W zależności od ilości danych do przetworzenia generowanie pliku może się wydłużyć.

Jeśli generowanie trwa zbyt długo można ograniczyć dane np. zmniejszając zakres lat.

Artykuł

Pobierz BibTeX

Tytuł

Beyond the Arbitrariness of Drug-Likeness Rules: Rough Set Theory and Decision Rules in the Service of Drug Design

Autorzy

[ 1 ] Instytut Informatyki, Wydział Informatyki i Telekomunikacji, Politechnika Poznańska | [ P ] pracownik | [ S ] student

Dyscyplina naukowa (Ustawa 2.0)

[2.3] Informatyka techniczna i telekomunikacja

Rok publikacji

2024

Opublikowano w

Applied Sciences

Rocznik: 2024 | Tom: vol. 14 | Numer: iss. 21

Typ artykułu

artykuł naukowy

Język publikacji

angielski

Słowa kluczowe
EN
  • drug-likeness
  • multiple criteria decision analysis
  • drug design
  • biological activity
  • dominance-based rough set approach
  • decision rules
Streszczenie

EN Lipinski’s Rule of Five and Ghose filter are empirical guidelines for evaluating the drug-likeness of a compound, suggesting that orally active drugs typically fall within specific ranges for molecular descriptors such as hydrogen bond donors and acceptors, weight, and lipophilicity. We revisit these practices and offer a more analytical perspective using the Dominance-based Rough Set Approach (DRSA). By analyzing representative samples of drug and non-drug molecules and focusing on the same molecular descriptors, we derived decision rules capable of distinguishing between these two classes systematically and reproducibly. This way, we reduced human bias and enabled efficient knowledge extraction from available data. The performance of the DRSA model was rigorously validated against traditional rules and available machine learning (ML) approaches, showing a significant improvement over empirical rules while achieving comparable predictive accuracy to more complex ML methods. Our rules remain simple and interpretable while being characterized by high sensitivity and specificity.

Data udostępnienia online

31.10.2024

Strony (od-do)

9966-1 - 9966-14

URL

https://www.mdpi.com/2076-3417/14/21/9966

Uwagi

Article Number: 9966

Typ licencji

CC BY (uznanie autorstwa)

Tryb otwartego dostępu

otwarte czasopismo

Wersja tekstu w otwartym dostępie

ostateczna wersja opublikowana

Czas udostępnienia publikacji w sposób otwarty

w momencie opublikowania

Punktacja Ministerstwa / czasopismo

100

Impact Factor

2,5 [Lista 2023]

Ta strona używa plików Cookies, w celu zapamiętania uwierzytelnionej sesji użytkownika. Aby dowiedzieć się więcej przeczytaj o plikach Cookies i Polityce Prywatności.