Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Overview of Spiking Neural Network Learning Approaches and Their Computational Complexities

Authors

[ 1 ] Wydział Informatyki i Telekomunikacji, Politechnika Poznańska | [ 2 ] Instytut Informatyki, Wydział Informatyki i Telekomunikacji, Politechnika Poznańska | [ SzD ] doctoral school student | [ P ] employee

Scientific discipline (Law 2.0)

[2.3] Information and communication technology

Year of publication

2023

Published in

Sensors

Journal year: 2023 | Journal volume: vol. 23 | Journal number: iss. 6

Article type

scientific article

Publication language

english

Keywords
EN
  • spiking neural networks
  • learning algorithms
  • computational complexity
  • hardware
Abstract

EN Spiking neural networks (SNNs) are subjects of a topic that is gaining more and more interest nowadays. They more closely resemble actual neural networks in the brain than their second-generation counterparts, artificial neural networks (ANNs). SNNs have the potential to be more energy efficient than ANNs on event-driven neuromorphic hardware. This can yield drastic maintenance cost reduction for neural network models, as the energy consumption would be much lower in comparison to regular deep learning models hosted in the cloud today. However, such hardware is still not yet widely available. On standard computer architectures consisting mainly of central processing units (CPUs) and graphics processing units (GPUs) ANNs, due to simpler models of neurons and simpler models of connections between neurons, have the upper hand in terms of execution speed. In general, they also win in terms of learning algorithms, as SNNs do not reach the same levels of performance as their second-generation counterparts in typical machine learning benchmark tasks, such as classification. In this paper, we review existing learning algorithms for spiking neural networks, divide them into categories by type, and assess their computational complexity.

Date of online publication

11.03.2023

Pages (from - to)

3037-1 - 3037-19

DOI

10.3390/s23063037

URL

https://www.mdpi.com/1424-8220/23/6/3037

Comments

Article Number: 3037

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Ministry points / journal

100

Impact Factor

3,4

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.