Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Water Level Rise and Bank Erosion in the Case of Large Reservoirs

Authors

[ 1 ] Instytut Budownictwa, Wydział Inżynierii Lądowej i Transportu, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.7] Civil engineering, geodesy and transport

Year of publication

2025

Published in

Water

Journal year: 2025 | Journal volume: vol. 17 | Journal number: iss. 11

Article type

scientific article

Publication language

english

Keywords
EN
  • abrasion model
  • water level rise
  • geohazards
  • large water reservoirs
Abstract

EN The article presents an analysis of the complex mechanism of abrasion of shorelines built of non-lithified sediments as a result of rising water levels in the reservoir, along with its quantitative assessment. It allows forecasting the actual risks of coastal areas intendent for urbanization with similar morphology and geological structure. The task of the article is also to point out that for proper assessment of abrasion it is necessary to take into account the greater complexity of the mechanism in which abrasion is the result of co-occurring processes of erosion and landslides. During the analysis, the classic Kachugin method of abrasion assessment was combined with an analysis of the stability of the abraded slope, taking into account the circular slip surface (Bishop and Morgenster–Price methods) and the breaking slip surface (Sarma method). This approach required the assessment of the geotechnical properties of the soil using, among other things, advanced in situ methods such as static sounding. The results indicate that the cliff edge is in limit equilibrium or even in danger of immediate landslide. At the same time, it was possible to determine the horizontal extent of a single landslide at 1.2 to 5.8 m. In the specific cases of reservoir filling, the consideration of the simultaneous action of both failure mechanisms definitely worsens the prediction of shoreline sustainability and indicates the need to restrict construction development in the coastal zone.

Date of online publication

23.05.2025

Pages (from - to)

1576-1 - 1576-18

DOI

10.3390/w17111576

URL

https://www.mdpi.com/2073-4441/17/11/1576

Comments

Article Number: 1576

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Ministry points / journal

100

Impact Factor

3 [List 2023]

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.