W zależności od ilości danych do przetworzenia generowanie pliku może się wydłużyć.

Jeśli generowanie trwa zbyt długo można ograniczyć dane np. zmniejszając zakres lat.

Artykuł

Pobierz plik Pobierz BibTeX

Tytuł

Zastosowanie uczenia nadzorowanego do klasyfikacji defektów PPZ na podstawie sygnałów EA

Autorzy

Wariant tytułu

EN Application of supervised learning for classification of OLTC defects on the basis of AE signals

Rok publikacji

2018

Opublikowano w

Poznan University of Technology Academic Journals. Electrical Engineering

Rocznik: 2018 | Numer: Issue 93

Typ artykułu

artykuł naukowy

Język publikacji

polski

Słowa kluczowe
PL
  • analiza sygnałów EA
  • podobciążeniowe przełączniki zaczepów
  • PPZ
  • klasyfikacja uszkodzeń PPZ
  • uczenie nadzorowane
Streszczenie

PL Tematyka artykułu dotyczy rozpoznawania defektów podobciążeniowych przełączników zaczepów (PPZ) z wykorzystaniem uczenia nadzorowanego. PPZ to specjalistyczne urządzenie będące częścią transformatora elektroenergetycznego, które pozwala na skokową zmianę przekładni a tym samym napięcia na zaciskach tego transformatora. Jako metodę diagnostyczną zastosowano metodę emisji akustycznej (EA), której zaletą jest możliwość stosowania podczas normalnej pracy transformatora bez konieczności jego wyłączania. Sygnały EA pozyskane z badań laboratoryjnych, w których symulowano cztery rodzaje defektów - typowych uszkodzeń PPZ, poddano wstępnej analizie z wykorzystaniem filtrów cyfrowych i transformaty Hilberta, a następnie poddano procesowi klasyfikacji. W artykule zawarto przykładowe przebiegi czasowe sygnałów EA oraz wyniki wstępnych badań dotyczących klasyfikacji defektów PPZ z wykorzystaniem siedmiu metod wraz z oceną ich skuteczności.

EN The subject of the article concerns recognition of defects of on load tap changers (OLTC) with the use of supervised learning. OLTC is a specialized device that is part of a power transformer, which allows for a step change of the gear and thus the voltage at the terminals of this transformer. The acoustic emission (AE) method was applied as diagnostic method. The advantage of this method lies in the possibility of its application during normal operation of the device without having to turn it off. EA signals were obtained from laboratory tests in which four types of defects - typical OLTC damages, were simulated. The gathered signals were pre-analyzed using digital filters and Hilbert transforms, and then subjected to the classification process. The article contains examples of EA signal waveforms and the results of preliminary research on the classification of OLTC defects with the use of seven methods together with an assessment of their effectiveness.

Strony (od-do)

335 - 344

DOI

10.21008/j.1897-0737.2018.93.0028

Zaprezentowany na

Computer Applications in Electrical Engineering 2018, 23-24.04.2018, Poznań, Polska

Pełny tekst artykułu

Pobierz plik

Poziom dostępu do pełnego tekstu

publiczny

Punktacja Ministerstwa / czasopismo

9

Punktacja Ministerstwa / czasopismo w ewaluacji 2017-2021

9

Ta strona używa plików Cookies, w celu zapamiętania uwierzytelnionej sesji użytkownika. Aby dowiedzieć się więcej przeczytaj o plikach Cookies i Polityce Prywatności.