Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Global dysregulation of circular RNAs in frontal cortex and whole blood from DM1 and DM2

Authors

[ 1 ] Instytut Informatyki, Wydział Informatyki i Telekomunikacji, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.3] Information and communication technology

Year of publication

2025

Published in

Human Genetics

Journal year: 2025 | Journal volume: vol. 144

Article type

scientific article

Publication language

english

Keywords
EN
  • Circular RNAs
  • Myotonic dystrophy
  • Alternative splicing
  • Back-splicing, cryptic splice sites
Abstract

EN Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular disorders associated with expansions of microsatellites, respectively, in DMPK and CNBP. Their pathogenesis is linked to the global aberrant alternative splicing (AAS) of many genes and marks mostly muscular and neuronal tissues, while blood is the least affected. Recent data in DM1 skeletal muscles indicated that abnormalities in RNA metabolism also include global upregulation of circular RNAs (circRNAs). CircRNAs are a heterogeneous group considered splicing errors and by-products of canonical splicing. To elucidate whether circRNA dysregulation is an inherent feature of the myotonic environment, we perform their analysis in the frontal cortex and whole blood of DM1 and DM2 patients. We find a global elevation of circRNAs in both tissues, and its magnitude is neither correlated with the differences in their parental gene expression nor is associated with AAS published earlier. Aberrantly spliced cassette exons of linear transcripts affected in DM1 and DM2 are not among the circularized exons, which unique genomic features prerequisite back-splicing. However, the blueprint of the AAS of linear RNAs is found in a variety of circRNA isoforms. The heterogeneity of circRNAs also originates from the utilization of exonic and intronic cryptic donors/acceptors in back splice junctions, and intron-containing circRNAs are more characteristic of the blood. Overall, this study reveals circRNA dysregulation in various tissues from DM1 and DM2; however, their levels do not correlate with the AAS in linear RNAs, suggesting a potential independent regulatory mechanism underlying circRNA upregulation in myotonic dystrophy.

Date of online publication

04.02.2025

Pages (from - to)

417 - 432

DOI

10.1007/s00439-025-02729-x

URL

https://link.springer.com/article/10.1007/s00439-025-02729-x

License type

CC BY (attribution alone)

Open Access Mode

czasopismo hybrydowe

Open Access Text Version

final published version

Date of Open Access to the publication

in press

Ministry points / journal

100

Impact Factor

3,8 [List 2023]

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.