W zależności od ilości danych do przetworzenia generowanie pliku może się wydłużyć.

Jeśli generowanie trwa zbyt długo można ograniczyć dane np. zmniejszając zakres lat.

Artykuł

Pobierz BibTeX

Tytuł

Explaining and predicting customer churn by monotonic rules induced from ordinal data

Autorzy

[ 1 ] Instytut Informatyki, Wydział Informatyki i Telekomunikacji, Politechnika Poznańska | [ 2 ] Instytut Badań Systemowych Polskiej Akademii Nauk | [ P ] pracownik

Dyscyplina naukowa (Ustawa 2.0)

[2.3] Informatyka techniczna i telekomunikacja

Rok publikacji

2024

Opublikowano w

European Journal of Operational Research

Rocznik: 2024 | Tom: vol. 317 | Numer: no. 2

Typ artykułu

artykuł naukowy

Język publikacji

angielski

Słowa kluczowe
EN
  • Dominance-based Rough Set Approach
  • Ordinal classification with monotonicity constraints
  • Decision rules
  • Customer churn prediction
Streszczenie

EN In the course of a computational experiment on bank customer churn data, we demonstrate the explanatory and predictive capacity of monotonic decision rules. The data exhibit a partially ordinal character, as certain attribute value sets describing the clients are ordered and demonstrate a monotonic relationship with churn or non-churn outcomes. The data are structured by the Variable Consistency Dominance-based Rough Set Approach (VC-DRSA) prior to the induction of monotonic decision rules. The supervised learning is conducted using an extended version of VC-DRSA, implemented in RuLeStudio and RuleVisualization programs. The first one is designed to experiment with parameterized rule models, and the second one is used for visualization and a thorough examination of the rule model. The monotonic decision rules give insight into the bank data, characterizing loyal customers and the ones who left the bank. Such an approach is in line with explainable AI, aiming to obtain a transparent decision model, that can be easily understood by decision-makers. We also compare the predictive performance of monotonic rules with some well-known machine learning models.

Data udostępnienia online

01.10.2023

Strony (od-do)

414 - 424

DOI

10.1016/j.ejor.2023.09.028

URL

https://www.sciencedirect.com/science/article/pii/S0377221723007440?via%3Dihub

Typ licencji

CC BY (uznanie autorstwa)

Tryb otwartego dostępu

czasopismo hybrydowe

Wersja tekstu w otwartym dostępie

ostateczna wersja opublikowana

Czas udostępnienia publikacji w sposób otwarty

przed opublikowaniem

Punktacja Ministerstwa / czasopismo

140

Impact Factor

6 [Lista 2023]

Ta strona używa plików Cookies, w celu zapamiętania uwierzytelnionej sesji użytkownika. Aby dowiedzieć się więcej przeczytaj o plikach Cookies i Polityce Prywatności.