W zależności od ilości danych do przetworzenia generowanie pliku może się wydłużyć.

Jeśli generowanie trwa zbyt długo można ograniczyć dane np. zmniejszając zakres lat.

Rozdział

Pobierz BibTeX

Tytuł

Matrix factorization for travel time estimation in large traffic network

Autorzy

[ 1 ] Instytut Informatyki, Wydział Informatyki, Politechnika Poznańska | [ P ] pracownik

Rok publikacji

2013

Typ rozdziału

referat

Język publikacji

angielski

Streszczenie

EN Matrix factorization techniques have become extremely popular in the recommender systems. We show that this kind of methods can also be applied in the domain of travel time estimation from historical data. We consider a large matrix of travel times in which the rows correspond to short road segments and the columns to 15 minute time slots of a week. Then, by applying matrix factorization technique we obtain a sparse model of latent features in the form of two matrices which product gives a low-rank approximation of the original matrix. Such a model is characterized by several desired properties. We only need to store the two low-rank matrices instead of the entire matrix. The estimation of the travel time for a given segment and time slot is fast as it only demands multiplication of the corresponding row and column of the low-rank matrices. Moreover, the latent features discovered by the matrix factorization may give an interesting insight to the analyzed problem. In this paper, we introduce that kind of the model and design a fast learning algorithm based on alternating least squares. We test this model empirically on a large real-life data set and show its advantage over several standard models for travel estimation.

Strony (od-do)

500 - 510

DOI

10.1007/978-3-642-38610-7_46

URL

https://link.springer.com/chapter/10.1007/978-3-642-38610-7_46

Książka

Artificial intelligence and soft computing. Part II: 12th International Conference, ICAISC 2013, Zakopane, Poland, June 9-13, 2013 : proceedings

Zaprezentowany na

12th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2013, 9-13.06.2013, Zakopane, Poland

Publikacja indeksowana w

WoS (15)

Ta strona używa plików Cookies, w celu zapamiętania uwierzytelnionej sesji użytkownika. Aby dowiedzieć się więcej przeczytaj o plikach Cookies i Polityce Prywatności.