W zależności od ilości danych do przetworzenia generowanie pliku może się wydłużyć.

Jeśli generowanie trwa zbyt długo można ograniczyć dane np. zmniejszając zakres lat.

Rozdział

Pobierz BibTeX

Tytuł

Searching for the Origins of Life – Detecting RNA Life Signatures Using Learning Vector Quantization

Autorzy

[ 1 ] Instytut Informatyki, Wydział Informatyki i Telekomunikacji, Politechnika Poznańska | [ S ] student | [ P ] pracownik

Dyscyplina naukowa (Ustawa 2.0)

[2.3] Informatyka techniczna i telekomunikacja

Rok publikacji

2020

Typ rozdziału

rozdział w monografii naukowej / referat

Język publikacji

angielski

Streszczenie

EN The most plausible hypothesis for explaining the origins of life on earth is the RNA world hypothesis supported by a growing number of research results from various scientific areas. Frequently, the existence of a hypothetical species on earth is supposed, with a base RNA sequence probably dissimilar from any known genomes today. It is hard to distinguish hypothetical sequences obtained by computer simulations from biological sequences and, hence, to decide which characteristics provide biological functionality. In the present consideration biological sequences obtained from RNA-viruses are compared with computationally generated sequences (artificial life probes). The task is to discriminate the samples regarding their origin, biological or artificial. We used the learning vector quantization (LVQ) model as the respective classifier. LVQ is a dissimilarity based classifier, which has only weak requirements regarding the underlying dissimilarity measure. This gives the opportunity to investigate several dissimilarity measures regarding their discriminating behavior for this task. Particularly, we consider information theoretic dissimilarities like the normalized compression distance (NCD) and divergences based on bag-of-word (BoW) vectors generated on the base of nucleotide-codons. Additionally, the geodesic path distance is applied taking an unary coding of sequences for a representation in the underlying Grassmann-manifold. Both, BoW and GPD allow continuous updates of prototypes in the feature space and in the Grassmann-manifold, respectively, whereas NCD restricts the application of LVQ methods to median variants.

Strony (od-do)

324 - 333

DOI

10.1007/978-3-030-19642-4_32

URL

https://link.springer.com/chapter/10.1007/978-3-030-19642-4_32

Książka

Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization : Proceedings of the 13th International Workshop, WSOM+ 2019, Barcelona, Spain, June 26-28, 2019

Zaprezentowany na

13th International Workshop on Self-Organizing Maps WSOM 2019, 26-28.06.2019, Barcelona, Spain

Punktacja Ministerstwa / rozdział

20

Ta strona używa plików Cookies, w celu zapamiętania uwierzytelnionej sesji użytkownika. Aby dowiedzieć się więcej przeczytaj o plikach Cookies i Polityce Prywatności.