Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download file Download BibTeX

Title

Multi-Criteria Comparative Analysis of Clean Hydrogen Production Scenarios

Authors

[ 1 ] Instytut Elektroenergetyki, Wydział Inżynierii Środowiska i Energetyki, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.10] Environmental engineering, mining and energy

Year of publication

2020

Published in

Energies

Journal year: 2020 | Journal volume: vol. 13 | Journal number: no. 16

Article type

scientific article

Publication language

english

Keywords
EN
  • photovoltaic‐electrolysis
  • clean hydrogen
  • sustainable hydrogen production
Abstract

EN Different hydrogen production scenarios need to be compared in regard to multiple, and often distinct aspects. It is well known that hydrogen production technologies based on environmentally-friendly renewable energy sources have higher values of the economic indicators than methods based on fossil fuels. Therefore, how should this decision criterion (environmental) prevail over the other types of decision criteria (technical and economic) to make a scenario where hydrogen production only uses renewable energy sources the most attractive option for a decision-maker? This article presents the results of a multi-variant comparative analysis of scenarios to annually produce one million tons of pure hydrogen (99.999%) via electrolysis in Poland. The compared variants were found to differ in terms of electricity sources feeding the electrolyzers. The research demonstrated that the scenario where hydrogen production uses energy from photovoltaics only becomes the best option for the environmental criterion weighting value at 61%. Taking the aging effect of photovoltaic installation (PV) panels and electrolyzers after 10 years of operation into account, the limit value of the environmental criterion rises to 63%. The carried out analyses may serve as the basis for the creation of systems supporting the development of clean and green hydrogen production technologies.

Pages (from - to)

4180-1 - 4180-21

DOI

10.3390/en13164180

URL

https://www.mdpi.com/1996-1073/13/16/4180

Comments

article number: 4180

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Full text of article

Download file

Access level to full text

public

Ministry points / journal

140

Ministry points / journal in years 2017-2021

140

Impact Factor

3,004

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.