Local Data Characteristics in Learning Classifiers from Imbalanced Data
[ 1 ] Instytut Informatyki, Wydział Informatyki, Politechnika Poznańska | [ P ] employee
2018
chapter in monograph
english
EN Learning classifiers from imbalanced data is still one of challenging tasks in machine learning and data mining. Data difficulty factors referring to internal and local characteristics of class distributions deteriorate performance of standard classifiers. Many of these factors may be approximated by analyzing the neighbourhood of the learning examples and identifying different types of examples from the minority class. In this paper, we follow recent research on developing such methods for assessing the types of examples which exploit either k-nearest neighbours or kernels. We discuss the approaches to tune the size of both kinds of neighborhoods depending on the data set characteristics and evaluate their usefulness in series of experiments with real-world and synthetic data sets. Furthermore, we claim that the proper analysis of these neighborhoods could be the basis for developing new specialized algorithms for imbalanced data. To illustrate it, we study generalizations of over-sampling in pre-processing methods and neighbourhood based ensembles.
51 - 85
20