W zależności od ilości danych do przetworzenia generowanie pliku może się wydłużyć.

Jeśli generowanie trwa zbyt długo można ograniczyć dane np. zmniejszając zakres lat.

Rozdział

Pobierz BibTeX

Tytuł

Random Similarity Forests

Autorzy

[ 1 ] Instytut Informatyki, Wydział Informatyki i Telekomunikacji, Politechnika Poznańska | [ P ] pracownik

Dyscyplina naukowa (Ustawa 2.0)

[2.3] Informatyka techniczna i telekomunikacja

Rok publikacji

2023

Typ rozdziału

rozdział w monografii naukowej / referat

Język publikacji

angielski

Streszczenie

EN The wealth of data being gathered about humans and their surroundings drives new machine learning applications in various fields. Consequently, more and more often, classifiers are trained using not only numerical data but also complex data objects. For example, multi-omics analyses attempt to combine numerical descriptions with distributions, time series data, discrete sequences, and graphs. Such integration of data from different domains requires either omitting some of the data, creating separate models for different formats, or simplifying some of the data to adhere to a shared scale and format, all of which can hinder predictive performance. In this paper, we propose a classification method capable of handling datasets with features of arbitrary data types while retaining each feature’s characteristic. The proposed algorithm, called Random Similarity Forest, uses multiple domain-specific distance measures to combine the predictive performance of Random Forests with the flexibility of Similarity Forests. We show that Random Similarity Forests are on par with Random Forests on numerical data and outperform them on datasets from complex or mixed data domains. Our results highlight the applicability of Random Similarity Forests to noisy, multi-source datasets that are becoming ubiquitous in high-impact life science projects.

Strony (od-do)

53 - 69

DOI

10.1007/978-3-031-26419-1_4

URL

https://link.springer.com/chapter/10.1007/978-3-031-26419-1_4

Książka

Machine Learning and Knowledge Discovery in Databases : European Conference, ECML PKDD 2022, Grenoble, France, September 19–23, 2022, Proceedings, Part V

Zaprezentowany na

European Conference on Machine Learning and Knowledge Discovery in Databases ECML PKDD 2022, 19-23.09.2022, Grenoble, France

Punktacja Ministerstwa / rozdział

20

Punktacja Ministerstwa / konferencja (CORE)

140

Ta strona używa plików Cookies, w celu zapamiętania uwierzytelnionej sesji użytkownika. Aby dowiedzieć się więcej przeczytaj o plikach Cookies i Polityce Prywatności.