W zależności od ilości danych do przetworzenia generowanie pliku może się wydłużyć.

Jeśli generowanie trwa zbyt długo można ograniczyć dane np. zmniejszając zakres lat.

Rozdział

Pobierz BibTeX

Tytuł

ART: Actually Robust Training

Autorzy

[ 1 ] Instytut Informatyki, Wydział Informatyki i Telekomunikacji, Politechnika Poznańska | [ S ] student | [ P ] pracownik

Dyscyplina naukowa (Ustawa 2.0)

[2.3] Informatyka techniczna i telekomunikacja

Rok publikacji

2024

Typ rozdziału

rozdział w monografii naukowej / referat

Język publikacji

angielski

Słowa kluczowe
EN
  • deep learning
  • experiment tracking
  • best practices
Streszczenie

EN Current interest in deep learning captures the attention of many programmers and researchers. Unfortunately, the lack of a unified schema for developing deep learning models results in methodological inconsistencies, unclear documentation, and problems with reproducibility. Some guidelines have been proposed, yet currently, they lack practical implementations. Furthermore, neural network training often takes on the form of trial and error, lacking a structured and thoughtful process. To alleviate these issues, in this paper, we introduce Art, a Python library designed to help automatically impose rules and standards while developing deep learning pipelines. Art divides model development into a series of smaller steps of increasing complexity, each concluded with a validation check improving the interpretability and robustness of the process. The current version of Art comes equipped with nine predefined steps inspired by Andrej Karpathy’s Recipe for Training Neural Networks, a visualization dashboard, and integration with loggers such as Neptune. The code related to this paper is available at: https://github.com/SebChw/Actually-Robust-Training.

Data udostępnienia online

22.08.2024

Strony (od-do)

374 - 378

DOI

10.1007/978-3-031-70371-3_23

URL

https://link.springer.com/chapter/10.1007/978-3-031-70371-3_23

Książka

Machine Learning and Knowledge Discovery in Databases. Research Track and Demo Track : European Conference, ECML PKDD 2024, Vilnius, Lithuania, September 9–13, 2024, Proceedings, Part VIII

Zaprezentowany na

Machine Learning and Knowledge Discovery in Databases. Research Track and Demo Track ECML PKDD 2024, 9-13.09.2024, Vilnius, Lithuania

Punktacja Ministerstwa / rozdział

20

Punktacja Ministerstwa / konferencja (CORE)

140

Ta strona używa plików Cookies, w celu zapamiętania uwierzytelnionej sesji użytkownika. Aby dowiedzieć się więcej przeczytaj o plikach Cookies i Polityce Prywatności.