W zależności od ilości danych do przetworzenia generowanie pliku może się wydłużyć.

Jeśli generowanie trwa zbyt długo można ograniczyć dane np. zmniejszając zakres lat.

Rozdział

Pobierz BibTeX

Tytuł

Comparison of the Novel Classification Methods on the Reuters-21578 Corpus

Autorzy

[ 1 ] Instytut Automatyki, Robotyki i Inżynierii Informatycznej, Wydział Elektryczny, Politechnika Poznańska | [ P ] pracownik

Dyscyplina naukowa (Ustawa 2.0)

[2.3] Informatyka techniczna i telekomunikacja

Rok publikacji

2019

Typ rozdziału

rozdział w monografii naukowej / referat

Język publikacji

angielski

Słowa kluczowe
EN
  • classification
  • Reuters
  • boosting
  • Naive Bayes
Streszczenie

EN The paper describes an evaluation of novel boosting methods of the commonly used Multinomial Naïve Bayes classifier. Evaluation is made upon the Reuters corpus, which consists of 10788 documents and 90 categories. All experiments use the tf-idf weighting model and the one versus the rest strategy. AdaBoost, XGBoost and Gradient Boost algorithms are tested. Additionally the impact of feature selection is tested. The evaluation is carried out with use of commonly used metrics – precision, recall, F1 and Precision-Recall breakeven points. The novel aspect of this work is that all considered boosted methods are compared to each other and several classical methods (Support Vector Machine methods and a Random Forests classifier). The results are much better than in the classic Joachims paper and slightly better than obtained with maximum discrimination method for feature selection. This is important because for the past 20 years most works were concerned with a change of results upon modification of parameters. Surprisingly, the result obtained with the use of feed-forward neural network is comparable to the Bayesian optimization over boosted Naïve Bayes (despite the medium size of the corpus). We plan to extend these results by using word embedding methods.

Strony (od-do)

290 - 299

DOI

10.1007/978-3-319-98678-4_30

URL

https://link.springer.com/chapter/10.1007/978-3-319-98678-4_30

Książka

Multimedia and Network Information Systems : Proceedings of the 11th International Conference MISSI 2018

Zaprezentowany na

11th International Conference MISSI 2018, 12-14.09.2018, Wrocław, Poland

Punktacja Ministerstwa / rozdział

20

Ta strona używa plików Cookies, w celu zapamiętania uwierzytelnionej sesji użytkownika. Aby dowiedzieć się więcej przeczytaj o plikach Cookies i Polityce Prywatności.