W zależności od ilości danych do przetworzenia generowanie pliku może się wydłużyć.

Jeśli generowanie trwa zbyt długo można ograniczyć dane np. zmniejszając zakres lat.

Artykuł

Pobierz plik Pobierz BibTeX

Tytuł

Simultaneous localization and mapping: A feature-based probabilistic approach

Autorzy

[ 1 ] Instytut Automatyki i Inżynierii Informatycznej, Wydział Elektryczny, Politechnika Poznańska | [ P ] pracownik

Rok publikacji

2009

Opublikowano w

International Journal of Applied Mathematics and Computer Science

Rocznik: 2009 | Tom: vol. 19 | Numer: no. 4

Typ artykułu

artykuł naukowy

Język publikacji

angielski

Słowa kluczowe
EN
  • mobile robot
  • navigation
  • simultaneous localization and mapping
  • feature matching
Streszczenie

EN This article provides an introduction to Simultaneous Localization And Mapping (SLAM), with the focus on probabilistic SLAM utilizing a feature-based description of the environment. A probabilistic formulation of the SLAM problem is introduced, and a solution based on the Extended Kalman Filter (EKF-SLAM) is shown. Important issues of convergence, consistency, observability, data association and scaling in EKF-SLAM are discussed from both theoretical and practical points of view. Major extensions to the basic EKF-SLAM method and some recent advances in SLAM are also presented.

Strony (od-do)

575 - 588

DOI

10.2478/v10006-009-0045-z

URL

https://www.amcs.uz.zgora.pl/?action=paper&paper=460

Typ licencji

CC BY-NC-ND (uznanie autorstwa - użycie niekomercyjne - bez utworów zależnych)

Tryb otwartego dostępu

otwarte czasopismo

Wersja tekstu w otwartym dostępie

ostateczna wersja opublikowana

Pełny tekst artykułu

Pobierz plik

Poziom dostępu do pełnego tekstu

publiczny

Impact Factor

0,684

Ta strona używa plików Cookies, w celu zapamiętania uwierzytelnionej sesji użytkownika. Aby dowiedzieć się więcej przeczytaj o plikach Cookies i Polityce Prywatności.