W zależności od ilości danych do przetworzenia generowanie pliku może się wydłużyć.

Jeśli generowanie trwa zbyt długo można ograniczyć dane np. zmniejszając zakres lat.

Artykuł

Pobierz BibTeX

Tytuł

Alleviating Cold Start in the EOSC Recommendations: Extended Page Rank Algorithm

Autorzy

[ 1 ] Instytut Informatyki, Wydział Informatyki i Telekomunikacji, Politechnika Poznańska | [ S ] student | [ P ] pracownik

Dyscyplina naukowa (Ustawa 2.0)

[2.3] Informatyka techniczna i telekomunikacja

Rok publikacji

2024

Opublikowano w

IEEE Access

Rocznik: 2024 | Tom: in press

Typ artykułu

artykuł naukowy

Język publikacji

angielski

Słowa kluczowe
EN
  • Recommender systems
  • Europe
  • Collaborative filtering
  • Collaboration
  • Information systems
  • Scientific publishing
  • User preference
  • academia
  • cold start
  • graph–based recommendations
  • recommendation system
  • scholarly data
Streszczenie

EN Recommender systems are becoming crucial in academia, where the number of available scientific resources continuously increases. One of the main challenges of such systems is a cold start problem, which often occurs when new users have no preference for any items or recommend new items that no community user has recommended yet. In the case of academic systems, where researchers are usually reluctant to express their explicit feedback or scientific interests, the cold start problem has a considerable and long-term impact on the recommendation algorithms. To alleviate this problem, this paper discusses a graph-based recommendation approach extending the Page Rank algorithm by using a co-authorship network. The proposed approach aims to enhance existing recommendation capabilities in the European Open Science Cloud (EOSC). The first results of the evaluation indicate that the proposed recommendation model is promising and reduces the cold start user-side problem in the academic domain.

Data udostępnienia online

27.08.2024

DOI

10.1109/ACCESS.2024.3450632

URL

https://ieeexplore.ieee.org/document/10649646

Typ licencji

CC BY-NC-ND (uznanie autorstwa - użycie niekomercyjne - bez utworów zależnych)

Tryb otwartego dostępu

otwarte czasopismo

Wersja tekstu w otwartym dostępie

ostateczna wersja opublikowana

Czas udostępnienia publikacji w sposób otwarty

przed opublikowaniem

Punktacja Ministerstwa / czasopismo

100

Impact Factor

3,4 [Lista 2023]

Ta strona używa plików Cookies, w celu zapamiętania uwierzytelnionej sesji użytkownika. Aby dowiedzieć się więcej przeczytaj o plikach Cookies i Polityce Prywatności.