Understanding the Photothermal and Photocatalytic Mechanism of Polydopamine Coated Gold Nanorods
[ 1 ] Instytut Fizyki, Wydział Inżynierii Materiałowej i Fizyki Technicznej, Politechnika Poznańska | [ P ] pracownik
2023
artykuł naukowy
angielski
- Au nanorods
- nanocomposites
- polydopamines
- plasmons
- thermal con-ductivity
EN Localized surface plasmon resonance (LSPRs) shown by gold nanorods (AuNRs) has several applications in photocatalysis, sensing, and biomedicine. The combination of AuNRs with Polydopamine (PDA) shells results in a strong photo-thermal effect, making them appealing nanomaterials for biomedical applications. However, the precise roles and relative contributions of plasmonic effects in gold, and light-to-heat conversion in PDA are still debated. Herein, a hybrid nanoplatform made by an AuNR core surrounded by a polydopamine (PDA) shell is synthesized, and its photocatalytic behavior is studied. Synthesis is based on a seed-mediated growth followed by the further self-polymerization of dopamine hydrochloride (DA) on the surface of the AuNRs, and the effect of the thickness of the PDA shell on the plasmon response of the composite is the main examined parameter. Photocatalytic performance is tested toward Rhodamine 6G (Rh6G), with the nanocomposites achieving better performance than bare AuNRs and bare PDA nanoparticles. The degradation of 54% of Rh6G initial concentration is achieved within 60 min of irradiation with a catalyst concentration of 7.4 µg mL−1. Photodegradation kinetics, time-resolved spectroscopy, and finite-element-method simulations of plasmons show that AuNRs plasmons, coupled with the low thermal conductivity of PDA, provide slow thermalization, while enhancing the charge carrier transfer.
21.06.2023
2304208-1 - 2304208-14
Article number: 2304208
CC BY (uznanie autorstwa)
Czasopismo hybrydowe
ostateczna wersja opublikowana
w momencie opublikowania
publiczny
200
18,5