W zależności od ilości danych do przetworzenia generowanie pliku może się wydłużyć.

Jeśli generowanie trwa zbyt długo można ograniczyć dane np. zmniejszając zakres lat.

Rozdział

Pobierz BibTeX

Tytuł

Three Ways of Using Large Language Models to Evaluate Chat

Autorzy

[ 1 ] Instytut Informatyki, Wydział Informatyki i Telekomunikacji, Politechnika Poznańska | [ P ] pracownik

Dyscyplina naukowa (Ustawa 2.0)

[2.3] Informatyka techniczna i telekomunikacja

Rok publikacji

2023

Typ rozdziału

rozdział w monografii naukowej / referat

Język publikacji

angielski

Streszczenie

EN This paper describes the systems submitted by team6 for ChatEval, the DSTC 11 Track 4 competition. We present three different approaches to predicting turn-level qualities of chatbot responses based on large language models (LLMs). We report improvement over the baseline using dynamic few-shot examples from a vector store for the prompts for ChatGPT. We also analyze the performance of the other two approaches and report needed improvements for future work. We developed the three systems over just two weeks, showing the potential of LLMs for this task. An ablation study conducted after the challenge deadline shows that the new Llama 2 models are closing the performance gap between ChatGPT and open-source LLMs. However, we find that the Llama 2 models do not benefit from few-shot examples in the same way as ChatGPT.

Strony (od-do)

113 - 122

URL

https://aclanthology.org/2023.dstc-1.14/

Książka

Proceedings of the Eleventh Dialog System Technology Challenge

Zaprezentowany na

11th Dialog System Technology Challenge DSTC11 (at the SIGdial-INLG 2023 joint conference), 11.09.2023, Prague, Czech Republic

Typ licencji

CC BY (uznanie autorstwa)

Tryb otwartego dostępu

witryna wydawcy

Wersja tekstu w otwartym dostępie

ostateczna wersja opublikowana

Czas udostępnienia publikacji w sposób otwarty

w momencie opublikowania

Punktacja Ministerstwa / rozdział

5

Punktacja Ministerstwa / konferencja (CORE)

70

Ta strona używa plików Cookies, w celu zapamiętania uwierzytelnionej sesji użytkownika. Aby dowiedzieć się więcej przeczytaj o plikach Cookies i Polityce Prywatności.