Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download file Download BibTeX

Title

Analysis of Particle Emissions from a Jet Engine including Conditions of Afterburner Use

Authors

[ 1 ] Instytut Silników Spalinowych i Napędów, Wydział Inżynierii Lądowej i Transportu, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.7] Civil engineering, geodesy and transport

Year of publication

2022

Published in

Energies

Journal year: 2022 | Journal volume: vol. 15 | Journal number: iss. 20

Article type

scientific article

Publication language

english

Keywords
EN
  • jet engine
  • afterburner
  • emission
  • particles
  • particulate matter
Abstract

EN Particle emissions from aircraft engines are mainly related to the emission of particles with very small diameters. The phenomena of the formation of particles in various operating conditions of turbine engines are known. However, it is difficult to find the results of research on the use of the afterburner in the literature. Increased aviation activity within military airports and situations such as air shows are associated with a very intense emission of particles, and pose a direct threat to human health. This article presents an analysis of particulate matter emissions from a military aircraft engine, with particular emphasis on operation with an afterburner. The parameters of the emission of particles determined were: PM Number Emissions Index (EIN), Particle Number Emissions Intensity (EN), PM Mass Emission Index (EIM), PM Mass Emission Intensity (EM), Differential Particle Number Emission Index, Differential Particle Volume Emission Index, and Differential Particle Mass Emission Index. The value of EIN for the afterburner use was the lowest among the whole operation range of the engine and was equal to 1.3 × 1015 particles per kilogram. The use of an afterburner resulted in a sharp increase in the EIM coefficient, which reached 670 mg/kg. Despite a very large increase in fuel consumption, the EIM coefficient turned out to be over 60 times greater than in the case of 100% engine thrust.

Pages (from - to)

7696-1 - 7696-11

DOI

10.3390/en15207696

URL

https://www.mdpi.com/1996-1073/15/20/7696/pdf

Comments

article number: 7696

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Full text of article

Download file

Access level to full text

public

Ministry points / journal

140

Impact Factor

3,2

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.