W zależności od ilości danych do przetworzenia generowanie pliku może się wydłużyć.

Jeśli generowanie trwa zbyt długo można ograniczyć dane np. zmniejszając zakres lat.

Artykuł

Pobierz plik Pobierz BibTeX

Tytuł

Comparison of Machine Learning Models to Predict Risk of Falling in Osteoporosis Elderly

Autorzy

Rok publikacji

2020

Opublikowano w

Foundations of Computing and Decision Sciences

Rocznik: 2020 | Tom: vol. 45 | Numer: no. 2

Typ artykułu

artykuł naukowy

Język publikacji

angielski

Słowa kluczowe
EN
  • GaitRite data
  • prognosis falls
  • computational methods
  • osteoporosis
Streszczenie

EN Falls are a multifactorial cause of injuries for older people. Subjects with osteoporosis are more vulnerable to falls. The focus of this study is to investigate the performance of the different machine learning models built on spatiotemporal gait parameters to predict falls particularly in subjects with osteoporosis. Spatiotemporal gait parameters and prospective registration of falls were obtained from a sample of 110 community dwelling older women with osteoporosis (age 74.3 ± 6.3) and 143 without osteoporosis (age 68.7 ± 6.8). We built four different models, Support Vector Machines, Neuronal Networks, Decision Trees, and Dynamic Bayesian Networks (DBN), for each specific set of parameters used, and compared them considering their accuracy, precision, recall and F-score to predict fall risk. The F-score value shows that DBN based models are more efficient to predict fall risk, and the best result obtained is when we use a DBN model using the experts’ variables with FSMC’s variables, mixed variables set, obtaining an accuracy of 80%, and recall of 73%. The results confirm the feasibility of computational methods to complement experts’ knowledge to predict risk of falling within a period of time as high as 12 months.

Strony (od-do)

65 - 77

DOI

10.2478/fcds-2020-0005

URL

https://sciendo.com/article/10.2478%2Ffcds-2020-0005

Typ licencji

CC BY-NC-ND (uznanie autorstwa - użycie niekomercyjne - bez utworów zależnych)

Pełny tekst artykułu

Pobierz plik

Poziom dostępu do pełnego tekstu

publiczny

Punktacja Ministerstwa / czasopismo

20

Punktacja Ministerstwa / czasopismo w ewaluacji 2017-2021

40

Ta strona używa plików Cookies, w celu zapamiętania uwierzytelnionej sesji użytkownika. Aby dowiedzieć się więcej przeczytaj o plikach Cookies i Polityce Prywatności.