Quantum Dot and Fullerene with Organic Chromophores as Electron-Donor-Acceptor Systems
[ 1 ] Institute of Physics, Poznan University of Technology | [ 2 ] Iistitute of Physics, Poznan University of Technology | [ 3 ] Institute of Molecular Physics Polish Academy of Sciences Poznań Poland | [ E ] pensioner | [ P ] employee
PL Kropka kwantowa i fuleren z organicznymi chromoforami jako systemy elektronowo-donorowo-akceptorowe
2019
chapter in monograph
english
EN This review paper is focused on the research of molecular mechanisms occurring in porphyrin-like systems such as porphyrins, phthalocyanines, and corroles as well as in chromophore-semiconductor quantum dot (QD-CdSe/ZnS) or corrole-fullerene (C60) as electron-donor-acceptor unites. The basic spectroscopic investigations describe properties of materials in organic solutions in the ultraviolet, visible, and infrared ranges and in a form of Langmuir and Langmuir–Blodgett molecular nanolayers to get knowledge on photophysics of dyes and the influence of QD and C60 on the electron redistribution within the molecular structures. The studies also allowed to explain the impact of solvent on the spectroscopic properties of corroles and on the redistribution of the π-electrons in the excited state. The fluorescence studies very evidently showed strong interaction between chromophores and C60 or QD and clearly demonstrated the strong donor-acceptor nature of the phthalocyanines-quantum dot and the corrole-fullerene dyad. In addition, spectroscopic studies in polarized light allowed determining molecular arrangement of the chromophore molecules in the Langmuir–Blodgett layers with respect to solid substrates. The computer calculations (TD-DFT theory) confirmed the experimental results, in particular the redistribution of the π-electrons in the excited state and the location of HOMO and LUMO levels. The DFT calculations let also to evaluate the reorganization energy values for the set of free-base corroles and C60 fullerene. In this review, it was shown the electron-donor-acceptor character of the systems composed of: porphyrin-quinone, phthalocyanines-QD, corroles-C60 dyads. It has been demonstrated potential capabilities of the photoactive organic materials with QD and fullerene in the future applications in many areas of optoelectronic and in the process of converting solar energy into electric energy in solar cells.
97 - 122
20