Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Numerical Simulation of the Impact of Water Vapour and Moisture Blockers in Energy Diagnostics of Ventilated Partitions

Authors

[ 1 ] Instytut Budownictwa, Wydział Inżynierii Lądowej i Transportu, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.7] Civil engineering, geodesy and transport

Year of publication

2022

Published in

Materials

Journal year: 2022 | Journal volume: vol. 15 | Journal number: iss. 22

Article type

scientific article

Publication language

english

Keywords
EN
  • water vapour
  • operational moisture
  • numerical analysis
  • dew point
  • flexible waterproofing materials
Abstract

EN Current trends towards saving energy and designing sustainable buildings result in most designers focusing on achieving the best thermal parameters, thereby neglecting a careful moisture analysis. Excessive moisture content in building partitions degrades the mechanical properties of materials, reduces thermal insulation properties (which leads to an increase in the demand for thermal energy) and worsens the microclimate in rooms. Modern digital solutions help create appropriate models of partitions that work for many years in good environmental conditions. According to the analysis of air parameters, 1 m3 of air at 20 °C contains approx. 17.3 g of water. When the temperature of the air reaches the dew point temperature, water vapour condenses. The dew point depends on air temperature and relative air humidity; for instance, at the same air temperature of 20 °C, the dew point temperature at 40% relative air humidity is 6 °C, whereas at 90% relative humidity, it is over 18 °C. This means that the higher the value of relative humidity in the room at a certain temperature, the lower the temperature that will cause condensation. The article presents a numerical analysis of the insulation work of flexible materials within the layers of ventilated partitions in an 8-year simulated period of varying environmental conditions. The aim of the article is to analyze different models and variants of ventilated partition operation with respect to the advisability of using a vapour barrier to avoid the problem of destruction of thermal insulation and finishing layers of a ventilated roof.

Date of online publication

21.11.2022

Pages (from - to)

8257-1 - 8257-19

DOI

10.3390/ma15228257

URL

https://www.mdpi.com/1996-1944/15/22/8257/pdf

Comments

Article Number: 8257

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Ministry points / journal

140

Impact Factor

3,4

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.