Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Efficient Lossy Compression of Video Sequences of Automotive High-Dynamic Range Image Sensors for Advanced Driver-Assistance Systems and Autonomous Vehicles

Authors

[ 1 ] Instytut Automatyki i Robotyki, Wydział Automatyki, Robotyki i Elektrotechniki, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.2] Automation, electronics, electrical engineering and space technologies

Year of publication

2024

Published in

Electronics

Journal year: 2024 | Journal volume: vol. 13 | Journal number: iss. 18

Article type

scientific article

Publication language

english

Keywords
EN
  • lossy compression
  • high-dynamic range imaging
  • ADAS
  • autonomous vehicles
  • group of pictures
Abstract

EN In this paper, we introduce an efficient lossy coding procedure specifically tailored for handling video sequences of automotive high-dynamic range (HDR) image sensors in advanced driver-assistance systems (ADASs) for autonomous vehicles. Nowadays, mainly for security reasons, lossless compression is used in the automotive industry. However, it offers very low compression rates. To obtain higher compression rates, we suggest using lossy codecs, especially when testing image processing algorithms in software in-the-loop (SiL) or hardware-in-the-loop (HiL) conditions. Our approach leverages the high-quality VP9 codec, operating in two distinct modes: grayscale image compression for automatic image analysis and color (in RGB format) image compression for manual analysis. In both modes, images are acquired from the automotive-specific RCCC (red, clear, clear, clear) image sensor. The codec is designed to achieve a controlled image quality and state-of-the-art compression ratios while maintaining real-time feasibility. In automotive applications, the inherent data loss poses challenges associated with lossy codecs, particularly in rapidly changing scenes with intricate details. To address this, we propose configuring the lossy codecs in variable bit rate (VBR) mode with a constrained quality (CQ) parameter. By adjusting the quantization parameter, users can tailor the codec behavior to their specific application requirements. In this context, a detailed analysis of the quality of lossy compressed images in terms of the structural similarity index metric (SSIM) and the peak signal-to-noise ratio (PSNR) metrics is presented. With this analysis, we extracted some codec parameters, which have an important impact on preservation of video quality and compression ratio. The proposed compression settings are very efficient: the compression ratios vary from 51 to 7765 for grayscale image mode and from 4.51 to 602.6 for RGB image mode, depending on the specified output image quality settings. We reached 129 frames per second (fps) for compression and 315 fps for decompression in grayscale mode and 102 fps for compression and 121 fps for decompression in the RGB mode. These make it possible to achieve a much higher compression ratio compared to lossless compression while maintaining control over image quality.

Pages (from - to)

3651-1 - 3651-24

DOI

10.3390/electronics13183651

URL

https://www.mdpi.com/2079-9292/13/18/3651/pdf

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Ministry points / journal

100

Impact Factor

2,6 [List 2023]

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.