W zależności od ilości danych do przetworzenia generowanie pliku może się wydłużyć.

Jeśli generowanie trwa zbyt długo można ograniczyć dane np. zmniejszając zakres lat.

Rozdział

Pobierz BibTeX

Tytuł

Synthesizing Effective Diagnostic Models from Small Samples using Structural Machine Learning: a Case Study in Automating COVID-19 Diagnosis

Autorzy

[ 1 ] Instytut Informatyki, Wydział Informatyki i Telekomunikacji, Politechnika Poznańska | [ P ] pracownik

Dyscyplina naukowa (Ustawa 2.0)

[2.3] Informatyka techniczna i telekomunikacja

Rok publikacji

2023

Typ rozdziału

rozdział w monografii naukowej / referat

Język publikacji

angielski

Słowa kluczowe
EN
  • machine learning
  • genetic programming
  • structural machine learning
  • domain-specific languages
  • COVID-19
Streszczenie

EN The global COVID-19 pandemic has demonstrated the urgent need for diagnostic tools that can be both readily applied and dynamically calibrated by non-specialists, in terms of a sensitivity/specificity tradeoff that complies with relevant healthcare policies and procedures. This article describes the design and deployment of a novel machine learning algorithm, Structural Machine Learning (SML), that combines memetic grammar-guided program synthesis with self-supervised learning in order to learn effectively from small data sets while remaining relatively resistant to overfitting. SML is used to construct a signal processing pipeline for audio time-series, which then serves as the diagnostic mechanism for a wide-spectrum, infrasound-to-ultrasound e-stethoscope. In blind trials supervised by a third party, SML is shown to be superior to Deep Learning approaches in terms of the area under the ROC curve, while allowing for transparent interpretation of the decision-making process.

Data udostępnienia online

24.07.2023

Strony (od-do)

727 - 730

DOI

10.1145/3583133.3590598

URL

https://dl.acm.org/doi/10.1145/3583133.3590598

Książka

GECCO '23 Companion : Proceedings of the Companion Conference on Genetic and Evolutionary Computation, July 15-19, 2023, Lisbon, Portugal

Zaprezentowany na

GECCO '23 Genetic and Evolutionary Computation Conference, 15-19.07.2023, Lisbon, Portugal

Typ licencji

copyright

Tryb otwartego dostępu

witryna wydawcy

Wersja tekstu w otwartym dostępie

ostateczna wersja opublikowana

Czas udostępnienia publikacji w sposób otwarty

w momencie opublikowania

Punktacja Ministerstwa / rozdział

20

Punktacja Ministerstwa / konferencja (CORE)

140

Ta strona używa plików Cookies, w celu zapamiętania uwierzytelnionej sesji użytkownika. Aby dowiedzieć się więcej przeczytaj o plikach Cookies i Polityce Prywatności.