Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Sterowanie neuronowe modelem laboratoryjnym suwnicy przemysłowej

Authors

Title variant

EN Neural control of a 3D crane model

Year of publication

2016

Published in

Poznan University of Technology Academic Journals. Electrical Engineering

Journal year: 2016 | Journal number: Issue 87

Article type

scientific article

Publication language

polish

Keywords
PL
  • sieć neuronowa
  • model suwnicy
  • neuronowy układ sterowania
Abstract

PL Suwnice przemysłowe są nieodłącznym urządzeniem używanym przy przenoszeniu ładunku. Potrzeba szybkiego transportu wymaga sterowania ruchem suwnicy, tak aby dynamika całego ruchu była zoptymalizowana. W artykule przedstawiono syntezę sterowania neuronowego napowietrzną suwnicą przemysłową. Sterowanie procesem zostało zrealizowane za pomocą sieci neuronowych realizujących odwzorowanie wejściowowyjściowe (trajektorii zadanej w sygnał sterujący). W sterowaniu wykorzystano sieci perceptronowe typu MLP (ang. Multilayer Perceptron). Zaproponowana metoda sterowania została porównana z układem regulacji PD. Wyniki badań wskazują na poprawę wskaźników jakości regulacji przy zastosowaniu proponowanego rozwiązania. Eksperymenty zostały przeprowadzone w środowisku obliczeniowym Matlab/Simulink.

EN Cranes are indispensable systems used for material handling. The need for faster cargo handling requires such a control of the crane motion so that its dynamic performance is optimized. This paper presents neural control synthesis for a crane model (Fig. 5). The process control executed using artificial neural networks (the multilayer perceptron - MLP). The Levenberg-Marquardt method has been used to find the best weights of an MLP. In order to accelerate material handling, the movement was made at a special trajectory, where motion is held in two directions (Fig. 4). Presented neural methods were compared with traditional PD control. The research was carried out in the Matlab/Simulink environment. The test results show that artificial neural networks can be a useful tool to control the industrial devices.

Pages (from - to)

473 - 482

Presented on

Computer Applications in Electrical Engineering 2016, 18-19.04.2016, Poznan, Poland

Ministry points / journal

9

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.