W zależności od ilości danych do przetworzenia generowanie pliku może się wydłużyć.

Jeśli generowanie trwa zbyt długo można ograniczyć dane np. zmniejszając zakres lat.

Artykuł

Pobierz BibTeX

Tytuł

Learning Abstract Visual Reasoning via Task Decomposition: A Case Study in Raven Progressive Matrices

Autorzy

[ 1 ] Instytut Informatyki, Wydział Informatyki i Telekomunikacji, Politechnika Poznańska | [ D ] doktorant | [ P ] pracownik

Dyscyplina naukowa (Ustawa 2.0)

[2.3] Informatyka techniczna i telekomunikacja

Rok publikacji

2024

Opublikowano w

International Journal of Applied Mathematics and Computer Science

Rocznik: 2024 | Tom: vol. 34 | Numer: no. 2

Typ artykułu

artykuł naukowy

Język publikacji

angielski

Słowa kluczowe
EN
  • abstract visual reasoning
  • Raven Progressive Matrices
  • machine learning
  • problem decomposition
Streszczenie

EN Learning to perform abstract reasoning often requires decomposing the task in question into intermediate subgoals that are not specified upfront, but need to be autonomously devised by the learner. In Raven Progressive Matrices (RPM), the task is to choose one of the available answers given a context, where both the context and answers are composite images featuring multiple objects in various spatial arrangements. As this high-level goal is the only guidance available, learning to solve RPMs is challenging. In this study, we propose a deep learning architecture based on the transformer blueprint which, rather than directly making the above choice, addresses the subgoal of predicting the visual properties of individual objects and their arrangements. The multidimensional predictions obtained in this way are then directly juxtaposed to choose the answer. We consider a few ways in which the model parses the visual input into tokens and several regimes of masking parts of the input in self-supervised training. In experimental assessment, the models not only outperform state-of-the-art methods but also provide interesting insights and partial explanations about the inference. The design of the method also makes it immune to biases that are known to be present in some RPM benchmarks.

Strony (od-do)

309 - 321

URL

https://www.amcs.uz.zgora.pl/?action=paper&paper=1754

Typ licencji

CC BY-NC-ND (uznanie autorstwa - użycie niekomercyjne - bez utworów zależnych)

Tryb otwartego dostępu

otwarte czasopismo

Wersja tekstu w otwartym dostępie

ostateczna wersja opublikowana

Punktacja Ministerstwa / czasopismo

100

Impact Factor

1,6 [Lista 2023]

Ta strona używa plików Cookies, w celu zapamiętania uwierzytelnionej sesji użytkownika. Aby dowiedzieć się więcej przeczytaj o plikach Cookies i Polityce Prywatności.