Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

RNA World Modeling: A Comparison of Two Complementary Approaches

Authors

[ 1 ] Instytut Informatyki, Wydział Informatyki i Telekomunikacji, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.3] Information and communication technology

Year of publication

2022

Published in

Entropy

Journal year: 2022 | Journal volume: vol. 24 | Journal number: no. 4

Article type

scientific article

Publication language

english

Keywords
EN
  • RNA world
  • partial differential equations
  • multi-agent systems
Abstract

EN The origin of life remains one of the major scientific questions in modern biology. Among many hypotheses aiming to explain how life on Earth started, RNA world is probably the most extensively studied. It assumes that, in the very beginning, RNA molecules served as both enzymes and as genetic information carriers. However, even if this is true, there are many questions that still need to be answered—for example, whether the population of such molecules could achieve stability and retain genetic information for many generations, which is necessary in order for evolution to start. In this paper, we try to answer this question based on the parasite–replicase model (RP model), which divides RNA molecules into enzymes (RNA replicases) capable of catalyzing replication and parasites that do not possess replicase activity but can be replicated by RNA replicases. We describe the aforementioned system using partial differential equations and, based on the analysis of the simulation, surmise general rules governing its evolution. We also compare this approach with one where the RP system is modeled and implemented using a multi-agent modeling technique. We show that approaching the description and analysis of the RP system from different perspectives (microscopic represented by MAS and macroscopic depicted by PDE) provides consistent results. Therefore, applying MAS does not lead to erroneous results and allows us to study more complex situations where many cases are concerned, which would not be possible through the PDE model.

Date of online publication

11.04.2022

Pages (from - to)

536-1 - 536-26

DOI

10.3390/e24040536

URL

https://www.mdpi.com/1099-4300/24/4/536

Comments

Article Number: 536

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Ministry points / journal

100

Impact Factor

2,7

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.