W zależności od ilości danych do przetworzenia generowanie pliku może się wydłużyć.

Jeśli generowanie trwa zbyt długo można ograniczyć dane np. zmniejszając zakres lat.

Artykuł

Pobierz BibTeX

Tytuł

Leveraging artificial intelligence to identify the psychological factors associated with conspiracy theory beliefs online

Autorzy

[ 1 ] Wydział Informatyki i Telekomunikacji, Politechnika Poznańska | [ 2 ] Instytut Informatyki, Wydział Informatyki i Telekomunikacji, Politechnika Poznańska | [ SzD ] doktorant ze Szkoły Doktorskiej | [ P ] pracownik

Dyscyplina naukowa (Ustawa 2.0)

[2.3] Informatyka techniczna i telekomunikacja

Rok publikacji

2024

Opublikowano w

Nature Communications

Rocznik: 2024 | Tom: vol. 15

Typ artykułu

artykuł naukowy

Język publikacji

angielski

Słowa kluczowe
EN
  • COVID-19
  • conspiracy theory
  • artificial intelligence
Streszczenie

EN Given the profound societal impact of conspiracy theories, probing the psychological factors associated with their spread is paramount. Most research lacks large-scale behavioral outcomes, leaving factors related to actual online support for conspiracy theories uncertain. We bridge this gap by combining the psychological self-reports of 2506 Twitter (currently X) users with machine-learning classification of whether the textual data from their 7.7 million social media engagements throughout the pandemic supported six common COVID-19 conspiracy theories. We assess demographic factors, political alignment, factors derived from theory of reasoned action, and individual psychological differences. Here, we show that being older, self-identifying as very left or right on the political spectrum, and believing in false information constitute the most consistent risk factors; denialist tendencies, confidence in one’s ability to spot misinformation, and political conservativism are positively associated with support for one conspiracy theory. Combining artificial intelligence analyses of big behavioral data with self-report surveys can effectively identify and validate risk factors for phenomena evident in large-scale online behaviors.

Data udostępnienia online

29.08.2024

Strony (od-do)

7497-1 - 7497-17

DOI

10.1038/s41467-024-51740-9

URL

https://www.nature.com/articles/s41467-024-51740-9

Uwagi

Article Number: 7497

Typ licencji

CC BY (uznanie autorstwa)

Tryb otwartego dostępu

otwarte czasopismo

Wersja tekstu w otwartym dostępie

ostateczna wersja opublikowana

Czas udostępnienia publikacji w sposób otwarty

w momencie opublikowania

Punktacja Ministerstwa / czasopismo

200

Impact Factor

14,7 [Lista 2023]

Ta strona używa plików Cookies, w celu zapamiętania uwierzytelnionej sesji użytkownika. Aby dowiedzieć się więcej przeczytaj o plikach Cookies i Polityce Prywatności.