Porównanie właściwości neuronowych i klasycznych układów sterowania nieliniowym procesem dynamicznym
EN Comparison of neural and traditional control of a nonlinear process
2015
artykuł naukowy
polski
- sieć neuronowa
- neuronowy układ sterowania
PL W pracy zaprezentowano wybrane architektury neuronowych układów sterowania nieliniowym obiektem dynamicznym i porównano ich właściwości. Sterowanie procesem zostało zrealizowane za pomocą trzech algorytmów, wykorzystujących sztuczne sieci neuronowe: metody stosującej neuronowy model odwrotnej dynamiki obiektu, metody działającej w oparciu o linearyzację przez sprzężenie zwrotne oraz metody opartej o algorytm przeprowadzający na bieżąco linearyzację nieliniowego, neuronowego modelu obiektu. W sterowaniu wykorzystano sieci perceptronowe typu MLP (ang. Multilayer Perceptron). Dobór wag sieci przeprowadzono z wykorzystaniem algorytmu Levenberga–Marquardta. Zaproponowane metody sterowania zostały porównane z układem regulacji PID.
EN The paper presents a few neural control systems to control nonlinear process and compares their properties. Control of the process was carried out by three algorithms based on neural networks: direct inverse, feedback linearization, and instantaneous linearization. The Multilayer perceptron neural network (MLP) is chosen to represent a model of a nonlinear process. To find the best weights of an MLP, the Levenberg- Marquardt method was used. Presented neural methods were compared with traditional PID control. Research has been done in the Matlab/Simulink. The test results show that artificial neural networks can be a useful tool to control a nonlinear process.
173 - 181
publiczny
9