Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Determination of Strength Parameters of Composite Reinforcement Consisting of Steel Member, Adhesive, and Carbon Fiber Textile

Authors

[ 1 ] Wydział Inżynierii Lądowej i Transportu, Politechnika Poznańska | [ 2 ] Instytut Budownictwa, Wydział Inżynierii Lądowej i Transportu, Politechnika Poznańska | [ SzD ] doctoral school student | [ P ] employee

Scientific discipline (Law 2.0)

[2.7] Civil engineering, geodesy and transport

Year of publication

2024

Published in

Materials

Journal year: 2024 | Journal volume: vol. 17 | Journal number: iss. 23

Article type

scientific article

Publication language

english

Keywords
EN
  • adhesive joints
  • composite fabric
  • cold-formed steel elements
  • numerical simulation
  • cohesive zone model
  • laboratory tests
Abstract

EN The main aim of the study was the determination of the strength parameters of composite bonded joints consisting of galvanised steel elements, an adhesive layer, and Carbon-Fiber-Reinforced Plastic (CFRP) fabric. For this purpose, shear laboratory tests were carried out on 60 lapped specimens composed of 2 mm thick hot-dip galvanised steel plates of S350 GD. The specimens were overlapped on one side with SikaWrap 230 C carbon fibre textile (CFT) using SikaDur 330 adhesive. The tests were carried out in three series that differed in overlap length (15 mm, 25 mm, and 35 mm). A discussion on the failure mechanism in the context of the bonding capacity of the composite joint was carried out. We observed three forms of joint damage, namely, at the steel-adhesive interface, fibre rupture, and mixed damage behaviour. Moreover, an advanced numerical model using the commercial finite element (FE) program ABAQUS/Standard and the coupled cohesive zone model was developed. The material behaviour of the textile was defined as elastic-lamina and the mixed-mode Hashin damage model was implemented with bi-linear behaviour. Special attention was focused on the formulation of reliable methodologies to determine the load-bearing capacity, failure mechanisms, stress distribution, and the strength characteristics of a composite adhesive joint. In order to develop a reliable model, validation and verification were carried out and self-correlation parameters, which brought the model closer to the laboratory test, were proposed by the authors. Based on the conducted analysis, the strength characteristics including the load-bearing capacity, failure mechanisms, and stress distribution were established. The three forms of joint damage were observed as steel-adhesive interface failure, fibre rupture, and mixed-damage behaviour. Complex interactions between the materials were observed. The most dangerous adhesive failure was detected at the steel and adhesive interface. It was also found that an increase in adhesive thickness caused a decrease in joint strength. In the numerical analysis, two mechanical models were employed, namely, a sophisticated model of adhesive and fabric components. It was found that the fabric model was very sensitive to the density of the finite element mesh. It was also noticed that the numerical model referring to the adhesive layer was nonsensitive to the mesh size; thus, it was regarded as appropriate. Nevertheless, in order to increase the reliability of the numerical model, the authors proposed their own correlation coefficients α and β, which allowed for the correct mapping of adhesive damage.

Date of online publication

09.12.2024

Pages (from - to)

6022-1 - 6022-20

DOI

10.3390/ma17236022

URL

https://www.mdpi.com/1996-1944/17/23/6022

Comments

Article Number: 6022

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Ministry points / journal

140

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.