Microstructural Study of Failure Phenomena in Wc 94%-Co 6% Hard Metal Alloy Tips of Radial Picks
[ 1 ] Instytut Technologii Mechanicznej, Wydział Budowy Maszyn i Zarządzania, Politechnika Poznańska | [ P ] employee
2017
scientific article
english
- radial picks
- WC-Co tip
- FESEM
- EDS
- failure behaviour
EN An excellent combination of hardness, strength, stiffness and high melting point has proved the WC-Co as an ideal material for tools that are used for metal cutting, coal mining, oil drilling, etc. The ongoing research in WC-Co is focussed on enhancing its wear resistant properties as much as possible. For the purpose, many attempts have been made to study the tribological behaviour of WC-Co for a long time. Researchers have used various grades of WC-Co in different working environments and accordingly they have characterized the wear phenomena involved there within. In this direction of research, the present paper makes an attempt to understand various wear behaviours in WC 94%-Co 6% hard metal alloy. WC-Co was used as a tip of the coal cutting tool named radial pick. Two radial picks have been taken for critical analysis through field emission scanning electron microscopy (FESEM) attached with energy dispersive X-ray spectroscopy (EDS). In this work, the failure behaviours in the tools have been divided into five categories: (1) Abrasion on individual grain; (2) Corrosion in carbide grains; (3) Fragmentation and removal of WC grains; (4) Pores in WC grains; and (5) Coal and rock embedding. The most possible reasons behind each failure phenomenon have been explained comprehensively with the help of high-resolution microscopic images. However, it is usually observed that, initially, the tool gets minor cracks due to sudden impact. These cracks provide a path to the rock and coal particles to get entrenched inside the microstructure of cemented carbide. Finally, the intermixed external elements degrade the binder content (i.e. cobalt) and the tool becomes useless.
36 - 47
CC BY (attribution alone)
open journal
final published version
at the time of publication
public
10
10