Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download file Download BibTeX

Title

Contextual Bandit-Based Amplifier IBO Optimization in Massive MIMO Network

Authors

[ 1 ] Instytut Radiokomunikacji, Wydział Informatyki i Telekomunikacji, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.3] Information and communication technology

Year of publication

2023

Published in

IEEE Access

Journal year: 2023 | Journal volume: vol. 11

Article type

scientific article

Publication language

english

Keywords
EN
  • Massive MIMO
  • 5G
  • machine learning
  • nonlinear distortion
  • input back-off (IBO)
Abstract

EN Massive Multiple-Input Multiple-Output (MMIMO) is one of the 5G key enablers. Though, most of the works consider MMIMO under assumptions of ideal hardware. It has been shown that Power Amplifiers (PAs) introduce nonlinear distortion while operating close to their saturation power. Moreover, these distortions are in some cases beamformed toward the user, preventing antenna array gain from solving this problem. One of the possible solutions is an adaptive adjustment of the PA operating point, measured by Input Back-Off (IBO), to find a balance between wanted signal power and nonlinear distortion power. This work proposes a Contextual Bandit-Based IBO Optimization (COBBIO) algorithm to find rate-maximizing IBO for a given user’s radio conditions using learning through interaction. The proposed solution is tested in a realistic analog beamforming MMIMO cell simulator with multiple functional blocks, e.g., precoder, user scheduler, and utilizing an accurate 3D Ray-Tracing radio channel model. COBBIO provides throughput gains both over fixed-IBO schemes and state-of-the-art analytical IBO adjustment algorithms. The highest gains were observed for the so-called cell-edge users, where up to 83% improvement over the state-of-the-art algorithm was observed for the proposed COBBIO algorithm.

Pages (from - to)

127035 - 127042

DOI

10.1109/ACCESS.2023.3331740

URL

https://ieeexplore.ieee.org/document/10314500

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

original author's version

Date of Open Access to the publication

at the time of publication

Full text of article

Download file

Access level to full text

public

Ministry points / journal

100

Impact Factor

3,4

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.