Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.


Download BibTeX


Exploring the Impact of Different Milling Parameters of Fe/SiO2 Composites on Their Structural and Magnetic Properties


[ 1 ] Instytut Technologii Materiałów, Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.9] Mechanical engineering

Year of publication


Published in


Journal year: 2024 | Journal volume: vol. 17 | Journal number: iss. 4

Article type

scientific article

Publication language


  • soft magnetic composites (SMCs)
  • compacted powder
  • surface smoothing
  • mechanical ball milling

EN This research focuses on the production process of soft magnetic composites in the form of 3D bulk compacts made from insulated powder particles using different milling parameters, aiming to enhance their magnetic properties and to study an innovative method of the powder surface “smoothing” technique. A structure analysis using scanning electron microscopy (SEM), EDS, and optical microscopy is also included. We found out that the samples made by the innovative method have lower density values. This can be caused by a more consistent SiO2 insulation layer on highly pure iron powder particles. A correlation between the mechanical smoothing method and better insulation of powder particles can help to provide eco-friendlier solutions for the preparation of soft magnetic composites, such as less usage of reagents and more consistent coverage of powder particles with lower final insulation thickness. The magnetic properties of these compacts are evaluated by coercive field, permeability, and loss measurements. The particle-level smoothing technique in some cases can reduce the value of coercivity up to 20%. For some samples, the ball-to-powder ratio has a bigger impact on magnetic properties than surface treatment, which can be caused by an increased amount of insulation in the SMC compacts.

Date of online publication


Pages (from - to)

862-1 - 862-13





Article Number: 862

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Ministry points / journal


Impact Factor

3,4 [List 2022]

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.