Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download file Download BibTeX

Title

Novel Method of the Seal Aerodynamic Design to Reduce Leakage by Matching the Seal Geometry to Flow Conditions

Authors

[ 1 ] Instytut Energetyki Cieplnej, Wydział Inżynierii Środowiska i Energetyki, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.10] Environmental engineering, mining and energy

Year of publication

2021

Published in

Energies

Journal year: 2021 | Journal volume: vol. 14 | Journal number: no. 23

Article type

scientific article

Publication language

english

Keywords
EN
  • labyrinth seal
  • leakage
  • design method
  • kinetic energy
  • inverse problem
  • steam turbines
  • gas turbines
  • fluid-flow machines
Abstract

EN This paper presents a novel method of labyrinth seals design. This method is based on CFD calculations and consists in the analysis of the phenomenon of gas kinetic energy carry-over in the seal chambers between clearances. The design method is presented in two variants. The first variant is designed for seals for which it is impossible to change their external dimensions (length and height). The second variant enables designing the seal geometry without changing the seal length and with a slight change of the seal height. Apart from the optimal distribution of teeth, this variant provides for adjusting chambers geometry to flow conditions. As the result of using both variants such design of the seal geometry with respect to leakage is obtained which enables achieving kinetic energy dissipation as uniform as possible in each chamber of the seal. The method was developed based on numerical calculations and the analysis of the flow phenomena. Calculation examples included in this paper show that the obtained reduction of leakage for the first variant ranges from 3.4% to 15.5%, when compared with the initial geometry. The relation between the number of seal teeth and the leakage rate is also analyzed here. The second variant allows for reduction of leakage rate by 15.4%, when compared with the geometry with the same number of teeth. It is shown that the newly designed geometry reveals almost stable relative reduction of leakage rate irrespective of the pressure ratio upstream and downstream the seal. The efficiency of the used method is proved for various heights of the seal clearance.

Pages (from - to)

7880-1 - 7880-16

DOI

10.3390/en14237880

URL

https://www.mdpi.com/1996-1073/14/23/7880

Comments

article number: 7880

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Full text of article

Download file

Access level to full text

public

Ministry points / journal

140

Ministry points / journal in years 2017-2021

140

Impact Factor

3,252

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.