W zależności od ilości danych do przetworzenia generowanie pliku może się wydłużyć.

Jeśli generowanie trwa zbyt długo można ograniczyć dane np. zmniejszając zakres lat.

Artykuł

Pobierz plik Pobierz BibTeX

Tytuł

Tackling the Problem of Class Imbalance in Multi-class Sentiment Classification: An Experimental Study

Autorzy

[ 1 ] Instytut Informatyki, Wydział Informatyki, Politechnika Poznańska | [ P ] pracownik

Dyscyplina naukowa (Ustawa 2.0)

[2.3] Informatyka techniczna i telekomunikacja

Rok publikacji

2019

Opublikowano w

Foundations of Computing and Decision Sciences

Rocznik: 2019 | Tom: vol. 44 | Numer: no. 2

Typ artykułu

artykuł naukowy

Język publikacji

angielski

Słowa kluczowe
EN
  • sentiment analysis
  • imbalanced data
  • multi-class learning
  • data difficulty factors
  • text classification
Streszczenie

EN Sentiment classification is an important task which gained extensive attention both in academia and in industry. Many issues related to this task such as handling of negation or of sarcastic utterances were analyzed and accordingly addressed in previous works. However, the issue of class imbalance which often compromises the prediction capabilities of learning algorithms was scarcely studied. In this work, we aim to bridge the gap between imbalanced learning and sentiment analysis. An experimental study including twelve imbalanced learning preprocessing methods, four feature representations, and a dozen of datasets, is carried out in order to analyze the usefulness of imbalanced learning methods for sentiment classification. Moreover, the data difficulty factors — commonly studied in imbalanced learning —are investigated on sentiment corpora to evaluate the impact of class imbalance.

Data udostępnienia online

06.06.2019

Strony (od-do)

151 - 178

DOI

10.2478/fcds-2019-0009

URL

https://www.sciendo.com/article/10.2478/fcds-2019-0009

Typ licencji

CC BY-NC-ND (uznanie autorstwa - użycie niekomercyjne - bez utworów zależnych)

Tryb otwartego dostępu

otwarte czasopismo

Wersja tekstu w otwartym dostępie

ostateczna wersja opublikowana

Czas udostępnienia publikacji w sposób otwarty

w momencie opublikowania

Pełny tekst artykułu

Pobierz plik

Poziom dostępu do pełnego tekstu

publiczny

Punktacja Ministerstwa / czasopismo

20

Punktacja Ministerstwa / czasopismo w ewaluacji 2017-2021

40

Ta strona używa plików Cookies, w celu zapamiętania uwierzytelnionej sesji użytkownika. Aby dowiedzieć się więcej przeczytaj o plikach Cookies i Polityce Prywatności.