W zależności od ilości danych do przetworzenia generowanie pliku może się wydłużyć.

Jeśli generowanie trwa zbyt długo można ograniczyć dane np. zmniejszając zakres lat.

Rozdział

Pobierz BibTeX

Tytuł

Regret Bounds for Multilabel Classification in Sparse Label Regimes

Autorzy

[ 1 ] Instytut Informatyki, Wydział Informatyki i Telekomunikacji, Politechnika Poznańska | [ P ] pracownik

Dyscyplina naukowa (Ustawa 2.0)

[2.3] Informatyka techniczna i telekomunikacja

Rok publikacji

2022

Typ rozdziału

rozdział w monografii naukowej / referat

Język publikacji

angielski

Streszczenie

EN Multi-label classification (MLC) has wide practical importance, but the theoretical understanding of its statistical properties is still limited. As an attempt to fill this gap, we thoroughly study upper and lower regret bounds for two canonical MLC performance measures, Hamming loss and Precision@κ. We consider two different statistical and algorithmic settings, a non-parametric setting tackled by plug-in classifiers à la k-nearest neighbors, and a parametric one tackled by empirical risk minimization operating on surrogate loss functions. For both, we analyze the interplay between a natural MLC variant of the low noise assumption, widely studied in binary classification, and the label sparsity, the latter being a natural property of large-scale MLC problems. We show that those conditions are crucial in improving the bounds, but the way they are tangled is not obvious, and also different across the two settings.

URL

https://proceedings.neurips.cc/paper_files/paper/2022/file/240d297094fc76d1e7aa27b01f221b00-Paper-Conference.pdf

Książka

Advances in Neural Information Processing Systems 35 (NeurIPS 2022)

Zaprezentowany na

36th Conference on Neural Information Processing Systems (NeurIPS 2022), 29.11.2022 - 01.12.2023, New Orleans, United States

Tryb otwartego dostępu

witryna wydawcy

Wersja tekstu w otwartym dostępie

ostateczna wersja opublikowana

Czas udostępnienia publikacji w sposób otwarty

w momencie opublikowania

Punktacja Ministerstwa / rozdział

5

Punktacja Ministerstwa / konferencja (CORE)

200

Ta strona używa plików Cookies, w celu zapamiętania uwierzytelnionej sesji użytkownika. Aby dowiedzieć się więcej przeczytaj o plikach Cookies i Polityce Prywatności.