Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download file Download BibTeX

Title

Numerical and Experimental Analysis of Heat Transfer for Solid Fuels Combustion in Fixed Bed Conditions

Authors

[ 1 ] Instytut Energetyki Cieplnej, Wydział Inżynierii Środowiska i Energetyki, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.10] Environmental engineering, mining and energy

Year of publication

2020

Published in

Energies

Journal year: 2020 | Journal volume: vol. 13 | Journal number: no. 22

Article type

scientific article

Publication language

english

Keywords
EN
  • solid fuels
  • fixed bed
  • combustion
  • heat transfer
  • heat load
  • CFD
  • modeling
  • experimental analysis
Abstract

EN The paper concerns the analysis of the heat transfer process that occurred during solid fuel burning in fixed bed conditions. The subject of the analysis is a cylindrical combustion chamber with an output of 12 kW heating power equipped with a retort burner for hard coal and biomass combustion. During the research, a numerical and experimental study is performed. The analysis is prepared for various heat load of the combustion chamber, which allowed for the reconstruction of real working conditions for heating devices working with solid fuels combustion. The temperature distribution obtained by the experimental way is compared with results of the numerical modeling. Local distribution of principal heat transfer magnitudes like a heat flux density and a heat transfer coefficient that occurred on the sidewall of the combustion chamber is analyzed. The analysis showed, that the participation of convection and radiation in the overall heat transfer process has resulted from the heat load of the heating device. Research results may be used for improving an analytical approach of design process taking place for domestic and industrial combustion chambers.

Pages (from - to)

6141-1 - 6141-18

DOI

10.3390/en13226141

URL

https://www.mdpi.com/1996-1073/13/22/6141

Comments

article number: 6141

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Full text of article

Download file

Access level to full text

public

Ministry points / journal

140

Ministry points / journal in years 2017-2021

140

Impact Factor

3,004

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.