Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Scale-invariant unconstrained online learning

Authors

[ 1 ] Instytut Informatyki, Wydział Informatyki i Telekomunikacji, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.3] Information and communication technology

Year of publication

2020

Published in

Theoretical Computer Science

Journal year: 2020 | Journal volume: vol. 808

Article type

scientific article

Publication language

english

Keywords
EN
  • online learning
  • online convex optimization
  • scale invariance
  • unconstrained online learning
  • linear classification
  • regret bound
Date of online publication

12.11.2020

Pages (from - to)

139 - 158

DOI

10.1016/j.tcs.2019.11.016

URL

https://www.sciencedirect.com/science/article/pii/S0304397519307285?via%3Dihub

Ministry points / journal

100

Ministry points / journal in years 2017-2021

100

Impact Factor

0,827

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.