Whitney test with Holm correction.

ov
er

la
pp

ed
(6

0,
80

, 4
, 1

0)
ov

er
la

pp
ed
(5

5,
75

, 2
5,

10
)

cy
cl

ic
(6

5,
85

, 4
, 5

0)
st

ag
ed
(6

5,
85

, 4
)

un
ifo

rm
(6

5,
85
)

cy
cl

ic
(6

5,
85

, 4
, 1

0)
ov

er
la

pp
ed
(6

5,
85

, 4
, 1

0)
un

sh
ap

ed

st
ag

ed
(6

5,
85

, 2
0)

overlapped(55, 75, 25, 10) 1.000

cyclic(65, 85, 4, 50) 0.040 0.166

staged(65, 85, 4) 0.066 0.166 1.000

uniform(65, 85) 0.016 0.053 1.000 1.000

cyclic(65, 85, 4, 10) 0.001 0.007 0.667 1.000 1.000

overlapped(65, 85, 4, 10) 0.000 0.000 0.021 0.112 0.293 0.667

unshaped 0.000 0.000 0.010 0.046 0.167 0.421 1.000

staged(65, 85, 20) 0.000 0.000 0.001 0.006 0.046 0.128 1.000 1.000

staged(60, 90, 5) 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.002 0.032

Table A.5: Multi-stage shaping methods compared in the Othello initial
state domain. Table shows p-values obtained in one-sided pair-
wise Mann-Whitney test with Holm correction.

174 statistical significance

co
ev

-d
iff

ra
te

=1
0.

0
ov

er
la

pp
ed
(6

0,
80

, 4
, 1

0)
co

ev
-d

iff
ra

te
=5

.0
st

ag
ed
(6

5,
85

, 4
)

tr
ia

ng
ul

ar
(6

0,
70

, 9
5)

un
ifo

rm
(6

5,
85
)

co
ev

-d
iff

ra
te

=2
0.

0
un

sh
ap

ed

co
ev

-ta
sk

de
pt

h-
ra

te
=5

overlapped(60, 80, 4, 10) 1.000

coev-diff rate=5.0 1.000 1.000

staged(65, 85, 4) 0.020 0.048 0.072

triangular(60, 70, 95) 0.009 0.026 0.048 1.000

uniform(65, 85) 0.004 0.013 0.031 1.000 1.000

coev-diff rate=20.0 0.000 0.000 0.000 0.138 0.138 0.487

unshaped 0.000 0.000 0.000 0.031 0.030 0.131 1.000

coev-task depth-rate=5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003

coev-task move-rate=5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table A.6: Coevolutionary shaping methods compared in the Othello initial
state domain. Table shows p-values obtained in one-sided pair-
wise Mann-Whitney test with Holm correction.

A.3 pole balancing dynamics domain 175

a.3 pole balancing dynamics domain

un
ifo

rm
(6

0,
95
)

un
ifo

rm
(7

0,
95
)

un
ifo

rm
(5

0,
95
)

un
ifo

rm
(7

0,
90
)

un
ifo

rm
(6

0,
90
)

un
ifo

rm
(5

0,
90
)

un
sh

ap
ed

un
ifo

rm
(5

0,
80
)

uniform(70, 95) 1.000

uniform(50, 95) 1.000 1.000

uniform(70, 90) 0.000 0.000 0.000

uniform(60, 90) 0.000 0.000 0.000 0.856

uniform(50, 90) 0.000 0.000 0.000 0.856 1.000

unshaped 0.000 0.000 0.000 0.262 0.662 0.662

uniform(50, 80) 0.000 0.000 0.000 0.000 0.000 0.000 0.003

uniform(60, 80) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.108

Table A.7: Single-stage shaping methods compared in the pole balancing
dynamics domain. Table shows p-values obtained in one-sided
pairwise Mann-Whitney test with Holm correction.

un
ifo

rm
(6

0,
95
)

un
ifo

rm
(7

0,
95
)

ce
vo

-d
iff

ra
te

=2
0.

0
un

ifo
rm

(5
0,

95
)

ce
vo

-d
iff

ra
te

=1
0.

0
ce

vo
-d

iff
ra

te
=5

.0

uniform(70, 95) 1.000

cevo-diff rate=20.0 1.000 1.000

uniform(50, 95) 1.000 1.000 1.000

cevo-diff rate=10.0 0.012 0.013 0.042 0.013

cevo-diff rate=5.0 0.010 0.010 0.040 0.013 1.000

unshaped 0.000 0.000 0.000 0.000 0.000 0.003

Table A.8: Coevolutionary shaping methods compared in the pole balanc-
ing dynamics domain. Table shows p-values obtained in one-
sided pairwise Mann-Whitney test with Holm correction.

B I B L I O G R A P H Y

[1] David Ackley and Michael Littman. Interactions Between
Learning and Evolution. In Christopher G. Langton, Charles
Taylor, J. Doyne Farmer, and Steen Rasmussen, editors, Artifi-
cial Life II, pages 487–509. Addison-Wesley, Redwood City, CA,
1992.

[2] Riad Akrour, Marc Schoenauer, and Michele Sebag. Preference-
Based Policy Learning. In Machine Learning and Knowledge Dis-
covery in Databases, volume 6911 of Lecture Notes in Computer
Science, pages 12–27. Springer Berlin Heidelberg, 2011.

[3] Charles W. Anderson. Learning to Control an Inverted Pendu-
lum Using Neural Networks. IEEE Control Systems Magazine, 9

(3):31–37, 1989.

[4] Charles W. Anderson and W. Thomas Miller. A Challenging
Set of Control Problems. In Neural Networks for Control, pages
475–508. MIT Press, Cambridge, MA, USA, 1990.

[5] Peter J. Angeline and Jordan B. Pollack. Competitive Environ-
ments Evolve Better Solutions for Complex Tasks. In Proceedings
of the 5th International Conference on Genetic Algorithms, pages
264–270, San Francisco, CA, USA, 1993. Morgan Kaufmann
Publishers Inc.

[6] Martin Anthony and Peter L. Bartlett. Neural Network Learning:
Theoretical Foundations. Cambridge University Press, New York,
NY, USA, 1st edition, 2009.

[7] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett
Browning. A Survey of Robot Learning from Demonstration.
Robotics and Autonomous Systems, 57(5):469–483, 2009.

[8] Minoru Asada, Shoichi Noda, Sukoya Tawaratsumida, and Koh
Hosoda. Purposive Behavior Acquisition for a Real Robot by
Vision-Based Reinforcement Learning. Machine Learning, 23(2-
3):279–303, 1996.

[9] Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz, edi-
tors. Handbook of Evolutionary Computation. IOP Publishing Ltd.,
Bristol, UK, 1997.

[10] Thomas Bäck, Ulrich Hammel, and Hans-Paul Schwefel. Evo-
lutionary Computation: Comments on the History and Current
State. IEEE Transactions on Evolutionary Computation, 1(1):3–17,
1997.

177

178 bibliography

[11] Michael Bain and Claude Sammut. A Framework for Be-
havioural Cloning. In Machine Intelligence 15, Intelligent Agents,
pages 103–129, Oxford, UK, 1999. Oxford University.

[12] Andrew G. Barto and Sridhar Mahadevan. Recent Advances in
Hierarchical Reinforcement Learning. Discrete Event Dynamic
Systems, 13(1-2):41–77, 2003.

[13] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson.
Neuronlike Adaptive Elements That Can Solve Difficult Learn-
ing Control Problems. IEEE Transactions on Systems, Man, and
Cybernetics, 13(5):835–846, 1983.

[14] Jonathan Baxter, Andrew Tridgell, and Lex Weaver. Learning
to Play Chess Using Temporal Differences. Machine Learning,
40(3):243–263, 2000.

[15] Richard Bellman. Dynamic Programming. Princeton University
Press, Princeton, NJ, USA, 1957.

[16] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Pro-
gramming. Athena Scientific, 1996.

[17] Hans-Georg Beyer and Hans-Paul Schwefel. Evolution
strategies–a comprehensive introduction. Natural computing, 1

(1):3–52, 2002.

[18] Kevin J. Binkley, Ken Seehart, and Masafumi Hagiwara. A
Study of Artificial Neural Network Architectures for Othello
Evaluation Functions. Transactions of the Japanese Society for Arti-
ficial Intelligence, 22(5):461–471, 2007.

[19] Alan D. Blair and Jordan B. Pollack. What makes a good co-
evolutionary learning environment. Australian Journal of Intelli-
gent Information Processing Systems, 4(3/4):166–175, 1997.

[20] Woodrow W. Bledsoe and Iben Browning. Pattern Recognition
and Reading by Machine. In Papers Presented at the December
1-3, 1959, Eastern Joint IRE-AIEE-ACM Computer Conference, IRE-
AIEE-ACM ’59 (Eastern), pages 225–232, New York, NY, USA,
1959. ACM.

[21] Bruno Bouzy and Tristan Cazenave. Computer Go: An AI Ori-
ented Survey. Artificial Intelligence, 132(1):39–103, 2001.

[22] Bruno Bouzy and Bernard Helmstetter. Monte Carlo Go De-
velopments. In Ernst A. Heinz H. Jaap van den Herik, Hi-
royuki Iida, editor, Advances in Computer Games conference (ACG-
10), Graz 2003, pages 159–174. Kluwer, 2003.

[23] Richard Bozulich. The Go Player’s Almanac. Ishi Press, Tokyo,
1992.

bibliography 179

[24] Anthony Bucci. Emergent Geometric Organization and Informative
Dimensions in Coevolutionary Algorithms. PhD thesis, Waltham,
MA, USA, 2007.

[25] Anthony Bucci and Jordan B. Pollack. A Mathematical Frame-
work for the Study of Coevolution. In Kenneth A. De Jong,
Riccardo Poli, and Jonathan E. Rowe, editors, Proceedings of
the Seventh Workshop on Foundations of Genetic Algorithms, pages
221–236. Morgan Kaufmann, 2002.

[26] Edmund K. Burke, Michel Gendreau, Matthew R. Hyde, Gra-
ham Kendall, Gabriela Ochoa, Ender Özcan, and Rong Qu.
Hyper-heuristics: a survey of the state of the art. Journal of the
Operational Research Society, 64(12):1695–1724, 2013.

[27] Michael Buro. Logistello: A Strong Learning Othello Program.
In 19th Annual Conference Gesellschaft für Klassifikation e.V., 1995.

[28] Lucian Buşoniu, Robert Babuška, Bart De Schutter, and Damien
Ernst. Reinforcement Learning and Dynamic Programming Using
Function Approximators. CRC Press, Boca Raton, Florida, 2010.

[29] Kumar Chellapilla and David B. Fogel. Evolving an Ex-
pert Checkers Playing Program Without Using Human Exper-
tise. IEEE Transactions on Evolutionary Computation, 5(4):422–428,
2001.

[30] Siang Yew Chong, Mei K. Tan, and Jonathon D. White. Ob-
serving the Evolution of Neural Networks Learning to Play the
Game of Othello. IEEE Transactions on Evolutionary Computation,
9(3):240–251, 2005.

[31] Siang Yew Chong, P. Tino, and Xin Yao. Measuring General-
ization Performance in Coevolutionary Learning. IEEE Transac-
tions on Evolutionary Computation, 12(4):479–505, 2008.

[32] Siang Yew Chong, Peter Tino, and Xin Yao. Relationship Be-
tween Generalization and Diversity in Coevolutionary Learn-
ing. IEEE Transactions on Computational Intelligence and AI in
Games, 1(3):214–232, 2009.

[33] Siang Yew Chong, Peter Tino, Day Chyi Ku, and Xin Yao. Im-
proving Generalization Performance in Co-Evolutionary Learn-
ing. IEEE Transactions on Evolutionary Computation, 16(1):70–85,
2012.

[34] Anders Lyhne Christensen and Marco Dorigo. Incremental Evo-
lution of Robot Controllers for a Highly Integrated Task. In
Proceedings of the 9th International Conference on From Animals to
Animats: Simulation of Adaptive Behavior, SAB’06, pages 473–484,
Berlin, Heidelberg, 2006. Springer-Verlag.

180 bibliography

[35] Paweł Cichosz. Systemy uczące się. Wydawnictwa Naukowo-
Techniczne, 2007.

[36] Adrian F. Clark, editor. Proceedings of the British Machine Vision
Conference 1997, BMVC 1997, University of Essex, UK, 1997, 1997.
British Machine Vision Association.

[37] Robert H. Crites and Andrew G. Barto. Elevator Group Con-
trol Using Multiple Reinforcement Learning Agents. Machine
Learning, 33(2-3):235–262, 1998.

[38] George Cybenko. Approximation by Superpositions of a Sig-
moidal Function. Mathematics of Control, Signals and Systems, 2

(4):303–314, 1989.

[39] Paul J. Darwen. Why Co-Evolution Beats Temporal Difference
Learning at Backgammon for a Linear Architecture, but not a
Non-Linear Architecture. In Proceedings of the 2001 Congress on
Evolutionary Computation (CEC 2001), pages 1003–1010, Piscat-
away, NJ, USA, 2001. IEEE Press.

[40] Edwin D. de Jong. The MaxSolve Algorithm for Coevolution.
In Proceedings of the 2005 Conference on Genetic and Evolutionary
Computation, GECCO ’05, pages 483–489, New York, NY, USA,
2005. ACM.

[41] Edwin D. de Jong and Jordan B. Pollack. Ideal Evaluation from
Coevolution. Evolutionary Computation, 12(2):159–192, 2004.

[42] Joaquín Derrac, Salvador García, Daniel Molina, and Francisco
Herrera. A practical tutorial on the use of nonparametric sta-
tistical tests as a methodology for comparing evolutionary and
swarm intelligence algorithms. Swarm and Evolutionary Compu-
tation, 1(1):3–18, 2011.

[43] Thomas G. Dietterich. Hierarchical Reinforcement Learning
with the MAXQ Value Function Decomposition. Journal of Arti-
ficial Intelligence Research, 13:227–303, 2000.

[44] Alexander Dilger and Hannah Geyer. Are Three Points for a
Win Really Better Than Two? A Comparison of German Soccer
League and Cup Games. Journal of Sports Economics, 10(3):305–
318, 2009.

[45] Kevin R. Dixon, Richard J. Malak, and Pradeep K. Khosla. In-
corporating Prior Knowledge and Previously Learned Informa-
tion into Reinforcement Learning. Technical report, Institute
for Complex Engineered Systems, Carnegie Mellon University,
2000.

bibliography 181

[46] Stephen Dominic, Darrell Whitley, and Charles W. Anderson.
Genetic Reinforcement Learning for Neural Networks. In Pro-
ceedings of the International Joint Conference on Neural Networks -
IJCNN 91, pages 71–76, Piscataway, NJ, USA, 1991. IEEE.

[47] Marco Dorigo and Marco Colombetti. Robot Shaping: Devel-
oping Autonomous Agents through Learning. Artificial Intelli-
gence, 71(2):321–370, 1994.

[48] John R. Dormand and Peter J. Prince. A family of embedded
Runge-Kutta formulae. Journal of Computational and Applied
Mathematics, 6(1):19 – 26, 1980.

[49] Adam Dziuk and Risto Miikkulainen. Creating Intelligent
Agents through Shaping of Coevolution. In Alice E. Smith, edi-
tor, Proceedings of the IEEE Congress on Evolutionary Computation,
pages 1077–1083, New Orleans, LA, USA, 2011. IEEE Press.

[50] Agoston E. Eiben and Selmar K. Smit. Parameter tuning for
configuring and analyzing evolutionary algorithms. Swarm and
Evolutionary Computation, 1(1):19–31, 2011.

[51] Agoston E. Eiben and James E. Smith. Introduction to Evolution-
ary Computing. Natural Computing Series. Springer, 2003.

[52] M. Enzenberger, M. Müller, B. Arneson, and R. Segal. Fuego
— An Open-Source Framework for Board Games and Go En-
gine Based on Monte Carlo Tree Search. IEEE Transactions on
Computational Intelligence and AI in Games, 2(4):259–270, 2010.

[53] Susan L. Epstein. Toward an Ideal Trainer. Machine Learning, 15

(3):251–277, 1994.

[54] Tom Erez and William D Smart. What does Shaping Mean for
Computational Reinforcement Learning? In 7th IEEE Interna-
tional Conference on Development and Learning, ICDL 2008., pages
215–219. IEEE, 2008.

[55] Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-Based
Batch Mode Reinforcement Learning. Journal of Machine Learn-
ing Research, 6:503–556, 2005.

[56] Sevan G. Ficici. Solution Concepts in Coevolutionary Algorithms.
PhD thesis, Waltham, MA, USA, 2004.

[57] Sevan G. Ficici and Jordan B. Pollack. Challenges in Coevolu-
tionary Learning: Arms-race Dynamics, Open-endedness, and
Medicocre Stable States. In Proceedings of the Sixth International
Conference on Artificial Life, ALIFE, pages 238–247, Cambridge,
MA, USA, 1998. MIT Press.

182 bibliography

[58] Sevan G. Ficici and Jordan B. Pollack. Pareto Optimality in
Coevolutionary Learning. In Proceedings of the 6th European Con-
ference on Advances in Artificial Life, ECAL ’01, pages 316–325,
London, UK, 2001. Springer-Verlag.

[59] Sevan G. Ficici and Jordan B. Pollack. A Game-theoretic Mem-
ory Mechanism for Coevolution. In Proceedings of the 2003 Inter-
national Conference on Genetic and Evolutionary Computation: PartI,
GECCO’03, pages 286–297, Berlin, Heidelberg, 2003. Springer-
Verlag.

[60] Dario Floreano and Stefano Nolfi. God Save the Red Queen!
Competition in Co-evolutionary Robotics. In John R. Koza,
Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon,
Hitoshi Iba, and Rick L. Riolo, editors, Proceedings of the Second
Annual Conference on Genetic Programming, pages 398–406, San
Fransisco, CA, USA, 1997. Morgan Kaufmann.

[61] Dario Floreano, Peter Dürr, and Claudio Mattiussi. Neuroevo-
lution: from architectures to learning. Evolutionary Intelligence,
1(1):47–62, 2008.

[62] David B. Fogel. Using Evolutionary Programming to Create
Neural Networks that are Capable of Playing Tic-Tac-Toe. In
Proceedings of IEEE International Conference on Neural Networks,
volume 2, pages 875–880, San Francisco, CA, USA, 1993. IEEE.

[63] David B. Fogel. Blondie24: Playing at the Edge of AI. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

[64] David Fotland. Static Eye Analysis in "The Many Faces of Go".
ICGA Journal, 25(4):203–210, 2002.

[65] Johannes Fürnkranz and Miroslav Kubat, editors. Machines That
Learn to Play Games. Nova Science Publishers, Inc., Commack,
NY, USA, 2001.

[66] Shlomo Geva and Joaquin Sitte. A Cartpole Experiment Bench-
mark for Trainable Controllers. IEEE Control Systems, 13(5):40–
51, 1993.

[67] Imran Ghory. Reinforcement Learning in Board Games. Tech-
nical Report CSTR-04-004, Department of Computer Science,
University of Bristol, 2004.

[68] David E. Goldberg. Simple Genetic Algorithms and the Min-
imal Deceptive Problem. In Lawrence Davis, editor, Genetic
Algorithms and Simulated Annealing, Research Notes in Artificial
Intelligence, pages 74–88. Pitman, London, UK, 1987.

bibliography 183

[69] David E. Goldberg. Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1989.

[70] Faustino Gomez, Jürgen Schmidhuber, and Risto Miikkulainen.
Accelerated Neural Evolution Through Cooperatively Coe-
volved Synapses. Journal of Machine Learning Research, 9:937–965,
2008.

[71] Faustino J. Gomez. Robust Nonlinear Control through Neuroevolu-
tion. PhD thesis, Department of Computer Sciences, The Uni-
versity of Texas at Austin, 2003.

[72] Faustino J. Gomez and Risto Miikkulainen. Incremental Evolu-
tion Of Complex General Behavior. Adaptive Behavior, (5):317–
342, 1997.

[73] Faustino J. Gomez and Risto Miikkulainen. Solving Non-
Markovian Control Tasks with Neuroevolution. In Proceedings
of the 16th International Joint Conference on Artificial Intelligence
- Volume 2, pages 1356–1361, San Francisco, CA, USA, 1999.
Morgan Kaufmann Publishers Inc.

[74] Faustino J. Gomez and Risto Miikkulainen. Active Guidance
for a Finless Rocket Using Neuroevolution. In Proceedings of the
2003 International Conference on Genetic and Evolutionary Compu-
tation: PartII, GECCO’03, pages 2084–2095, Berlin, Heidelberg,
2003. Springer-Verlag.

[75] Faustino J. Gomez, Jürgen Schmidhuber, and Risto Miikku-
lainen. Efficient Non-linear Control Through Neuroevolu-
tion. In Proceedings of the 17th European Conference on Machine
Learning, ECML’06, pages 654–662, Berlin, Heidelberg, 2006.
Springer-Verlag.

[76] Vijaykumar Gullapalli and Andrew G. Barto. Shaping as a
Method for Accelerating Reinforcement Learning. In Proceed-
ings of the 1992 IEEE International Symposium on Intelligent Con-
trol, pages 554–559, 1992.

[77] Nikolaus Hansen and Andreas Ostermeier. Completely Deran-
domized Self-Adaptation in Evolution Strategies. Evolutionary
Computation, 9(2):159–195, 2001.

[78] Elvin O. Harbin. Games of Many Nations. Abingdon Press; Arco
Publishers, 1955.

[79] Inman Harvey, Phil Husbands, and Dave Cliff. Seeing the Light:
Artificial Evolution, Real Vision. In Proceedings of the Third In-
ternational Conference on Simulation of Adaptive Behavior : From

184 bibliography

Animals to Animats 3: From Animals to Animats 3, SAB94, pages
392–401, Cambridge, MA, USA, 1994. MIT Press.

[80] Goro Hasegawa and Maxine Brady. How to Win at Othello. Let
Me Read Book. Jove Publications, 1977.

[81] Ami Hauptman and Moshe Sipper. Emergence of Complex
Strategies in the Evolution of Chess Endgame Players. Advances
in Complex Systems, 10:35–59, 2007.

[82] Simon Haykin. Neural Networks: A Comprehensive Foundation.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2nd edition,
1998.

[83] Verena Heidrich-Meisner and Christian Igel. Hoeffding and
Bernstein Races for Selecting Policies in Evolutionary Direct
Policy Search. In Proceedings of the 26th Annual International
Conference on Machine Learning, ICML ’09, pages 401–408, New
York, NY, USA, 2009. ACM.

[84] Bernhard Hengst. Discovering Hierarchy in Reinforcement
Learning with HEXQ. In Proceedings of the Nineteenth Interna-
tional Conference on Machine Learning, ICML ’02, pages 243–250,
San Francisco, CA, USA, 2002. Morgan Kaufmann Publishers
Inc.

[85] William Daniel Hillis. Co-evolving Parasites Improve Simu-
lated Evolution as an Optimization Procedure. Physica D, 42

(1-3):228–234, 1990.

[86] Geoffrey E. Hinton and Steven J. Nowlan. How Learning Can
Guide Evolution. Complex systems, 1(3):495–502, 1987.

[87] Jerry L. Hintze and Ray D. Nelson. Violin Plots: A Box Plot-
Density Trace Synergism. The American Statistician, 52(2):181–
184, 1998.

[88] John H. Holland. Adaptation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor, 1975.

[89] Ronald A. Howard. Dynamic Programming and Markov Processes.
MIT Press, Cambridge, MA, 1960.

[90] Christian Igel. Neuroevolution for Reinforcement Learning us-
ing Evolution Strategies. In Proceedings of the 2003 Congress on
Evolutionary Computation, volume 4, pages 2588–2595, 2003.

[91] Wojciech Jaśkowski. Algorithms for Test-Based Problems. PhD
thesis, Institute of Computing Science, Poznan University of
Technology, Poznan, Poland, 2011.

bibliography 185

[92] Wojciech Jaśkowski and Krzysztof Krawiec. Formal Analysis,
Hardness, and Algorithms for Extracting Internal Structure of
Test-Based Problems. Evolutionary Computation, 19(4):639–671,
2011.

[93] Wojciech Jaśkowski, Krzysztof Krawiec, and Bartosz Wieloch.
Winning Ant Wars: Evolving a Human-competitive Game Strat-
egy Using Fitnessless Selection. In Proceedings of the 11th Euro-
pean Conference on Genetic Programming, EuroGP’08, pages 13–
24, Berlin, Heidelberg, 2008. Springer-Verlag.

[94] Wojciech Jaśkowski, Paweł Liskowski, Marcin G. Szubert, and
Krzysztof Krawiec. Improving Coevolution by Random Sam-
pling. In Proceeding of the Fifteenth Annual Conference on Ge-
netic and Evolutionary Computation Conference, GECCO ’13, pages
1141–1148, New York, NY, USA, 2013. ACM.

[95] Yaochu Jin. A Comprehensive Survey of Fitness Approximation
in Evolutionary Computation. Soft Computing Journal, 9(1):3–12,
2005.

[96] George Johnson. To Test a Powerful Computer, Play an Ancient
Game. The New York Times, 1997.

[97] Hugues Juillé. Methods for Statistical Inference: Extending the
Evolutionary Computation Paradigm. PhD thesis, Waltham, MA,
USA, 1999.

[98] Hugues Juillé and Jordan B. Pollack. Coevolutionary Learn-
ing: A Case Study. In Jude W. Shavlik, editor, Proceedings of
the Fifteenth International Conference on Machine Learning (ICML
1998), pages 251–259, Madison, Wisconsin, USA, 1998. Morgan
Kaufmann.

[99] Hugues Juille and Jordan B. Pollack. Coevolving the Ideal
Trainer: Application to the Discovery of Cellular Automata
Rules. In John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla,
Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Garzon,
David E. Goldberg, Hitoshi Iba, and Rick Riolo, editors, Proceed-
ings of the Third Annual Conference on Genetic Programming, pages
519–527, San Francisco, CA, USA, 1998. Morgan Kaufmann.

[100] Andrew Moore Justin Boyan. Generalization in Reinforcement
Learning: Safely Approximating the Value Function. In Neu-
ral Information Processing Systems 7, pages 369–376, Cambridge,
MA, 1995. The MIT Press.

[101] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W.
Moore. Reinforcement Learning: A Survey. Journal of Artificial
Intelligence Research, 4(1):237–285, 1996.

186 bibliography

[102] K.-J. Kim, Heejin Choi, and Sung-Bae Cho. Hybrid of Evolution
and Reinforcement Learning for Othello Players. In IEEE Sym-
posium on Computational Intelligence and Games, CIG 2007, pages
203–209, Honolulu, HI, 2007.

[103] Jérôme Kodjabachian and Jean-Arcady Meyer. Evolution and
Development of Neural Controllers for Locomotion, Gradient-
following, and Obstacle-avoidance in Artificial Insects. IEEE
Transactions on Neural Networks, 9(5):796–812, 1998.

[104] Aleksander Kolcz and Nigel M. Allinson. N-tuple Regression
Network. Neural Networks, 9(5):855–869, 1996.

[105] Rogier Koppejan and Shimon Whiteson. Neuroevolutionary
reinforcement learning for generalized control of simulated he-
licopters. Evolutionary Intelligence, 4(4):219–241, 2011.

[106] Clifford Kotnik and Jugal K. Kalita. The Significance of
Temporal-Difference Learning in Self-Play Training TD-Rummy
versus EVO-rummy. In Tom Fawcett and Nina Mishra, editors,
Proceedings of the Twentieth International Conference on Machine
Learning (ICML 2003), pages 369–375, Washington, DC, USA,
2003. AAAI Press.

[107] John R. Koza. Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection. MIT Press, Cambridge, MA,
USA, 1992.

[108] Krzysztof Krawiec and Bir Bhanu. Visual Learning by Coevo-
lutionary Feature Synthesis. IEEE Transactions on Systems, Man,
and Cybernetics–Part B, 35(3):409–425, 2005.

[109] Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch
Reinforcement Learning. In Marco Wiering and Martijn Ot-
terlo, editors, Reinforcement Learning: State-of-the-Art, volume 12

of Adaptation, Learning, and Optimization, pages 45–73. Springer
Berlin Heidelberg, 2012.

[110] Edward Lasker. Go and Go-Moku: The Oriental Board Games.
Dover Publications, 1960.

[111] Adam Laud and Gerald DeJong. Reinforcement Learning and
Shaping: Encouraging Intended Behaviors. In Claude Sammut
and Achim G. Hoffmann, editors, Proceedings of the Nineteenth
International Conference on Machine Learning (ICML 2002), pages
355–362, University of New South Wales, Sydney, Australia,
2002. Morgan Kaufmann.

[112] Kai-Fu Lee and Sanjoy Mahajan. The Development of a World
Class Othello Program. Artificial Intelligence, 43(1):21–36, 1990.

bibliography 187

[113] Joel Lehman and Kenneth O. Stanley. Abandoning Objectives:
Evolution through the Search for Novelty Alone. Evolutionary
Computation, 19(2):189–223, 2011.

[114] Long Lin and Tom Mitchell. Memory Approaches to Reinforce-
ment Learning in Non-Markovian Domains. Technical report,
Pittsburgh, PA, USA, 1992.

[115] Alex Lubberts and Risto Miikkulainen. Co-Evolving a Go-
Playing Neural Network. In Coevolution: Turning Adaptive Algo-
rithms Upon Themselves, Birds-of-a-Feather Workshop, Genetic and
Evolutionary Computation Conference (GECCO-2001), 2001.

[116] Simon M. Lucas. Face recognition with the continuous n-tuple
classifier. In Clark [36].

[117] Simon M. Lucas. Learning to Play Othello with N-tuple Sys-
tems. Australian Journal of Intelligent Information Processing Sys-
tems, Special Issue on Game Technology, 9(4):01–20, 2007.

[118] Simon M. Lucas. Neural Network Othello Competition.
SIGEVOlution, 2(4):38–40, 2007.

[119] Simon M. Lucas and Ali Amiri. Recognition of chain-coded
handwritten character images with scanning n-tuple method.
Electronics Letters, 31(24):2088–2089, 2002.

[120] Simon M. Lucas and Thomas Philip Runarsson. Temporal Dif-
ference Learning Versus Co-Evolution for Acquiring Othello
Position Evaluation. In Sushil J. Louis and Graham Kendall,
editors, Proceedings of the 2006 IEEE Symposium on Computational
Intelligence and Games, CIG 2006, pages 52–59. IEEE, 2006.

[121] Sean Luke. The ECJ Owner’s Manual – A User Manual for the ECJ
Evolutionary Computation Library, 2010.

[122] Richard Maclin and Jude W. Shavlik. Creating Advice-Taking
Reinforcement Learners. Machine Learning, 22(1-3):251–281,
1996.

[123] Michael G. Madden and Tom Howley. Transfer of Experi-
ence Between Reinforcement Learning Environments with Pro-
gressive Difficulty. Artificial Intelligence Review, 21(3-4):375–398,
2004.

[124] Jacek Mańdziuk. Knowledge-Free and Learning-Based Methods in
Intelligent Game Playing, volume 276 of Studies in Computational
Intelligence. Springer, 2010.

[125] Edward P. Manning. Temporal Difference Learning of an Oth-
ello Evaluation Function for a Small Neural Network with

188 bibliography

Shared Weights. In Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games, CIG 2007, pages 216–223.
IEEE, 2007.

[126] Edward P. Manning. Using Resource-Limited Nash Memory to
Improve an Othello Evaluation Function. IEEE Transactions on
Computational Intelligence and AI in Games, 2(1):40–53, 2010.

[127] Maja J. Mataric. Reward Functions for Accelerated Learning.
In Proceedings of the Eleventh International Conference on Machine
Learning, pages 181–189, New Brunswick, NJ, USA, 1994. Mor-
gan Kaufmann.

[128] Helmut A. Mayer. Board Representations for Neural Go Players
Learning by Temporal Difference. In Proceedings of the 2007 IEEE
Symposium on Computational Intelligence and Games, CIG 2007,
pages 183–188. IEEE, 2007.

[129] David Mechner. All Systems Go. The Sciences, 38(1):32–37, 1998.

[130] Zbigniew Michalewicz. Genetic Algorithms + Data Structures
= Evolution Programs (3rd Ed.). Springer-Verlag, London, UK,
1996.

[131] Donald Michie and Roger A. Chambers. BOXES: An Experi-
ment in Adaptive Control. In Machine Intelligence. Oliver and
Boyd, Edinburgh, UK, 1968.

[132] Geoffrey Miller and Dave Cliff. Co-Evolution of Pursuit and
Evasion I: Biological and Game-Theoretic Foundations. Techni-
cal Report CSRP311, School of Cognitive and Computing Sci-
ences, University of Sussex, Brighton, UK, 1994.

[133] Marvin Minsky. Steps toward Artificial Intelligence. Proceedings
of the IRE, 49(1):8–30, 1961.

[134] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New
York, NY, USA, 1997.

[135] German A. Monroy, Kenneth O. Stanley, and Risto Miikku-
lainen. Coevolution of Neural Networks Using a Layered
Pareto Archive. In Proceedings of the 8th Annual Conference on
Genetic and Evolutionary Computation, GECCO ’06, pages 329–
336, New York, NY, USA, 2006. ACM.

[136] Andrew W. Moore and Christopher G. Atkeson. Prioritized
Sweeping: Reinforcement Learning With Less Data and Less
Time. Machine Learning, 13:103–130, 1993.

[137] David E. Moriarty and Risto Miikkulainen. Efficient Reinforce-
ment Learning Through Symbiotic Evolution. Machine Learning,
22:11–32, 1996.

bibliography 189

[138] David E. Moriarty, Alan C. Schultz, and John J. Grefenstette.
Evolutionary Algorithms for Reinforcement Learning. Journal
of Artificial Intelligence Research, 11:241–276, 1999.

[139] Pablo Moscato. New Ideas in Optimization. chapter Memetic
Algorithms: A Short Introduction, pages 219–234. McGraw-Hill
Ltd., UK, Maidenhead, UK, England, 1999.

[140] Jean-Baptiste Mouret and Stéphane Doncieux. Incremental Evo-
lution of Animats’ Behaviors as a Multi-objective Optimization.
In Minoru Asada, John C. T. Hallam, Jean-Arcady Meyer, and
Jun Tani, editors, From Animals to Animats 10, 10th International
Conference on Simulation of Adaptive Behavior, volume 5040 of
Lecture Notes in Computer Science, pages 210–219, Osaka, Japan,
2008. Springer.

[141] Jean-Baptiste Mouret and Stéphane Doncieux. Overcoming the
Bootstrap Problem in Evolutionary Robotics using Behavioral
Diversity. In Proceedings of the IEEE Congress on Evolutionary
Computation, CEC 2009, pages 1161–1168, Trondheim, Norway,
2009. IEEE.

[142] Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy
Invariance Under Reward Transformations: Theory and Appli-
cation to Reward Shaping. In Proceedings of the Sixteenth Inter-
national Conference on Machine Learning (ICML 1999), pages 278–
287, San Francisco, CA, USA, 1999. Morgan Kaufmann.

[143] Andrew Y. Ng, Adam Coates, Mark Diel, Varun Ganapathi,
Jamie Schulte, Ben Tse, Eric Berger, and Eric Liang. Au-
tonomous Inverted Helicopter Flight via Reinforcement Learn-
ing. In Marcelo H. Ang Jr. and Oussama Khatib, editors, Experi-
mental Robotics IX, The 9th International Symposium on Experimen-
tal Robotics, volume 21 of Springer Tracts in Advanced Robotics,
pages 363–372. Springer, 2004.

[144] Stefano Nolfi and Dario Floreano. Coevolving Predator and
Prey Robots: Do "Arms Races" Arise in Artificial Evolution?
Artificial Life, 4(4):311–335, 1998.

[145] Stefano Nolfi, Dario Floreano, Orazio Miglino, and Francesco
Mondada. How to Evolve Autonomous Robots: Different Ap-
proaches in Evolutionary Robotics. In R. A. Brooks and P. Maes,
editors, Artificial life IV: Proceedings of the 4th International Work-
shop on Artificial Life, pages 190–197, Cambridge, MA, USA,
1994. MIT Press.

[146] Peter Nordin and Wolfgang Banzhaf. An On-line Method to
Evolve Behavior and to Control a Miniature Robot in Real

190 bibliography

Time with Genetic Programming. Adaptive Behavior, 5(2):107–
140, 1996.

[147] Liviu Panait and Sean Luke. A Comparison Of Two Compet-
itive Fitness Functions. In Proceedings of the Genetic and Evolu-
tionary Computation Conference, GECCO ’02, pages 503–511, San
Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc.

[148] Gary B. Parker. The Incremental Evolution of Gaits for Hexa-
pod Robots. In Lee Spector, Erik D. Goodman, Annie Wu, W.B.
Langdon, Hans-Michael Voigt, Mitsuo Gen, Sandip Sen, Marco
Dorigo, Shahram Pezeshk, Max H. Garzon, and Edmund Burke,
editors, Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2001), pages 1114–1121, San Francisco, CA,
USA, 2001. Morgan Kaufmann.

[149] David S. Parlett. The Oxford history of board games. Oxford
University Press, Oxford, 1999.

[150] Jing Peng and Ronald J. Williams. Incremental Multi-step Q-
learning. Machine Learning, 22(1-3):283–290, 1996.

[151] Gail B. Peterson. A day of great illumination: B. F. Skinner’s
discovery of shaping. Journal of the Experimental Analysis of Be-
havior, 82(3):317–328, 2004.

[152] Jordan B. Pollack and Alan D. Blair. Co-Evolution in the Suc-
cessful Learning of Backgammon Strategy. Machine Learning, 32

(3):225–240, 1998.

[153] Dean A. Pomerleau. Efficient Training of Artificial Neural Net-
works for Autonomous Navigation. Neural Computation, 3(1):
88–97, 1991.

[154] Elena Popovici, Anthony Bucci, R. Paul Wiegand, and Edwin D.
de Jong. Coevolutionary Principles. In Grzegorz Rozenberg,
Thomas Bäck, and Joost N. Kok, editors, Handbook of Natural
Computing, pages 987–1033. Springer, 2012.

[155] Mitchell A. Potter and Kenneth A. De Jong. Cooperative Co-
evolution: An Architecture for Evolving Coadapted Subcompo-
nents. Evolutionary Computation, 8(1):1–29, 2000.

[156] Doina Precup, Richard S. Sutton, and Sanjoy Dasgupta. Off-
Policy Temporal Difference Learning with Function Approxi-
mation. In Proceedings of the Eighteenth International Conference
on Machine Learning, ICML ’01, pages 417–424, San Francisco,
CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[157] Martin L. Puterman. Markov Decision Processes: Discrete Stochas-
tic Dynamic Programming. John Wiley & Sons, Inc., New York,
NY, USA, 1994.

bibliography 191

[158] Emmanuel Rachelson, Franois Schnitzler, Louis Wehenkel, and
Damien Ernst. Optimal Sample Selection for Batch-Mode Re-
inforcement Learning. In Joaquim Filipe and Ana L. N. Fred,
editors, ICAART 2011 - Proceedings of the 3rd International Con-
ference on Agents and Artificial Intelligence, volume 1 - Artificial
Intelligence, pages 41–50, Rome, Italy, 2011. SciTePress.

[159] Jette Randløv. Shaping in Reinforcement Learning by Changing
the Physics of the Problem. In Proceedings of the Seventeenth
International Conference on Machine Learning, ICML ’00, pages
767–774, San Francisco, CA, USA, 2000. Morgan Kaufmann
Publishers Inc.

[160] Jette Randløv and Preben Alstrøm. Learning to Drive a Bicycle
using Reinforcement Learning and Shaping. In Proceedings of
the Fifteenth International Conference on Machine Learning, pages
463–471. Morgan Kaufmann, San Francisco, CA, 1998.

[161] Richard Rohwer and Michał Morciniec. A Theoretical and Ex-
perimental Account of N-tuple Classifier Performance. Neural
Computation, 8(3):629–642, 1996.

[162] Christopher D. Rosin and Richard K. Belew. New Methods for
Competitive Coevolution. Evolutionary Computation, 5(1):1–29,
1997.

[163] Gavin A. Rummery and Mahesan Niranjan. On-line Q-
Learning using Connectionist Sytems. Technical Report
CUED/F-INFENG-TR 166, Cambridge University, UK, 1994.

[164] Thomas P. Runarsson and Simon M. Lucas. Co-evolution versus
Self-play Temporal Difference Learning for Acquiring Position
Evaluation in Small-Board Go. IEEE Transactions on Evolutionary
Computation, 9(6):628–640, 2005.

[165] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Prentice Hall Press, Upper Saddle River, NJ, USA, 3rd
edition, 2009.

[166] Claude Sammut and Donald Michie. Controlling a Black-Box
Simulation of a Spacecraft. AI Magazine, 12(1):56–63, 1991.

[167] Claude Sammut, Scott Hurst, Dana Kedzier, and Donald
Michie. Learning to Fly. In Kerstin Dautenhahn and Chrysto-
pher L. Nehaniv, editors, Imitation in Animals and Artifacts,
pages 171–189. MIT Press, Cambridge, MA, USA, 2002.

[168] Spyridon Samothrakis, Simon M. Lucas, Thomas Philip Runars-
son, and David Robles. Coevolving Game-Playing Agents: Mea-
suring Performance and Intransitivities. IEEE Transactions on
Evolutionary Computation, 17(2):213–226, 2013.

192 bibliography

[169] Arthur L. Samuel. Some Studies in Machine Learning Using
the Game of Checkers. IBM Journal of Research and Development,
44(1):206–227, 1959.

[170] Arthur L. Samuel. Some Studies in Machine Learning Using the
Game of Checkers. II: Recent Progress. IBM Journal of Research
and Development, 11(6):601–617, 1967.

[171] Jonathan Schaeffer and H. Jaap van den Herik. Games, Com-
puters and Artificial Intelligence. Artificial Intelligence, 134(1-2):
1–8, 2002.

[172] Nicol N. Schraudolph, Peter Dayan, and Terrence J. Sejnowski.
Learning to Evaluate Go Positions via Temporal Difference
Methods. In Norio Baba and Lakhmi C. Jain, editors, Computa-
tional Intelligence in Games, volume 62 of Studies in Fuzziness and
Soft Computing, chapter 4, pages 77–98. Springer Verlag, Berlin,
2001.

[173] Alan G. Schultz. Adapting the Evaluation Space to Improve
Global Learning. In Richard K. Belew and Lashon B. Booker,
editors, Proceedings of the 4th International Conference on Genetic
Algorithms, ICGA, pages 158–165, San Diego, CA, USA, 1991.
Morgan Kaufmann.

[174] Oliver G. Selfridge, Richard S. Sutton, and Andrew G. Barto.
Training and Tracking in Robotics. In Aravind K. Joshi, editor,
Proceedings of the 9th International Joint Conference on Artificial In-
telligence, IJCAI, pages 670–672, Los Angeles, CA, 1985. Morgan
Kaufmann.

[175] William Shakespeare. The Oxford Shakespeare: the complete works
of William Shakespeare. Oxford University Press, London, UK,
1914.

[176] Claude E. Shannon. Programming a Computer for Playing
Chess. Philosophical Magazine, Ser. 7, Vol. 41(314):256–275, 1950.

[177] Silver, David and Sutton, Richard S. and Müller, Martin.
Sample-based Learning and Search with Permanent and Tran-
sient Memories. In Proceedings of the 25th International Conference
on Machine Learning, ICML ’08, pages 968–975, New York, NY,
USA, 2008. ACM.

[178] Karl Sims. Evolving 3D Morphology and Behavior by Compe-
tition. Artificial Life, 1(4):353–372, 1994.

[179] Joshua A. Singer. Co-evolving a Neural-Net Evaluation Func-
tion for Othello by Combining Genetic Algorithms and Rein-
forcement Learning. In Proceedings of the International Conference

bibliography 193

on Computational Science-Part II, ICCS ’01, pages 377–389, Lon-
don, UK, 2001. Springer-Verlag.

[180] Burrhus F. Skinner. The behavior of organisms: An experimental
analysis. Appleton-Century, 1938.

[181] Burrhus F. Skinner. Science and Human Behavior. Macmillan,
1953.

[182] Matthijs Snel and Shimon Whiteson. Multi-Task Reinforcement
Learning: Shaping and Feature Selection. In Proceedings of
the 9th European Conference on Recent Advances in Reinforcement
Learning, EWRL’11, pages 237–248, Berlin, Heidelberg, 2012.
Springer-Verlag.

[183] Kenneth O. Stanley. Efficient Evolution of Neural Networks
Through Complexification. PhD thesis, 2004.

[184] Kenneth O. Stanley and Risto Miikkulainen. Evolving Neural
Networks Through Augmenting Topologies. Evolutionary Com-
putation, 10(2):99–127, 2002.

[185] Kenneth O. Stanley, Bobby D. Bryant, and Risto Miikkulainen.
Real-time Neuroevolution in the NERO Video Game. IEEE
Transactions on Evolutionary Computation, 9(6):653–668, 2005.

[186] Richard S. Sutton. Learning to Predict by the Methods of Tem-
poral Differences. Machine Learning, 3(1):9–44, 1988.

[187] Richard S. Sutton. Introduction: The Challenge of Reinforce-
ment Learning. Machine Learning, 8(3-4):225–227, 1992.

[188] Richard S. Sutton. Reinforcement Learning: Past, Present and
Future. In Selected Papers from the Second Asia-Pacific Conference
on Simulated Evolution and Learning on Simulated Evolution and
Learning, SEAL’98, pages 195–197, London, UK, 1999. Springer-
Verlag.

[189] Richard S. Sutton and Andrew G. Barto. Introduction to Rein-
forcement Learning. MIT Press, Cambridge, MA, USA, 1998.

[190] Richard S. Sutton, Doina Precup, and Satinder P. Singh. Be-
tween MDPs and Semi-MDPs: A Framework for Temporal Ab-
straction in Reinforcement Learning. Artificial Intelligence, 112

(1-2):181–211, 1999.

[191] Marcin G. Szubert. cECJ — Coevolutionary Computation
in Java. http://www.cs.put.poznan.pl/mszubert/projects/
cecj.html, 2010.

http://www.cs.put.poznan.pl/mszubert/projects/cecj.html
http://www.cs.put.poznan.pl/mszubert/projects/cecj.html

194 bibliography

[192] Marcin G. Szubert, Wojciech Jaśkowski, and Krzysztof Krawiec.
Coevolutionary Temporal Difference Learning for Othello. In
Proceedings of the 5th International Conference on Computational
Intelligence and Games, CIG’09, pages 104–111. IEEE Press, 2009.

[193] Marcin G. Szubert, Wojciech Jaśkowski, and Krzysztof Krawiec.
Learning Board Evaluation Function for Othello by Hybridiz-
ing Coevolution with Temporal Difference Learning. Control &
Cybernetics, 40(3):805–831, 2011.

[194] F. Tanaka and M. Yamamura. Multitask Reinforcement Learn-
ing on the Distribution of MDPs. In Proceedings of the 2003 IEEE
International Symposium on Computational Intelligence in Robotics
and Automation, volume 3, pages 1108–1113. IEEE, 2003.

[195] Matthew E. Taylor and Peter Stone. Transfer Learning for Re-
inforcement Learning Domains: A Survey. Journal of Machine
Learning Research, 10(1):1633–1685, 2009.

[196] Matthew E. Taylor, Shimon Whiteson, and Peter Stone. Com-
paring Evolutionary and Temporal Difference Methods in a Re-
inforcement Learning Domain. In Proceedings of the 8th Annual
Conference on Genetic and Evolutionary Computation, GECCO ’06,
pages 1321–1328, New York, NY, USA, 2006. ACM.

[197] Gerald Tesauro. Practical Issues in Temporal Difference Learn-
ing. Machine Learning, 8(3-4):257–277, 1992.

[198] Gerald Tesauro. Temporal Difference Learning and TD-
Gammon. Communications of the ACM, 38(3):58–68, 1995.

[199] Edward L. Thorndike. Animal intelligence: An experimental
study of thhe associative processes in animal. Psychological
Monographs: General and Applied, 2(4):i–109, 1898.

[200] Edward L. Thorndike. Animal Intelligence: Experimental Studies.
New York, The Macmillan Company, 1911.

[201] Sebastian Thrun and Anton Schwartz. Issues in Using Func-
tion Approximation for Reinforcement Learning. In Proceedings
of the 1993 Connectionist Models Summer School, pages 255–263.
Lawrence Erlbaum, 1993.

[202] Sebastian B. Thrun. Efficient Exploration In Reinforcement
Learning. Technical report, Pittsburgh, PA, USA, 1992.

[203] Sebastian B. Thrun. Learning to Play the Game of Chess. In
G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in
Neural Information Processing Systems (NIPS) 7, Cambridge, MA,
1995. MIT Press.

bibliography 195

[204] Julian Togelius, Faustino J. Gomez, and Jürgen Schmidhuber.
Learning What to Ignore: Memetic Climbing in Topology and
Weight Space. In Proceedings of the IEEE Congress on Evolutionary
Computation, CEC 2008, pages 3274–3281, Hong Kong, China,
2008.

[205] Lisa Torrey and Jude Shavlik. Transfer Learning. In Handbook of
Research on Machine Learning Applications and Trends: Algorithms,
Methods, and Techniques, pages 242–264. 2010.

[206] Joseba Urzelai, Dario Floreano, Marco Dorigo, and Marco
Colombetti. Incremental Robot Shaping. Connection Science, 10

(3-4):341–360, 1998.

[207] Sjoerd van den Dries and Marco A. Wiering. Neural-Fitted
TD-Leaf Learning for Playing Othello With Structured Neural
Networks. IEEE Transactions on Neural Networks and Learning
Systems, 23(11):1701–1713, 2012.

[208] Nees Jan van Eck and Michiel van Wezel. Application of Re-
inforcement Learning to the Game of Othello. Computers and
Operations Research, 35(6):1999–2017, 2008.

[209] Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. Explo-
ration and Exploitation in Evolutionary Algorithms: A Survey.
ACM Computing Surveys, 45(3):35:1–35:33, 2013.

[210] Shivakumar Viswanathan and Jordan B. Pollack. On the coevo-
lutionary construction of learnable gradients. In Proceedings of
the 2005 AAAI Fall Symposium on Coevolutionary and Coadaptive
Systems. AAAI Press, 2005.

[211] W. Paul Vogt and Burke Johnson. Dictionary of Statistics &
Methodology: A Nontechnical Guide for the Social Sciences. SAGE
Publications, 4th edition, 2011.

[212] Lev S. Vygotsky. Mind in Society: Development of Higher Psycho-
logical Processes. Harvard University Press, 1978.

[213] Lev S. Vygotsky. Thought and language. MIT Press, Cambridge,
MA, 1986.

[214] Christopher J. C. H. Watkins. Learning from Delayed Rewards.
PhD thesis, King’s College, Cambridge, UK, 1989.

[215] Christopher J. C. H. Watkins and Peter Dayan. Q-Learning.
Machine Learning, 8(3-4):279–292, 1992.

[216] Thomas Weise, Raymond Chiong, and Kē Táng. Evolutionary
Optimization: Pitfalls and Booby Traps. Journal of Computer
Science and Technology (JCST), 27(5):907–936, 2012. Special Issue

196 bibliography

on Evolutionary Computation, edited by Xin Yao and Pietro S.
Oliveto.

[217] Shimon Whiteson. Evolutionary Computation for Reinforce-
ment Learning. In Marco Wiering and Martijn van Otterlo,
editors, Reinforcement Learning: State of the Art, pages 325–358.
Springer, Berlin, Germany, 2012.

[218] Shimon Whiteson and Peter Stone. Evolutionary Function Ap-
proximation for Reinforcement Learning. Journal of Machine
Learning Research, 7:877–917, 2006.

[219] Shimon Whiteson, Brian Tanner, Matthew E. Taylor, and Peter
Stone. Generalized Domains for Empirical Evaluations in Re-
inforcement Learning. In Proceedings of the Twenty-Sixth Interna-
tional Conference on Machine Learning (ICML 2009): Workshop on
Evaluation Methods for Machine Learning, 2009.

[220] Shimon Whiteson, Brian Tanner, Matthew E. Taylor, and Peter
Stone. Protecting Against Evaluation Overfitting in Empirical
Reinforcement Learning. In IEEE Symposium on Adaptive Dy-
namic Programming And Reinforcement Learning (ADPRL), pages
120–127. IEEE, 2011.

[221] Darrell Whitley, Stephen Dominic, Rajarshi Das, and Charles W.
Anderson. Genetic Reinforcement Learning for Neurocontrol
Problems. In Genetic Algorithms for Machine Learning, pages 103–
128. Springer US, 1994.

[222] Bernard Widrow and Fred W. Smith. Pattern Recognizing Con-
trol Systems. In Computer and Information Sciences: Collected Pa-
pers on Learning, Adaptation and Control in Information Systems,
pages 288–317, Washington, DC, USA, 1964. Spartan Books.

[223] Alexis P. Wieland. Evolving Neural Network Controllers for
Unstable Systems. In IJCNN-91-Seattle International Joint Confer-
ence on Neural Networks, volume 2, pages 667–673. IEEE, IEEE,
1991.

[224] Marco A. Wiering. Explorations in Efficient Reinforcement Learn-
ing. PhD thesis, University of Amsterdam, 1999.

[225] Marco A. Wiering and Jürgen Schmidhuber. Fast Online Q(λ).
Machine Learning, 33(1):105–115, 1998.

[226] Marco A. Wiering and Martijn van Otterlo. Reinforcement Learn-
ing: State-of-the-Art. Adaptation, Learning, and Optimization.
Springer, 2012.

[227] Eric Wiewiora, Garrison W. Cottrell, and Charles Elkan. Princi-
pled Methods for Advising Reinforcement Learning Agents. In

bibliography 197

Tom Fawcett and Nina Mishra, editors, Proceedings of the Twen-
tieth International Conference on Machine Learning (ICML 2003),
pages 792–799, Washington, DC, USA, 2003. AAAI Press.

[228] Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli.
Multi-task Reinforcement Learning: a Hierarchical Bayesian Ap-
proach. In Zoubin Ghahramani, editor, Proceedings of the Twenty-
Fourth International Conference on Machine Learning (ICML 2007),
volume 227, pages 1015–1022, Corvallis, Oregon, USA, 2007.
ACM.

[229] Jay F. Winkeler and B. S. Manjunath. Incremental Evolution
in Genetic Programming. In John R. Koza, Wolfgang Banzhaf,
Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo, David B.
Fogel, Max H. Garzon, David E. Goldberg, Hitoshi Iba, and
Rick Riolo, editors, Genetic Programming 1998: Proceedings of the
Third Annual Conference, pages 403–411, University of Wiscon-
sin, Madison, Wisconsin, USA, 1998. Morgan Kaufmann.

[230] David J. Wood, Jerome S. Bruner, and Gail Ross. The Role of
Tutoring in Problem Solving. Journal of Child Psychiatry and
Psychology, 17(2):89–100, 1976.

[231] Xin Yao. Evolving Artificial Neural Networks. Proceedings of the
IEEE, 87(9):1423–1447, 1999.

[232] Taku Yoshioka, Shin Ishii, and Minoru Ito. Strategy Acquisi-
tion for the Game "Othello" Based on Reinforcement Learn-
ing. In Shiro Usui and Takashi Omori, editors, Proceedings of
the Fifth International Conference on Neural Information Processing,
ICONIP98, pages 841–844, Kitakyushu, Japan, 1998. IOA Press.

[233] Wei Zhang and Thomas G. Dietterich. A Reinforcement Learn-
ing Approach to Job-Shop Scheduling. In Proceedings of the
Fourteenth International Joint Conference on Artificial Intelligence,
IJCAI 95, IJCAI, pages 1114–1120, Montréal Québec, Canada,
1995. Morgan Kaufmann.

[234] Jean-Christophe Zufferey, Dario Floreano, Matthijs van
Leeuwen, and Tancredi Merenda. Evolving Vision-Based Flying
Robots. In Proceedings of the Second International Workshop on
Biologically Motivated Computer Vision, BMCV ’02, pages 592–600,
London, UK, 2002. Springer-Verlag.

	Title
	Dedication
	Acknowledgments
	Abstract
	Publications
	Contents
	1 Introduction
	1.1 Problem Setting and Motivation
	1.2 Aims and Scope
	1.3 Thesis Outline

	2 Reinforcement Learning
	2.1 Reinforcement Learning Problem
	2.1.1 Markov Decision Processes
	2.1.2 Value Functions
	2.1.3 Dynamic Programming

	2.2 Reinforcement Learning Methods
	2.2.1 Function Approximation
	2.2.2 Temporal Difference Learning
	2.2.3 Evolutionary Algorithms

	3 Shaping Background
	3.1 Shaping in Animal and Human Learning
	3.1.1 The Law of Effect
	3.1.2 Discovery of Shaping
	3.1.3 Scaffolding and Zone of Proximal Development

	3.2 Shaping in Computational Reinforcement Learning
	3.2.1 Specific Motivations
	3.2.2 Shaping Principles
	3.2.3 Inspiring Works in Robotics
	3.2.4 Reward Shaping
	3.2.5 Related Approaches

	4 Coevolutionary Shaping
	4.1 Unified Shaping Framework
	4.2 Coevolutionary Shaping
	4.2.1 Coevolutionary Algorithms
	4.2.2 Test-Based Problems
	4.2.3 Coevolution for Reinforcement Learning

	5 Experimental Domains
	5.1 Othello
	5.1.1 Othello Game Rules
	5.1.2 Policy Representations
	5.1.3 Performance Measures
	5.1.4 Previous Research on Computer Othello

	5.2 Small-Board Go
	5.2.1 Original Game Rules
	5.2.2 Adopted Computer Go Rules
	5.2.3 Policy Representations
	5.2.4 Performance Measures
	5.2.5 Previous Research on Computer Go

	5.3 Cart Pole Balancing
	5.3.1 Physical Model
	5.3.2 Pole Balancing as an MDP Task
	5.3.3 Performance Measure
	5.3.4 Previous Research on Pole Balancing

	6 Coevolutionary Temporal Difference Learning
	6.1 Introduction
	6.2 Learning Game-Playing Policies
	6.2.1 Temporal Difference Learning
	6.2.2 Evolutionary and Coevolutionary Learning
	6.2.3 Coevolutionary Temporal Difference Learning

	6.3 Learning N-tuple Networks for Othello
	6.3.1 Experimental Setup
	6.3.2 Performance Against a Heuristic Player
	6.3.3 Round Robin Tournament
	6.3.4 Othello League Tournament
	6.3.5 Analysis of Network Topology
	6.3.6 Results Summary

	6.4 Learning Weighted Piece Counters for the Game of Go
	6.4.1 Experimental Setup
	6.4.2 Preliminary Experiments
	6.4.3 Method Comparison
	6.4.4 Round Robin Tournament
	6.4.5 Results Summary

	6.5 Discussion and Conclusions

	7 Shaping in Evolutionary Learning
	7.1 Introduction
	7.1.1 Problem Difficulty
	7.1.2 Incremental Evolution
	7.1.3 Unsupervised Shaping

	7.2 Difficulty-Based Shaping in Generalized Domains
	7.2.1 Generalized Reinforcement Learning Domain
	7.2.2 Evolutionary Algorithms in Generalized Domains
	7.2.3 Shaping in Generalized Domains
	7.2.4 Task difficulty
	7.2.5 Difficulty-Based Task Pool
	7.2.6 Difficulty-Based Shaping Methods

	7.3 Empirical Evaluation of Shaping Methods
	7.4 Othello Opponent Domain
	7.4.1 Experimental Setup
	7.4.2 Domain Difficulty Distribution
	7.4.3 Single-Stage Shaping Methods
	7.4.4 Multi-Stage Shaping Methods
	7.4.5 Hyper-Heuristic Shaping Methods
	7.4.6 Coevolutionary Shaping

	7.5 Othello Initial State Domain
	7.5.1 Experimental Setup
	7.5.2 Domain Difficulty Distribution
	7.5.3 Single-stage shaping
	7.5.4 Multi-stage shaping
	7.5.5 Coevolutionary Shaping

	7.6 Pole Balancing Dynamics Domain
	7.6.1 Experimental Setup
	7.6.2 Domain Difficulty Distribution
	7.6.3 Single-Stage Shaping
	7.6.4 Coevolutionary Shaping

	7.7 Discussion

	8 Shaping in Temporal Difference Learning
	8.1 Optimization of Shaping Task Sequences
	8.1.1 Optimal Shaping Task Sequence
	8.1.2 Learning from a Shaping Sequence
	8.1.3 Coevolutionary Selection of Shaping Sequences

	8.2 Shaping Task Sequences in the Othello Domain
	8.2.1 Initial State Shaping Sequences
	8.2.2 Opponent Shaping Sequences

	8.3 Experimental Setup and Results
	8.3.1 Experimental Setup
	8.3.2 Initial State Shaping Sequences
	8.3.3 Opponent Shaping Sequences

	8.4 Discussion

	9 Conclusions
	9.1 Contributions
	9.2 Future Work

	A Statistical Significance
	A.1 Othello Opponent Domain
	A.2 Othello Initial State Domain
	A.3 Pole Balancing Dynamics Domain

	Bibliography

