Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Deep learning model for end-to-end approximation of COSMIC functional size based on use-case names

Authors

[ 1 ] Instytut Informatyki, Wydział Informatyki i Telekomunikacji, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.3] Information and communication technology

Year of publication

2020

Published in

Information and Software Technology

Journal year: 2020 | Journal volume: vol. 123

Article type

scientific article

Publication language

english

Keywords
EN
  • functional size approximation
  • approximate software sizing methods
  • COSMIC
  • deep learning
  • word embeddings
  • use cases
Date of online publication

18.03.2020

Pages (from - to)

106310-1 - 106310 -14

DOI

10.1016/j.infsof.2020.106310

URL

https://www.sciencedirect.com/science/article/abs/pii/S0950584920300628?via%3Dihub

Comments

Article: 106310

Ministry points / journal

140

Ministry points / journal in years 2017-2021

140

Impact Factor

2,73

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.