W zależności od ilości danych do przetworzenia generowanie pliku może się wydłużyć.

Jeśli generowanie trwa zbyt długo można ograniczyć dane np. zmniejszając zakres lat.

Artykuł

Pobierz BibTeX

Tytuł

Turbofan engine health status prediction with neural network pattern recognition and automated feature engineering

Autorzy

[ 1 ] Instytut Napędów i Lotnictwa, Wydział Inżynierii Lądowej i Transportu, Politechnika Poznańska | [ P ] pracownik

Dyscyplina naukowa (Ustawa 2.0)

[2.7] Inżynieria lądowa, geodezja i transport

Rok publikacji

2024

Opublikowano w

Aircraft Engineering and Aerospace Technology

Rocznik: 2024 | Tom: vol. 96 | Numer: no. 11

Typ artykułu

artykuł naukowy

Język publikacji

angielski

Słowa kluczowe
EN
  • Aircraft turbofan engine
  • Health status prediction
  • Neural network pattern recognition
  • Artificial neural network
  • Prognostic health monitoring
  • Turbine engine failure analysis
Streszczenie

EN Purpose This study aims to present the concept of aircraft turbofan engine health status prediction with artificial neural network (ANN) pattern recognition but augmented with automated features engineering (AFE). Design/methodology/approach The main concept of engine health status prediction was based on three case studies and a validation process. The first two were performed on the engine health status parameters, namely, performance margin and specific fuel consumption margin. The third one was generated and created for the engine performance and safety data, specifically created for the final test. The final validation of the neural network pattern recognition was the validation of the proposed neural network architecture in comparison to the machine learning classification algorithms. All studies were conducted for ANN, which was a two-layer feedforward network architecture with pattern recognition. All case studies and tests were performed for both simple pattern recognition network and network augmented with automated feature engineering (AFE). Findings The greatest achievement of this elaboration is the presentation of how on the basis of the real-life engine operational data, the entire process of engine status prediction might be conducted with the application of the neural network pattern recognition process augmented with AFE. Practical implications This research could be implemented into the engine maintenance strategy and planning. Engine health status prediction based on ANN augmented with AFE is an extremely strong tool in aircraft accident and incident prevention. Originality/value Although turbofan engine health status prediction with ANN is not a novel approach, what is absolutely worth emphasizing is the fact that contrary to other publications this research was based on genuine, real engine performance operational data as well as AFE methodology, which makes the entire research very reliable. This is also the reason the prediction results reflect the effect of the real engine wear and deterioration process.

Strony (od-do)

19 - 26

DOI

10.1108/AEAT-04-2024-0111

URL

https://www.emerald.com/insight/content/doi/10.1108/AEAT-04-2024-0111/full/html?utm_source=smc_email_onboarding&utm_medium=email&utm_campaign=apa_author_journals_access_2024-8-20

Typ licencji

CC BY (uznanie autorstwa)

Tryb otwartego dostępu

otwarte czasopismo

Wersja tekstu w otwartym dostępie

ostateczna wersja opublikowana

Czas udostępnienia publikacji w sposób otwarty

w momencie opublikowania

Punktacja Ministerstwa / czasopismo

70

Impact Factor

1,2 [Lista 2023]

Ta strona używa plików Cookies, w celu zapamiętania uwierzytelnionej sesji użytkownika. Aby dowiedzieć się więcej przeczytaj o plikach Cookies i Polityce Prywatności.