Selective Detection of Carbon Monoxide on P‐Block Doped Monolayers of MoTe2
[ 1 ] Instytut Fizyki, Wydział Inżynierii Materiałowej i Fizyki Technicznej, Politechnika Poznańska | [ 2 ] Wydział Inżynierii Materiałowej i Fizyki Technicznej, Politechnika Poznańska | [ 3 ] Instytut Fizyki, Wydział Fizyki Technicznej, Politechnika Poznańska | [ P ] pracownik | [ SzD ] doktorant ze Szkoły Doktorskiej | [ S ] student
2022
artykuł naukowy
angielski
- CO
- CO2
- MoTe2
- transition metal dichalcogenide
- gas sensing
- density functional theory
EN CO and CO2 are among the most commonly monitored gases. However, the currently available semiconductor sensors require heating to ∼400 °C in order to operate effectively. This increases the power demand and shortens their lifespan. Consequently, new material prospects are being investigated. The adoption of novel two-dimensional layered materials is one of the pursued solutions. MoS2 and MoTe2 sheets have already been shown sensitive to NO2 and NH3 even at room temperature. However, their response to other compounds is limited. Hence, this work investigates, by employing density functional theory (DFT) calculations, the doping of Al, Si, P, S, and Cl atoms into the Te vacancy of MoTe2, and its impact on the sensing characteristics for CO and CO2. The computations predict that P doping significantly enhances the molecule-sheet charge transfer (up to +436%) while having only a little effect on the adsorption energy (molecular dynamics show that the molecule can effectively diffuse at 300 K). On the other hand, the doping has a limited impact on the adsorption of CO2. The relative (CO/CO2) response of P-doped MoTe2 is 5.6 compared to the 1.5 predicted for the pristine sheet. Thus, the doping should allow for more selective detection of CO in CO/CO2 mixtures.
19.01.2022
272 - 285
CC BY (uznanie autorstwa)
czasopismo hybrydowe
ostateczna wersja opublikowana
przed opublikowaniem
publiczny
140
8,9