Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.


Download BibTeX


Machine Learning Prediction of Clinical Trial Operational Efficiency


[ 1 ] Wydział Informatyki i Telekomunikacji, Politechnika Poznańska | [ SzD ] doctoral school student

Scientific discipline (Law 2.0)

[2.3] Information and communication technology

Year of publication


Published in

AAPS Journal

Journal year: 2022 | Journal volume: vol. 24 | Journal number: iss. 3

Article type

scientific article

Publication language



EN Clinical trials are the gatekeepers and bottlenecks of progress in medicine. In recent years, they have become increasingly complex and expensive, driven by a growing number of stakeholders requiring more endpoints, more diverse patient populations, and a stringent regulatory environment. Trial designers have historically relied on investigator expertise and legacy norms established within sponsor companies to improve operational efficiency while achieving study goals. As such, data-driven forecasts of operational metrics can be a useful resource for trial design and planning. We develop a machine learning model to predict clinical trial operational efficiency using a novel dataset from Roche containing over 2,000 clinical trials across 20 years and multiple disease areas. The data includes important operational metrics related to patient recruitment and trial duration, as well as a variety of trial features such as the number of procedures, eligibility criteria, and endpoints. Our results demonstrate that operational efficiency can be predicted robustly using trial features, which can provide useful insights to trial designers on the potential impact of their decisions on patient recruitment success and trial duration.

Date of online publication


Pages (from - to)

57-1 - 57-9





Article Number: 57

Ministry points / journal


Impact Factor


This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.