Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Chapter

Download BibTeX

Title

BiLSTM Recurrent Neural Networks inHeterogeneous Ensemble Models for NamedEntity Recognition Problem in Long Polish Unstructured Documents

Authors

[ 1 ] Instytut Automatyki i Robotyki, Wydział Automatyki, Robotyki i Elektrotechniki, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.2] Automation, electronics and electrical engineering

Year of publication

2020

Chapter type

chapter in monograph / paper

Publication language

english

Keywords
EN
  • natural language processing
  • named entity recognition
  • ensemble model
  • artificial neuralnetwork
  • BiLSTM
  • GRU
  • XGBoost
  • Random Forest
Pages (from - to)

109 - 123

URL

http://poleval.pl/files/poleval2020.pdf#page=109

Book

Proceedings of the PolEval 2020 Workshop

Presented on

PolEval 2020, 26.10.2020, Warszawa, Polska

Open Access Mode

open repository

Open Access Text Version

final published version

Ministry points / chapter

20

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.