Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Stochastic Vibrations of a System of Plates Immersed in Fluid Using a Coupled Boundary Element, Finite Element, and Finite Difference Methods Approach

Authors

[ 1 ] Instytut Analizy Konstrukcji, Wydział Inżynierii Lądowej i Transportu, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.7] Civil engineering, geodesy and transport

Year of publication

2023

Published in

Materials

Journal year: 2023 | Journal volume: vol. 16 | Journal number: iss. 9

Article type

scientific article

Publication language

english

Keywords
EN
  • natural vibrations of thin plates in fluid
  • numerical method
  • stochastic perturbation method
  • Monte Carlo simulation
  • semi-analytical probabilistic approach
Abstract

EN The main objective of this work is to investigate the natural vibrations of a system of two thin (Kirchhoff–Love) plates surrounded by liquid in terms of the coupled Stochastic Boundary Element Method (SBEM), Stochastic Finite Element Method (SFEM), and Stochastic Finite Difference Method (SFDM) implemented using three different probabilistic approaches. The BEM, FEM, and FDM were used equally to describe plate deformation, and the BEM was applied to describe the dynamic interaction of water on a plate surface. The plate’s inertial forces were expressed using a diagonal or consistent mass matrix. The inertial forces of water were described using the mass matrix, which was fully populated and derived using the theory of double-layer potential. The main aspect of this work is the simultaneous application of the BEM, FEM, and FDM to describe and model the problem of natural vibrations in a coupled problem in solid–liquid mechanics. The second very important novelty of this work is the application of the Bhattacharyya relative entropy apparatus to test the safety of such a system in terms of potential resonance. The presented concept is part of a solution to engineering problems in the field of structure and fluid dynamics and can also be successfully applied to the analysis of the dynamics of the control surfaces of ships or aircraft.

Date of online publication

07.05.2023

Pages (from - to)

3583-1 - 3583-30

DOI

10.3390/ma16093583

URL

https://www.mdpi.com/1996-1944/16/9/3583

Comments

Article Number: 3583

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Ministry points / journal

140

Impact Factor

3,1

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.